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Rump, S.M.

Verified Computation of the Solution of Large Sparse Systems

In this note we summarize some recent results on the computation of verified error bounds for large and sparse
systems of equations. The detailed theory and proofs will be published elsewhere.

We focus on the symmetric case. The aim of the methods is to utilize numerical approximate solvers like LDLT as
much as possible. The error estimates are derived in such a way that they hold for any library routine independent
on the specific implementation. Numerical examples are given. Comparisons with the LAPACK condition estimator
DPBCON are shown and results for Emden’s equation.

1. Symmetric linear systems

We use notations and basic facts of interval analysis (cf., for example, [1], [6]). Let a linear system Az = b be given
with

AeR"™™ beIR", A= AT large and sparse or banded,

and let p denote the maximum number of nonzero elements per row or column divided by 2.

We assume n to be large compared to p. For an approximate solution £ € IR” and an exact solution ¥ € IR"
the following error estimate holds:

17 = Flleo < |IE — 2|2 < on(4)™" - |Ib — AZ]}2- (1.1)

Here, 01(A) > ... > on(A) denote the singular values of A. For A being symmetric positive definite (s.p.d.), in
[10] a method for large and sparse or banded matrices has been described with computing time n - p?, which is the
complexity of a Cholesky decomposition. The scope of applicability is, as for every linear solver,cond(A) < eps~?,
where eps denotes the relative rounding error unit.

In the following we will describe a method for the large class of linear systems with general symmetric matrix.
For A = LDLT the inertia of A and D are equal by Sylvester’s law of inertia. If the inertias of A — Al and A+ AJ
are equal, then |A(A)| > X for every eigenvalue A(A) of A. That means o,(A) > A. For approximate decompositions
A—X~IL,D,IT and A+XI ~ L,D,LT, the inertia of A—XI and D; or A+ Al and D, need not be equal because
of rounding errors. This problem can be solved by the following theorem.

Theorem 1.1 Let A € IR™*®, 0 < X € R and Ly, Dy, L2, D2 € IR™*™ be given. If the inertia of Dy and D,
are equal, then for any matrix norm

on(A) > A —max{||A - A — L, D, LT||, |A+ XI - L. D,LT|)} (1.2)
If all eigenvalues of 51 are positive, then
on(A) >X—||A=XI-L, D, I7|. (1.3)

Having an approximate decomposition LDIT of A, a suitable value for X is easily computed by inverse power
iteration. After that, we enter a hybrid algorithm. If the approximate decomposition Elﬁlz’{ of A — Al ylelds
a diagonal matrix D; with only positive diagonal elements, then we use (1.3) and stop. Otherwise, A 4 Al is
decomposed, too, and (1.2) can be used. The lower bound for ¢,(A) is used in (1.1) for the final error estimate.
The scope of applicability of the method is again cond(A4) < eps~1.

2. Error estimates

Our methods needs an error estimate on ||B — LDLT|| for an approximate decomposition LDLT of B € IR™*".
For this purpose, a priori error estimates have been derived being independent on the specific implementation (for
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example, order of execution). The heart is an error estimate for sums of floating point numbers. Define
a=flla) &= 3FegbelR,e|<eps, n|<eta : a=a-(14+¢)+7n (2.1)

with machine constants eps and eta representing the relative rounding error and underflow error, respectively. We
define recursively

= fl**'(a) & d=fl(f1*(a)) for1<ke€lN.
For a floating point sum §=¢; Hep B...H ¢, of floating point numbers ¢, ..., c, one can show
ey n
§= Z fl'(c;) and ¢ = fl'(s) — Z fl'(¢;) forevery 1 <k <n.

i=1 i=1
itk

Here, | depends on the order of summation. For usual summation in any order we have { = n — 1, for recursive
blockwise summation with blocksize b we have | = 2(b — 1)[logyn], and using a precise scalar product [5] yields
1 = 1. With this the following rigorous error estimate for an approximate floating point decomposition LDLT can
be proved:

142

|B — EEZTI,-,- < < {p-eps+(p+1)-eta} with p:= m;ja.xz L | Dexl-

k
This estimates also holds in the presence of underfiow and it even holds for a computer arithmetic without guard
digit. Moreover, it can be shown to be very sharp for components (%, j) with positive Dii, D_, j. But in many practical
situations there are few negative cigenvalues of B and therefore few negative diagonal elements of . For those, the
residual |B — LDLT| can be calculated explicitly, whereas for the others the estimation above can be used. This
yields very sharp estimates for ||B — EﬁET“

We only mention that similar estimates have been derived for decompositions like Cholesky, LU, LDM7T and
others and also for the product of triangular matrices, This is, for example, also useful in the approach described in
[10].

We summarize that our estimates are valid for library routines using specific implementations like row-, or
column-, or blockwise versions, and others, they hold for almost any computer arithmetic, they are valid in the
presence of underflow and include higher order terms, and they are independent on the dimension, and only mildly
dependent on the number of nonzero elements per row and column.

3. Nonlinear systems
Let f: D CIR® — IR" be continuous, Z € D, f # X C IR” compact and convex with Z+ X C D. We are looking for
some T € D with f(Z) = 0. We locally linearize f at . Using slope expansions or, if f is differentiable, a Jacobian
(cf. [6]), an interval matrix S(Z, X) € HIR"*™ can be calculated satisfying

Vzez+X fl(z)e f(@)+5F,X)-X. (3.1)

We want to stress that the process of computing the expansion matrix S(Z, X) can be fully automated for large
classes of functions. Using the Krawczyk operator [4]

K X):= R {(F)+{I - R-5E X)}- X
with some R € IR"™" for the defect equation f(Z + ) = 0, one can show [9]

K(F X)CXand Rregular = 35€5+X:f(5)=0. (3.2)
The Rey problem is the choice of the preconditioner R. The optimal choice would be R = mid(S(, X)) ™", as has

been shown by Neumaier [6] and Rex and Rohn, see [8]. However, if S(z, X) is large and sparse, then, in general,
the midpoint inverse is full. This seems to forbid this choice of R. Nevertheless, we define

R = mid(S(Z, XJ)_I
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and show a posteriori the regularity of mid(S(%, X)). For every z € X

R-{R~! - [mid(S(Z, X)) % rad (S(3, X))]} .z
R-[+rad(S(, X))| -=.

{I-R-S(Z X)) =

il

We use a lower estimate on the smallest singular value of mid(S(%, X)), thereby showing regularity of mid(S(Z, X))
and the existence of R. Then, using 2-norms, the following theorem can be proved.

Theorem 3.1. Let f: D CIR" — IR be continuous, € Dand 0 <p € R with
X:={zelR"||z]| <p} and F+XCD.
Let S(Z, X) € IR™ " be given with
YVeezZ+ X f(z)e f(Z)+5(z,X) X.

If 0 < 7 € R" satisfies 7 < o (mid(S(Z, X)))= and

@)+ |lrad(SE, X)) - p < 7 - p,

then there exists Z € T + X with f(z) = 0.

4. Examples

As a first example consider a random lower triangular matrix L of bandwidth 7 with uniformly distributed entries
in [0,1] and define A := LLT. Then A is s.p.d. of bandwidth 14. The right hand side b is computed such that the
exact solution of the linear system satisfies Z; := (—1)**!/i. In the following table we display the dimension n, the
computed error bound and the condition number of A. Moreover, we display the ratio p of the computing time for
the LAPACK [2] condition estimator DPBCON for banded s.p.d. matrices and the tofal computing time for our
algorithm (including approximation and verification).

n Hfﬂ;—“-{”i cond(A) p
1000 2.0-107% 25-10° 1

10000 | 2.4-10-% 3.5.10'° 40
100000 | 3.0-10"% 4.3-10" 1100

We see that the error diveded by the condition number is approximately equal to the relative rounding error unit
eps. If the input data are perturbated in the last bit, these error bounds are best possible. With the lower estimate
on ¢, (A) we also obtain an upper estimate on the 2-condition number of A. The ratio p shows that in the examples
this verified upper bound for the condition number is computed much faster than an approximation by DPBCON.
This has also been observed by Korn [3].

The second example is Emden’s equation

—AU=U? with U=00néQ, Q= (0,1_1) x (0,1).

We use central difference quotients as a discretisation with m;, mq inner grid points. We do not restrict  on
(0,% - 17') x (0, 31), because we want to test the method for ill-conditioned problem. We solve the discretized
problem, and display the dimension N of the nonlinear system, the number :fer of inverse power iterations in order
to obtain X, @y, = @(% - 11,1 .1), cond (mid(S(ss,X))), and the maximum error e satisfying ||@— %] < e - ||| for a

computed approximate solution .

l N my g ler T cond €

1 32385 255 127 3 293 13.10% 7.7-107%°
2 [.32385 255 127 2  71.5 8.0-10% 4.5.10°10
25132385 255 127 2 111.7 7.9-10° 4.6-10°7

Again, e/cond ~ eps demonstrating the quality of the inclusion. For larger values of I the condition increases above
the critical value 10'°. It can be shown that due to the nonlinearities, an inclusion using a fixed point approach is
not possible for condition numbers beyond 10'°.
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Up to now the system matrix had 1 negative eigenvalue in all examples. For larger values of [ other branches
occur, with one or more negative eigenvalues. The first graph shows %, plotted vs. I. For ! > 3 the upper two
branches have 1, the lower has 2 negative eigenvalues.

Enacien 616} bafurceties dugres, o3 vl

/ o
1%k rir E
£ -
L™
200 e
z ,/ —'r—\“\-.
2
130 B
o0
%
=’ 13 2 3 3 a3 4 A3

The second plot shows a (verified) solution @; for { = 3.5. Optically, there is no difference to a second solution s,
whereas the third plot shows the difference #; — 43. Searching for other solution was inspired by Plum [7]. The
author also thanks him for many fruitful discussions about Emden’s equation.

Finally, we want to mention that for larger values of | Emden’s equation frequently produces ill-conditioned
numerical examples, where numerical difficulties are hard to detect. Consider | = 3.1, m; = 127, my = 31, thus
N = 3937. Starting with some %® we performn Newton steps, and obtain the following results:

k (LS G/

1 1.3.10°3
2 9.8.10%
3 28. 1T
4 3.1-10"12

This seems to indicate convergence, but the next iterate

k WG/l
5 1.2- 10~

decovers the intrinsic difficulty of the problem.
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