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Convergence Properties of Iterations Using Sets

Abstract

In the literature efficient algorithms have been described for calculating guaranteed inclusions for the
solution of a number of standard numerical problems [3, 4, 7, 10, 11, 12]. The inclusions are given by
means of a set containing the solution. In [11, 12] this set is calculated using an affine iteration which
stops after 2 nonempty and compact set has been mapped into itself.

In this paper different types of such sets are investigated, namely general sets, hyperrectangles and stand-
ard simplices. For affine iterations using those types of sets global convergence properties are given.
Here, global convergence means that the iteration stops for every starting set with a set being mapped
into itself.

0. Introduction

Let T denote one of the sets R, C, R" (real vectors with n components), C* (complex vectors
with n components), R#*" (real square matrices with # rows and columns) or €"*" (complex
square matrices with n rows and columns). Throughout this paper the letter “n” is reserved in
the prescribed way; only square matrices {which are n X n) will occur. PT denotes the power
set over T. .

In the following * e{+, —, -, /} denotes the binary real or complex operations, resp. These
operations extend tc power set operations in the usual way. If x * ye T, is defined for
xeXePT,,ye YePT,, then

X+«Y={x*y|lxeX ye Y} e€PT;.

The set of all n-dimensional resp. n?-dimensional hyperrectangles parallel to the axis over
real or complex numbers is denoted by TRR”, EC* IR"*" or IC"**" resp. This is one way to
represent interval vectors and inferval matrices.

Intervals are always supposed to be nonempty.

The rounding of an arbitrary set X into the smallest hyperrectangle containing X is denoted
by ¢: PT—IT ‘

XYePT=0X)=N{YelT|Xc Y} lT.
The set <>(X) is well-defined. We define operations &, &, &, € over IT by
XL Y eIT={X] © [Y]:= O([X] + YD) for *e{+, —, -, /}.

This is the smallest hypetrectangle containing the result of the power set operation between
the operands. It is uniquely defined and effectively computable (cf. [2, 8, 9, 10]).

For aset X, Y= T, int (X) denotes the interior of X, Re(X) denotes the real part, Im(X) the
lmaginary part of X. For a real matrix 4 we define | 4| to be the matrix of absclute values of
the components of 4, for a complex matrix is |Re{A)| + |Im(A)]| (cf. {2]). For an interval
[X] €18 we define |[X]| = max {|x||x € [X]} extending componentwise to interval vectors and
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matrices. For Ae 8" Se{R,C} the spectral radius of 4 is denoted by p(4), for
[4] € 18"%" we define p([4]) = max {o(4)| A € [4]}. A; denotes the ith row of 4.

1. Iterations using sets

Let Sc{R, C} and f: S*— 5" with fe C1. Furthermore, let ¥€ §", R € §%% and for X e P§"
define

of;
FPST— PSS by (f'(X))i= U{gf;(f)ife X}

and
KX)=X—R-f(X)+{I-R-f'(FuX)} (X— . .1

K(X) denotes the Krawczyk-operator [7]. Then it can be shown [11, 12, 15] that for non-
empty, compact and convex X

K(X)cint(X) implies F " XeX:f(X)=0. 1.2)

Note that there are no a priori assumptions on X or R. For a practical application we use some
X R with f(X)=0and R=f ().

The problem of finding a suitable X satisfying (1.2) can be attacked by means of an iteration.
By simplifying (1.1) we obtain

KX)=Z+A-X where A={I-R-f(xyuX)}ePS§"™*" and
Z=X—R-f(X)—-A-XePSs".

Then, a first approach is the iteration scheme
Xetlim= Z + 4-X* (1.3)

for given X% PS™

Our aim is to investigate the global convergence of such an iteration, i.e. to guarantee
X+t icint(X*) for some keN fir every @+ X% PS". However, (1.3) is not suitable to
achieve global convergence because of two reasons. First, the interior of X° must be non-
empty because int(X? = & implies int(X*) = & for every k€ N, Second, (1.3) implies ¥ € X©.
In other words only those sets X° already containing X are suitable in order to achieve (1.3).
For practical applications this is hardly acceptable.

To overcome those three difficulties in [11] the so-called sinflation has been introduced.
One possible definition for general sets is the following.

Definition 1. For a set X € 8", S€ (R, C} the s-inflation X o ¢ is definied by

Xog=X+U,(0) for 0<zeR,

where U,(0) is some closed and bounded set containing the origin as an interior point.
Obviously X cint (X ¢ ). An example for U,(0) is the closed ball of radius ¢ around the ori-
gin. Using the s-inflation we can define an iteration scheme allowing a complete analysis of
the conditions under which the iteration stops for some k< N.

Theorem 2. Let A€ §**" be an arbitrary matrix, 8 # Z < 5" be a compact set of vectors,
Se R, C}. Let

Xerl:=(Z+ 4-X9og for O=<keNl, (1.4)
where U, , < U, and Uc U, for every k € N and some compact & # U < S" with 0 € int (U).

Er+1

Then the following two conditions are equivalent:
a) YO+ X0¢ 8" compact 3keN: Z+ 4-X*cint (X%
b) g(4) <1,
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Proaf, See [12].

Note that in theorem 2 the matrix 4 is a single matrix, not a set of matrices. In practical ap-
plications the diameter of A is small. However, a direct generalization of theorem 2 to
A ePS5**" by replacing part b) by

p(a)<1 forall ac4

is not true. By the definition of the power set operations part a) implies ¢ (H A,,) <1 for all
r=1
A, € A. Consider (see [12])

{05 027 g oo (017 05
174092 05 ) 2T 094 025

and Ad:={a=a,+06(a;—a)|0=o=1}. Then po{a,)<09985, po{(a)<0.9622 and
max g(a, + o(a; — a;)) <0.999618 < 1. Hence p(a) <1 forall ae 4, but g{a, - a;) > 1.0165

f=<o=l
>1. It is an open problem to find a general criterion for global convergence of (1.4) for
AePS*n

2. Interval iterations

Interval vectors and interval matrices offer the great advantage that operations between those
are very easily and effectively computable {2, 9]. This advantage has to be paid by some over-
estimation which can be severe (data dependencies, “wrapping effect™). However, the overes-
timation in (1.4) is diminished because those terms where intervals occur are kept small.
In case of hyperrectangles an ¢inflation should consist of an absolute and a relative part in
order to maintain (1.4) for a small value of k. A possible definition which turned out to be
very suitable for practical applications is

[X]elS: [X]ee=[]CX]SIE]

with a diagonal matrix [J]e 18" "and [El€ 18" and 1€ [J;], 0 eint([E;]}) for 1 < i< n. In the
following we state a theorem similar to theorem 4 for intervals (hyperrectangles) and the
corresponding operations <. In practical applications it turned out to be useful to adapt E to
the iteration process. Therefore we use a more general definition of the e-inflation in the fol-
lowing theorem.

Theorem 3. Let [A] e 15"* " be an interval matrix, [Z] € 15" be an interval vector, S€ {R, C}.
For

fIS"— IS with [¥Y] e I§*: A([Y]) =[Z] ©[A] OlY]
and [X°] ¢ 18" we define the iteration
[X]*+1 =T O fIXF]) & EX 2.1

with diagonal matrix [J] € 1S"** [E¥] e L§", for 0 < k & N. Let [E¥]—>[E] € IS", 0 € int([E]),

}G{J.-,-} for l<i=nand o(][J]|*{[4]} < 1. Then the following two conditions are equiva-
ent:

8) V(X eIS" JkeN: fF(X*)<int([X*])
b) o(|[41) < 1.

Proof, See [16].

The Si{nplicity of interval operations has to be paid by the special structure, especially the
midpomt-symmetry of the hyperrectangles implying the contractivity of the absolute value of

the iteration matrix. Nevertheless theorem 3 gives a necessary and sufficient criterion for glo-
bal convergence.

429



The assumption g(|[/]1|-|[4]]) < 1 in Theorem 3 is necessary. Consider

'[A1::(° 2), Zimo, [Xo]-z([—l,u),

1/8 0 {—L1]
_([—44 0
[f]-—( 0 [_h4,4]) and
o [-1/4, 1/4]
[E"]~[E]-—([_1/4? 1/4}) for keN.

It can be shown that X**:cint(X*) is not true for any ke N. In this counierexample
2{|i/1|'1[4]1]) = 2. The matrix A is not primitive, and this seems to be crucial to construct a
counterexample.

3. Standard simplices

The special structure of hyperrectangles requires | 4| or |Re(4)| + |Im(4)| to be convergent
in order to allow f(X*) < int(X*) for some k € N (see theorem 3). This is a necessary and suf-
ficient condition. For general sets or general simplices f(X*) € int(X*) is equivalent to
o(Ay<1, Ae §"*" SR, C}. One might try to use other representations of sets to omit the
assumption g(|A]) <1 or g(jRe(4)|+|Im(A4)|) < 1. The representation should be simple
enough to allow fast computation of £ (X*) but “general” enough to cover as many matrices as
possible.

One such representation are standard simplices:

8= {SCU Ty enes Gn}

p=0 v=1

={xeR“|x=so+ Zivo',,e,,, 0=AeR, Zi,,sl}

Standard simplices still allow inexpensive set operations. A problem, however, is the round-
ing. For example, the product of a matrix and a standard simplex yields a general simplex
where its rounding into the “smallest” standard simplex is not unique.

With respect to our problem of stating criterions for the iteration (1.4) to converge standard
simplices play a special role. On the one hand, g(]4|} < 1 is not necessary, on the other hand
it is not sufficient either. Consider

0.9 —0.05
A_( -0.9 038 ) @

The eigenvalues of A are 0.05+ 0.7675, those of |A| are 0.85%+ 40.0475 implying
o(A) <1< p(|Al). However, short computation vyields that the standard simplex
§={(—2.7, —1.15), 4.9, 5} satisfies 4 - § < int(S).

On th other hand consider

A= 05 -—-05 39
025 0.5/ G2
The eigenvalues of | A} are 0.5 & 0.125 implying o(4) < o(|4|) < 1. It can be shown that for
every standard simplex S = {(a, b)7, ¢, d} we have 4- S ¢ int(S) despite g(|4D) < 1.
Therefore, in the first example (3.1) 4-X < int(X) would be impossible for any X eIS"
whereas we found a standard simplex § with 4- 5 < int(S), in the second example the inter-

val iteration (2.1) is globally convergent whereas 4+ S ¢ int(S) for every standard sim-
plex S.
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