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A CLASS OF ARBITRARILY ILL CONDITIONED
FLOATING-POINT MATRICES*

SIEGFRIED M, RUMPY

Abstract. Let [ be a floating-point number system with basis § = 2 and an exponent range consisting of
at least the exponents 1 and 2. A class of arbitrarily ill conditioned matrices is described, the coeflicients of
which are elements of F. Due to the very rapidly increasing sensitivity of those matrices, they might be regarded
as “almost” 1ll posed problems.

The condition of those matrices and their sensitivity with respect to inversion is given by means of a closed
formula. The condition is rapidly increasing with the dimension. For example, in the double precision of the
IEEE 754 floating-point standard (base 2, 53 bits in the mantissa including implicit 1), matrices with 2»n rows
and columns are given with a condition number of approximately 4-10327,
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- 0. Introduction. It is a trivial fact that there are arbitrarily ill conditioned real ma-
trices. In this paper we concentrate on matrices that are exactly representable in some
floating-point number system [F. There is no restriction to the basis and only a trivial
technical assumption on the exponent range of F. For fixed F there are finitely many
square matrices with # rows and a maximum condition number less than <o for
given n. 7 k '

The well-known schemes for constructing ill-conditioned matrices suffer from the
fact that for given [ only a few matrices are exactly representable in [F, say up to #.x
rows. For n > n.,., rows the entries are getting “too big.” For example, let

(n+i—l) (n~1)
.no
Li=2] n—J

i+j—1

(Zyi=

>

as proposed by Zielke. For single precision in the IEEE 754 floating-point format (base
2 with 24 bit in the mantissa including implicit 1), we have (using infinity norm)

Mnax (Z,) =10 with | Zl|- | Z 14 || =2- 104,
From Pascal’s triangle we get
(P (”.: 1)
with
Amax(Pr) =15 with [ Py3] - | P35 || ~ 1-107.

The classical example for ill-conditioned matrices is Hilbert matrices, the ijth component
of which is 1/(i + j — 1). In order to make them exactly representable in a binary
floating-point format, we may use their inverses, or we may multiply the entire matrix
by lem(1, 2, -+ -, 2n — 1). We call the latter matrix H;;. Then

max(Hz')=7 with | Hy| - | H7' [ =~ 5- 108
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646 S. M. RUMP

and
Mmax (H[E)=10  with | H 5| Hio 'l ~2-1013,

The second method is obviously much more effective with respect to generating exactly
representable ill-conditioned matrices. The class of matrices to be described in the fol-
lowing has no restriction in the dimension. In the single precision IEEE 754 floating-
point number system, there are 10 X 10-matrices with condition number 1.1-107%,

1. The class of matrices. Let F be a floating-point number system with base 3, i.e.,
F consists of real numbers of the form

(1.1) X=x0-mmy- - -my B¢
with
(1.2) 0=m;<fB forl=i=XN and ey,=€=e€,ux.

We do not require numbers in the gradual underflow range and assume
(1.3) . my7#0 if Xx#0.

Let F cons{st at least of all real numbers X € R with a representation satisfying (1.1)-
(1.3) and assume e = 1, 2 = epay-
Consider Pell’s equation (see [1])__

(1.4) PP—k-Q%*=1

for positive integers P, Q, and k. If 8 is a square, let k be the smallest prime factor of 8,
otherwise set k£ = (. Then (1.4) has infinitely many solutions (P, Q) (see [1]).
Let P, Q be numbers satisfying Pell’s equation (1.4) for some & and let

K

(1.5) i

v

n
piro’ and Q0= 3 gro’
0 F r=0

with p, # 0 or g, # 0 for some c e Nand | p;|, |g;| < e, i=0---n. Furthermore, in this
section we assume that 0 = p;, gi<ofori=0---n. ;
' In practical applications a typical choice for ¢ is *. However, in this section we
are interested in minimum requirements for the floating-point number system F. Therefore
we set 0 = k.

For o = k the numbers p;, g; are of F if en;, = 1 = e, and so is k- ¢g; because k-
g; < k* £ 82. To store the number 1 requires 1 to be an admissible exponent; to store
k-q; requires 1 or 2 to be admissible exponents. Therefore

ik gi,1,0eF ifepn=1 and 2=e,.,

and the matrix
Dn Dua 5 D1t Do Kaw Kgu kg, kgo
dn qn-1 - di 4o Pn  Pn D Do
1 —o
1 —g
(1.6) Cp = 5
| —0
1 —a
L 1 =G |
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consists only of components that are exactly representable in F. Since (1.4) has infinitely
many solutions, the class of matrices C, defined by (1.6) consists of elements with an
arbitrarily large number of rows.

2. Properties of the matrices. In this section some properties of the matrices defined
by (1.6) will be studied. Here, no restrictions on k or ¢ with respect to § are necessary;
our only assumptions are (1.5) and (1.4). In the following, especially, the assumption
0 = p;, q¢; < o for i = 0- - -n is not necessary.

Throughout this paper we use componentwise ordering of matrices, i.e., 4 =< B:{=)
a; = b; and the componentwise absolute value | 4| = (] 4;|), which is again a matrix.

The condition number ||C,||- [|C;! || for the co-norm will be calculated along with
the sensitivity of C,,.. Rohn, in [3], gave a nice definition of the sensitivity of a matrix C
with respect to inversion: Let B be a matrix of relative distance less than or equal to «
16 C. 8., |L.B—=C| = - ||, theén

| By —Cy |
s§(C):= max {—Iﬂé—_l—lj———, |B—C|Z2a-|C|},
L if
provided C' # 0 and
e
(= T S,
a—> 04

In [3], Rohn proves an explicit formula for the sensitivity matrix S = (s5;(C)):

_de-el-ic s
(21) SI'J'(C)_ : |C-] lgj

for C5' #0.

LEMMA 1. det (Cp) = 1, |Coll I Co' s = (P + kQ)?, and s3(Co) = 4P> — 3 for
i =jand s;(Cy) = 4P* — 1 fori+#j.
Proof. For n =0, (1.6) writes

COE(P kQ) with651=(P —kQ),.
o P ~Q P

as follows from (1.4). Then the first two statements are obvious; for the third, a short
computation yields

(Sij(CO))z(g. ?) with {=P?+3kQ?, n=3P*+kQ>. O
n

In the following we will show that for » > 0 the condition and sensitivity of C,
increase compared to those of . »
For the rest of the paper we frequently use

(2:2) C:=C,cRE+D>x(@n+2)  with components ¢;, 051, j<2n+ 1.

The indices of matrices start with O with the exception of 4 and B, to be defined later.
Those are (n + 1) X n-matrices with row indices starting with ¢ and column indices
starting with 1.

LEMMA 2. The matrices C, are not singular: det (C,) = (—1)".

Proof. Define

(2.3) sr=ilo o™ Y Tue ] YeRTH
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and
P-g"
f s P —
(2.4) x.—(_Q_S)— N eR 4
\—0-1
Then
(2.5) (P> ,00)-s=P and (g, ‘** ,q0)s=0,
and using (2.2), |
2n+1
Z COv'xv=P2_kQ2:1=
r=0
2n+1 ' 2n+1
2 ¢ x,=PO0—0P=0= 3 ¢,-x, fori=2.
v=0 y=0

This means that x is the first column of C ™! and, especially,

(2._6_) (C Nans10=-0.
Therefore —Q = —det (C)/det (C) with

and

But det (C) = det (C) with

Qi

{2

and C-s = Q-ewith e = (1,0, - -+, 0). This implies that
(C" Yoo = 0"/ Q= det( C)/det (C)
with

C:= eR™",  det(C)=—(1)"o"

Therefore
det (C) _det (C)_det ()0
0 0 0

det (C)= (—1)".
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Next we calculate the inverse of C = C, explicitly. The first column is already given by
(2.4), the second 1s given by

(—k-Q-s
e

(2-7)

s )GIRZ””, C-y=(0,1,0, --- ,0)-.

Formulas (2.4) and (2.7) imply, especially, that —Q and P are the first two elements of
the last row of C™'. Let

(2.8) (—QPay -+ ayfy -+ - B)eR?" 2
be the lasf row of C™'. Then multiplication with the first » + 1 columns of C yields
~Q nt D Gnt an=0,
Q- pp-1+Pgp1—0 ayta,- =0,
(2.9)
e —@'ntP-qi—oropta;=0,
—Q-pot+P-g—o a;=0.
Setting g = ap+; = 0 by definition gives
(2.10) —Q-pit+P-gi—o-a;1+a;=0 fori=0--+n
and by successively adding the equations in (2.9), multiplied by ¢, yields
(2.11) ai=Q-ip,-a""i—P’En:qy.'U”_i fori=1---n.
. =i =i
By treating the last n + lc coiumns of C in the same way, we obtain
—k-Q-q;+P-pi—c-Bis1+Bi=0 fori=1---n,
—kQ-go+P po—o-pi=1,

setting 8o = B,:+1 = 0 by definition, and

(2.12)

(2.13) Bi=P- 2, p,ra” '—k-Q- 3 g-0""" fori=1---n.

p=1

According to our assumption (1.5), p, # 0 or g, # 0 and
> pre’ i<e"SP or g6 <O fori=1.

Moreover, gcd (P, kQ) = 1 such that (2.11) and (2.13) imply

(2.14) o;¥0 _and B;#0 fori=1---n.

Let i; € R"*57*! be a matrix with 1 in the ith upper diagonal and 0 elsewhere such that
(2.15) es=(0"" ;< ,0,1,0, <+ ;0) eR* 1,

using s from (2.3). Then we are ready to describe C™" as follows.
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LEMMA 3. The inverse of C = C, defined by (1.6) is given by

P-S | *%-Q-8 [ B | kA n+1
(2.16) -0-5 | r.s I A ! B 221%
0 1 2 n+tl n+2 2n+1
with
A= (@s, -+ ;oq5)eR" b7
and

Bi=((Bul*1a)-5, -+ ,(BiT+ ;) -s)eR™*1n,
Proof. For the matrices 4 = (a;) and B = (by), we have
A= je (20 %, and
(217) . b_:{ﬁn_,-ﬂ-a”-f, J=i,
Y B per ™ ab L pmany

fori=0---n,j=1---n (the row indices start with 0, the column indices with 1).
Denote the matrix defined by (2.16) by I'. Then for 0 = j, j = n, we have

(T C)y=P-si pu—j—k- Q-5 G+ by 111 — by

where the third summand cancels for J = n, the fourth for j = 0, Using 8y = 8,41 =0
and (2.17) yields

11, j) for j<i,
(T-C)y={ t(i,))+o’ ¢ for j=1i,
WL a? +ad™ "1 for joui

using the abbreviation

1i,j)= 0"71-‘(P‘Pn—jﬁk‘Q'Qn—j'f‘ﬁn—;‘U‘ﬁnfﬁ 1)
Therefore, for0 =/, j < n,
(2.18) (I-C)y= J"‘f'(P'pn-j—k'Q'qn—ﬂrﬁn—j—U-anj+'1)+5;j

using Kronecker’s delta. Since later on we will need [CE T |C|, we write down the
explicit formulae for the other components of L-C.For0=Zi=nn+1=< T2 2mF
1 derives

(2.19) (P'C)U:Un_i'k'(P'QH—j_Q'pn—j+an—j%O"a'n-—j+l);
forn+1=i=2n+ 1,0 =, =< nderives

(2.20) (F'C)!j:an-f'(_Q'pn—j-,_P'qn-j_l—anﬁj—O-'Cfn—j+1);
andforn + 1 =i,j=2n I 1 derives

(2.21) (F'C)fj:U”ﬂ"(—k'Q'GnuﬂrP'pnﬁjJanfj*U'BM+1)+51;;-
The identities (2.10) and (2.12) prove (I'-C); = 5. B
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For the condition of C using the oco-norm and a; # 0,

1Colo-IC5! ||m>{ 3 (p,,+k-q,,)] (o™ (P+k-0))
v=0

(2.22)
={ > (cr"pp+kv”qp)}'(P+kQ)é(P+k'Q)2'

=0
We calculate the sensitivity s5;(C) according to (2.1) for 0 = i = n, j = 0. By (2.18)
we have

(1C - 1CDeZ ™ (P | Pus| + Q- |gu| + |Bucy] +0 |Buzsr1l)s
for 0 = v = n and by (2.19) we have

(|C_1I . lCI)iygo'”_i-k-(P- IQH—rl +Q' |pn—v| F |a,,f,,| +ao- [anvarlD:
forn+1=v=2n+1.
~ Using e, B, # Owe get, for0 = i = n,
(ac™-1¢l-1¢™" o |

2n+1

=2 (C-1CDe IC M o+ 2 (CT]-1CDa 1€ o
v=0

v=n+1

26" 3 (P 1o |+ Q1 gu 1) B0 e (P gy |+ O | pacs]) Q0™
r=10

. n
+J”‘-{ >

(lﬁn*vl +ao- |Bn~p+1|)'P'0'n7p
o .

+ 3 (Jetn| +o- Ian-ﬁll)'kQa"”}

=0
= 6"~ P- (P24 kQ?+ QP+ kQ?) + o™~ - P-4
— " P(4P2— 3+ 4)> g™ i P-(4P2)
using k-Q = P. Together with |C™!|;o = ¢" % P+ 0,
Sio(C)>4P? for0=iZn

follows. This proves the following theorem.
THEOREM 4. The matrix C defined by (1.6) satisfies

ICllo- ICT 2> (P+k-Q)?

and there are components of C of which the sensitivity defined by (2.1) is greater than
4- P2,

3. Some examples. For given k, suitable pairs (P, Q) satisfying Pell’s equation
P? — k-0? = 1 are easily generated. Given some ( Py, Qp) unequal, the trivial solution
is (1, 0), and successive solutions are

(Pis 1, Qi+ 1) = (PiPo+kQ;Qo, Qi Po + Pi Qo).

For a floating-point number system given by (1.1)~(1.3), a choice for ¢ is 8*. Any
expansion (1.5) of P, Q is suitable. The coefficients p;, g; are calculated successively.
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Some bits can be saved by the following observation. If some coefficient p;is divisible
by B or by a power of 8, then p; and the following p;, j > i are expressed with a corre-
sponding exponent. If the last digit 1, in the mantissa of Di+11s equal to 8 — 1, then p;
can be replaced by p; — o and p;4; by p;.| + 1, the latter being divisible by . A

For example, let P = 73942, 8 = 10, o = 100. Then expanding P yields (p», p1, 7o) =
(7, 39, 42) and this is reduced by the method just described to (p,, Po) =(74-10", —58).
This method is especially useful for base 2.

For a given number P, the corresponding coefficients Di, i =0---ncan be calculated
by the following algorithm:

e=0;i=0;
repeat
while Pmod 8 = 0do {P = P/B; e = e+1};
q=|Plol;r=P—o-g;
if (gmod B # B—1) or (¢ < B)
then {p;=r-B% P =q}
_ ese{pi=(r—o)-B%P=qg+1};
I =i+l
until P = 0;

For k = 2, successive pairs P, Q are (3, 2),(17,12), (99, 70)- - -. In Table 1 we display
some values for p;, g; for single and double precision. For the individual value of #
(resulting in a 2n X 2n-matrix C) we choose the maximum values (P, Q) being repre-
sentable by (p,_1, - -+ ,po)and (g,—,, - -+ , go). In the columns of Table 1, the condition
number is given followed by the coefficients p; and gi, both in descending order. The
coefficients are given by two numbers m and e such that m-2€ is the actual coefhicient.
For example, g, = 1175-2?* for n = 5 (yielding a 10 X 10-matrix ). Our algorithm yields
a higher condition than the expected maximum 4-2242" ~ 7.1072, especially for this
10 X 10-matrix. o

For double precision we choose different values for k yielding the coefficients in
Table 2. These coefficients are, of course, only samples used to construct matrices of the
general form (1.6). We conclude by writing the 6 X 6-matrix for single precision explicitly.

TABLE 1
Dis> gi Jor binary format, 24 bit precision; k = 2.
Cond | 1.3E+030 2.2E+044 6.5SE+060 1.1E4+078 4.8E4+090 1.7E+107
Di 15248163 2 3527199 3 6929233 6 425393 14 2161033 8 8490761 10
111719050 6746489 1 9763077 3 6127903 11 5075327 7 15520103 6
—88167970 126082631 —10707825 7 8241033 6 6855055 5
q; 842359 —6160127 0 7194379 1 —9934673 5 6997339 4
—3559681 3 1247053 4 —2285085 0  —5752371 | —11831695 3
13508351 2 1224927 8 12291875 0 9051609 1
—14061827 1 —51311956 1175 22 —11093871 0
14870387 5 —14199789 15 47753 13

—7145793 4 12492253 13 —15523515 12 3001937 11
9093109 10  —1620555 9 12103369 10
10074835 1 14867027 6 —13213329 9
14366575 3 —9497253 7
—4879973 1 —3241495 4
8507481 3
—1367575 2
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TABLE 2

Di» q; for binary format, 53 bit precision.

653

Cond

7T.0E+066
3%

3.4E+097
2

2.1E+131
32

L4E+164
2

Di

4q;

8384758637032543 5
—3529290569461695 0

5928919690858185 3
—6097772977423311 1

119071610094027 9
—3183251058136493 3
—8183182949466111 0

84196342944287 9
891386017353869 8
—1900818942150157 7

1838140087490775 8
—6618243915631817 2
—7698164339527309 1

5251261634103185 0

162470165079445 9
6774769086897599 6
4831599480133437 3

—5900891544265983 0

1217131843483323 9
5555590710757647 8
—1048381871128833 4
4113071334050663 3
—3228782923936605 0

1721284360250283 8
292142371452983 6
—4351444206118847 4
1403045714199203 2
—2787903664869301 1

It is exactly storable with only 24 bits in the mantissa (and therefore in almost any
floating-point number system) but matrix inversion will “fail” in almost any floating-
point format available because, due to the condition number 2.2- 10*, an equivalent of
approximately 44 decimal digits precision would be necessary:

3527199-23 6746489-2! —8816797-2° 1247053-2° 13508351-2°
1247053-2% 13508351-2% —14061827-2' 3527199-2% 6£746489-2"
l _224 {
1 _224
1 _224

1

—14061827-22

—8816797-2°

_224

To generate this matri_x, the values P = 7942546277405390632803 and (O =
5616228332641321147898 have been used.

(almost) correct answer oo .
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