Approximate inverses of almost singular matrices

still contain useful information

S. M. Rump, Hamburg

Abstract. It is well-known that, roughly spoken, a matrix
inversion on a computer working in base B with t digits
precision in the mantissa applied to a matrix of condition BK
produces approximately t-k correct digits of the inverse.
For condition >> BY one might conclude that an approximate

inverse contains virtually useless information.

In this note we will show that the latter is not true. An
approximate inverse may still be useful, e.g. as a
preconditioner. An extended set of examples show that
preconditioning a matrix using an approximate inverse
(computed in t digits precision) lowers the condition number
by a factor BL. As an example we develop an algorithm for
solving systems of linear equations up to condition B2t
strictly using t digits precision for all calculations and
only allowing for double precision accumulation of inner

products.

0. Introduction. It is a commonly accepted rule of thumb (cf.

[5]) that Gaussian elimination on a fleoating-point computer

with base B and t digits in the mantissa produces
approximately t - k correct digits of the solution for a
linear system Ax = b of condition Bk, Using double precision
residual correction adds in every step approximately t - k
correct digits up to a final accuracy of the order of the

relative rounding error.

This rule of thumb holds as long as k < t. For k 2 t Gaussian
elimination (or matrix inversion) produces an approximation
with no correct digits and residual iteration diverges because
p(1-u"1L"1a) 2 1. It is also common belief that for such an
ill-conditioned linear system L and U (resp. an approximate
inverse) contains essentially useless information and that a
matrix of condition greater than B "cannot be inverted" in t

digits precision of base B.

In [6] (cited in [1]) this has been expressed in popular terms

by Wilkinson:

"If A is almost singular to working precision the first
solution has no correct significant and the same is true
for all subsequent refined solutions. A is too ill-
conditioned (possibly singular) for solution to be
possible without working to higher precision in the

factoring."

In this note we will demontrate that an LU-factorization, or
better, an approximate inverse of a matrix of condition

>> BY still contains useful information. For example we give
an algorithm showing that a double precision accumulation of

inner products suffices to solve linear systems up to

2

condition B2t in t digits precision of base B to high
accuracy. This algorithm uses information within a totally
incorrect and seemingly useless LU-decomposition resp. inverse
of A to produce a suitable preconditioning of the linear

system Ax = b.

As a general, empirical observation preconditioning lowers the
condition by a factor of Bt, virtually indepgndent of the
original condition number of the matrix or the precision in
use. This observation has been verified by many computational

examples. The approach is heuristic, no analysis is given.

We want to stress that the purpose of this note is to show
that even for cond(a) >> Bt a single precision approximate

inverse still contains (hidden) useful information.

1. Preconditioning of nearlyv singular matrices. Consider a

matrix A being exactly representable in the floating-point
screen in use and some standard algorithm for matrix
inversion. Suppose this algorithm produces an approximate
(floating-point) inverse R. We want to monitor the ratio of
condition numbers of A und R - A, the latter multiplication

being executed precisely (without rounding error).

For this purpose a decimal computer arithmetic with
specifyable precision was simulated. It does not seem to be
trivial to find matrices being small enough in size and
exactly representable in few decimal digits but with high

condition number. Among five "standard" types of matrices

3

(Pascal, Hilbert, inverse Hilbert, Zielke, inverse Zielke) the
maximum condition number provided the matrix is exactly
representable in 4 decimal digits was 4.0108. For examples

with those matrices see section 4.

Therefore we used some extremely ill-conditioned matrices
especially constructed for this purpose (cf. [3]). The

following matrix

6566 -5202 -4040 -5524 1420 6229
4104 7449 -2518 -4588 -8841 4040
5266 -4008 6803 -4702 1240 5060
-9306 7213 5723 7961 -1981 -8834
-3782 3840 2464 -8389 9781 -3334
-6903 5610 4306 5548 -1380 3539

has a condition number
cond(a) = Uall; - UATIN; = 1.24,25 .

According to Skeel [4] the sensitivity of the matrix w.r.t.
inversion, that is the relative change of elements of the
inverse under small perturbations of the matrix, can be
explicitely calculated. For our example the minimum

sensitivity s satisfies

=—1 -1

min lim (—————— | 1A-Al < e-1Al} =
o= -1

i, 3 e=0 IAijI

%]
L}

= min > 5.01 - 1024 (1.1)

Next we calculate an approximate inverse R using GauB-Jordan
with precision p (i.e. p decimal digits in the mantissa). In
the following table the condition number of R-A and the ratio
cond (A) /cond (R*A) is displayed. For comparison we also display
the same numbers for R* which is the exact inverse of A

rounded to p decimal digits.

cond (&) cond (A)
P cond (R-A) cond (R*-A) cond (R-A) cond (R*-A)
143 ?.?1013 9.31015 1.57%11 1.310+9
12 1.3;3015 2.29917 9.279+ 9 5.310+7
11 6.61915 2.09917 1.819% 9 5.879%7
10 3.07917 1.5;024 3.9;0+ 7 7.710+0
9 3.11917 2.8126 3.8+ 7 4.2,9-2
8 9.1;418 4.24427 1.319+ 6 2.819-3
7 2.8420 7.24(26 4.154+ 4 1.679-2
6 7.24020 6.19925 1.6t 4 1.9;0-1
5 4.67021 4.670927 2.510+ 3 2.599-3
4 3.49922 1.67(23 3.499+ 2 7.510+1

Table 1. Improving the condition number through

preconditioning, rounding to nearest

Needless to say that an approximate inverse computed in 4
decimal digits of a matrix of condition 102 has nothing to do
with the correct inverse. But although it differs by
approximately 20 orders of magnitude from A"l it still
improves the condition number when used as a preconditioner.

On the other hand the rounded precise inverse is a poor

preconditioner and for p < 9 it even makes the condition

worse. This result would be expected.

It is reasonable to lock at the condition number of R+A with
exact evaluation of the product. A calculation of R-A using
the working precision in which R was computed would yield a
significantly better condition number and ratio because of the

finite floating-point grid.

The results of table 1 are obtained using a decimal arithmetic
with p digits precision and rounding to nearest. The
computation is very sensitive and therefore a difference
should be visible when changing the rounding mode. The
following table displays the results obtained when rounding
towards zero. As can be seen, the results for preconditioning
using the GauB-Jordan inverse are the same whereas the results
for R* (the rounded A"ll change significantly. This suggests a
certain stability of the entire computational process although
the individual components of the approximate inverse R react
extremely sensitive to smallest perturbations or changing the

rounding mode. This observation was verified in many examples.

cond (&) cond (A)

P cond (R*A) cond (R*-A) cond (R-A) cond (R*+A)"
13 7.77913 1.71916 1.510+11 6.710+8
12 1.31915 2.7,17 9.290+ 9 4.319+7
11 6.67015 2.84022 1.84p% 9 4.1,p%2
10 3.01917 1.27424 3.9+ 7 9.670+0
9 3.11017 1.11025 3.810+ 7 1.010+0
8 9.17(18 1.47¢27 1.3;0+ 6 8.4;4-3
7 2.87(20 1.17028 4.1+ 4 1.190-3
6 7.271420 1.4,430 1.699% 4 8.519-06
5 4.6;921 1.41430 2.559+ 3 8.419-6
4 3.4;922 8.3;031 3.479+ 2 1.410=7

Table 2. Improving the condition number through

preconditioning, rounding towards zero

Similar computations have been performed with many matrices
with different condition numbers and varying precisions. All
results confirm the rule of thumb that preconditioning
improves the condition number by a factor BY when using t

digits precision and base B.

2. Application to linear systems. In the following an
algorithm with preconditioning for solving ill-conditioned
systems of linear equations will be introduced. To be
perfectly clear, every detail of the algorithm will be

specified. In the following we use a MATLAB-notation so that

the algorithm can be implemented and tested very quickly.

Unfortunately MATLAB does not offer the possibility to work
with different precisions. Therefore we first simulate a
rounding to a specified precision. For demonstration purposes
we use base 10. The following algorithm rounds the input x to

precision decimal digits:

function res = rnd(x);
a abs(x); k = round(log(a + (a==0)) /log(10) - .5):
¢ =10 . ~ (precision - k - 1);
res = sign(x) .x (round(a.=xc)./c);

Algorithm 3. Rounding to precision decimal digits

Note that precision is a global variable and that the addition
of a==0 covers the case x = 0 (not very elegant but it works).
The algorithm works for vectors and matrices as well rounding

every component to precision decimal digits.

Next we define a double precision summation of inner products

by means of the following algorithm:

function res = mul(a,b);
[1,m] = size(a); [m,n] = size(b); res = nulls(l,n);
precision = 2iprecision;
for 1 = 1:m,
res = rnd(res + rnd(a(:,1)«b(i,:)));
end;
precision = precision/2; res = rnd (res) ;

Algorithm 4. Double precision accumulation of inner

products

nulls denotes a structure of zero elements

nulls(l,n)=0xones(l,n). The algorithm is designed for
(compatible) vectors and matrices a and b using
rank-l-corrections. Note that all multiplications and
summations of the inner product are performed in double
precision with one final rounding to single precision. The
global variable precision is set to its old value after
leaving the function. The rounding of the product

a(:, i)xb(i, :) is added to avoid misinterpretations. It is
not necessary because the product is exactly representable in

2xprecision digits.

For a linear system Ax = b in n unknowns the residual b-Asx
can be calculated with double precision accumulation of the

inner products by

residue =mul([bal], (1 ; -x 1);

The algorithm works properly as long as Z2xprecision is less

than the working precision.

For our algorithm we require some standard floating-point
algorithm for the solution of a system of linear equations.
However, several experiments showed that LU-decomposition with
backward substitution yields significantly weaker results than
multiplication of the right hand side by an approximate
inverse. Knowing that this method is highly not recommendable
in numerical analysis we nevertheless formulate our algorithm

in that way.

In the following we assume an algorithm for matrix inversion
to be given strictly performing all operations in precision
decimal digits. In our experiments GauB-Jordan with
row-pivoting performed best. For convenience we list this

algorithm. It is designed for good readability rather than

best performance.

10

function res=gj(A);
[m,n]=size(A); row=nulls(n,1); col=row:
for i=l:n,
pivot=0; np=0;
for j=1:n,
if col (j)==0,
if abs(A(i, j))>pivot,
np=j; pivot=abs (A(i,j));
end;
end;
end;
pivot=A(i,np); col (np)=i; row(i)=np;
A(i, :)=rnd(-A(i, :) /pivot);
for k=1l:n,
for j=1:n,
if (k™=i)x (j~=np),
A(k,J)=rnd (A(k, j)+rnd (A(i,) *A (k,np))) ;
end;
end;
end;
A(:,np)=rnd(A(:,np) /pivot) ; A(i,np)=rnd(l.0/pivot);
end;
i=1;
while i<=n,
k=col (i) ;
LE 1°=k;
d=A(:,k); A(:,k)=A(:,1); A(:,i)=d;
col (i)=col (k) ; col (k)=k;
else
i=i+1;
end;
end;
for i=1l:n,
A(row,i)=A(:,1);
end;
res=A;

Algorithm 5. GauB-Jordan with row-pivoting in precision

decimal digits

14

For very ill-conditioned matrices it happens that all pivots
equal zero. In order to avoid this we introduce a small
perturbation in case of an exact zero as an intermediate

result. Thus the most inner loop would be replaced by

Akj = rnd(A(k,j) + rnd(A(i,J) % A(k,np)));
if Akj ~= 0,

A(k,j)= Akj;
else

A(k,3)= rnd (10~ (-precision) xrand«Akj) ;

end;

Finally we state the linear system solver using the
approximate inverse R produced by algorithm 5 as a
preconditioner. In ill-conditioned cases R is totally wrong
compared to A1 but still good enough to serve as a

preconditioning matrix (see below).

function x = solve(A,Db);
R =gj(A); S = mul(R,A); S = gj(S);
X = mul (S, mul(R,b));
while x "not good enough",
residue = mul([b A], [1 ; -x]);
X = rnd(x + mul(S,mul (R, residue))) ;
end;

Algorithm 6. Solution of very ill-conditioned linear

systems

The stopping criterion is discussed later.

12

3. A simple example. In the following we demonstrate the
algorithm by a very simple example. Consider the Zielke-Matrix
defined by

[n+i—1] [n—l]
- n -
i=-1 n-j
Rias 1= (3:1])
1] i+3-1

Zielke matrices have the nice property that a checkerboard-

like sign distribution on A yields its inverse.

In the following we use
precision = 3 and a 4x4-Zielke matrizx,

i.e. we are calculating with 3 decimal digits in the mantissa

and
4 6 4 L
10 20 15 4
A: (3'21
20 45 36 10
35 84 70 20
It is

cond(A) = 1.82-104.
Therefore it should not be possible to invert A in our given
precision. We choose some random right hand side

b = (236, -247, -152, 122)T yielding the exact solution

1696

- -4532
A -b = (3-3)

9143

-15928

13

Then algorithm 5 (GauB-Jordan) yields

=) 43.8 -33.6 9.1

66.6 ~333.0 1010 =27.1
R = (3.4)
-143.0 281.0 -211.0 56.5

259.0 -504.0 376.0 -100.0

This hardly represents the magnitude of

4 -6 4 =
-10 20 =18 4
20 -45 36 =10
=35 84 -70 20

Al =

Computing S=RxA with double precision accumulation of the

inner products yields

05 2.4 0.4 0.2

T2 8.2 10.4 2.6
= (3.5)
5 7%) 13.0 2.0 150

16.0 -6.0 12.0 3.0
In a well-conditioned case we would have R = Afl and therefore
S = I. In our example S is far from the identity matrix, but
it is simpler to invert:

cond(S) = 86.4

Even in 3 decimal digits precision this should work. We

obtained after applying algorithm 5 to S:

14

0.7650 0.0102 -0.1520 -0.0091
s = | 0-3420 0.0801 -0.0696 -0.0695 o
~ |-1.2000 0.5500 -0.2710 -0.3080 ’

1.3900 -2.0900 1.7600 1.4700

A precise evaluation of S*R yields

s plehe) -5.96 397 =599
~D.87 19.80 -14.80 3.95

20.80 -46.60 37204 =10-30
-39.30 92.50 -76.40 21.70

SxR =

which is not too far from A~l. The spectral radii of the
iteration matrices using R resp. SR as an approximate inverse
of A are

p(I-RxA) = 17.4 and p(I-S*RxA) = 0.011.
Accordingly using R alone yields the following residual

iterates (each column representing an iterate)

9.5103 -8.41304 -6.5;45 -4.9146
3.0104 2.6905 2.0306 1.5,57 ...

76.2704 -5.5)05 -4.2146 -3.2,,7
1.1795 9.9195 7.6106 5.8,¢7

whereas algorithm 5 stops after 3 iterations:

1690 1740 1700 1700
-4460 =4670 =4530 -4530
9590 9470 9130 9140

-18300 -16600 =15500 =15900

15

The last iteration is correct to all 3 figures (compare to
(3.3)) . Note that the iteration only performs corrections in

the last (3rd) decimal digit of the mantissa.

As in chapter 1 the computation depends on the rounding mode.
In the following we use rounding to nearest in 3 decimal
digits with rounding the exact midpoint between two
3-decimal-digit floating-point numbers towards zero (instead
of towards plus or minus infinity, as in the previous
example), a very minor modification. Using algorithm 4 to

calculate R then yields

-3.69 10.10 -8.51 2.42
| 14,60 -31.70 25.30 ~7.05
R =1-34.20 69.00 -52.90 14.40| - (3.7

64.70 -126.00 94.00 =25.00

This R is entirely different from (3.4). There is exactly one
single case where changing the rounding in the way described
affects the result, namely for i =1, k = 3, j = 4 in
algorithm 4 where the exact intermediate result is -7.515
rounded to -7.52 producing (3.4) and rounded to -7.51
producing (3.7). Similar to (3.5) we obtain

0.74 G319 -0.22 0.01
0.65 -0.10 0.20 =0..20
-0.80 3.90 1.80 0.80
3.80 -1.80 2.80 0.70

whereas now

cond(S) = 22.0

16

Inverting S in itself using algorithm 4 yields

0.855 0.210 -0.0094 0.0581
0.457 0.392 0.1910 -0.1140
=1.200 0.860 0.1330 0.1140
1.340 -3.650 0.0077 0.3610

with

p(I-S«R«A) = 0.005 .

Finally almost the same residual iteration is produced
stopping after 2 iterations with an approximation correct to

all 3 figures.

It seems interesting that one single difference in the last
digit produces an entirely different approximate inverse but
nevertheless both approximations may serve as a good

preconditioner.

An attempt to analyse algorithm 6 failes fairly quickly, at
least when using traditional techniques. In Wilkinsons
backward analysis (see [5]) usually cond(A) < BY is assumed.
When dropping this assumption the well-known results are no
longer true. For example, according to backward error analysis
a computed approximate inverse should be the exact inverse of
a slightly perturbed matrix. Assuming R = (A+E)'1 in our

simple example yields

17

—~2.2998 —5.37786 -4.3400 -1.2061
=7.:9317F -18.4393 -14.9137 -4.1860
-18.5370 -42.3662 =34.2926 =9.6159
-35.5199 -80.3510 -64.8960 -18.1624

with
IEl; = 127.9 where HAll, = IA™11, = 134.9

Therefore the necessary perturbation of A is of the order of A

itself. Moreover
HAR—IH2 = 103.4 and II-RAll, = 24.3

indicating no convergance of an attempted residual correction.

4. Numerical results. In the following we list some more
numerical results for algorithm 6. As the basic precision we
used IEEE 754 single precision, i.e. 24 binary digits
precision including implicit one. Double precision
accumulation of inner products has been performed using

IEEE 754 double precision, i.e. 53 binary digits precision
including implicit one. Thus the accumulation of inner
products is performed in slightly more than twice single
precision. However, extended tests showed that this does not

influence the numerical results.
The algorithm is intended to treat very ill-conditioned linear

18

systems. As has been pointed out before it is difficult to
find appropriate matrices being exactly representable in
floating-point. In the following we use 6 different types of

matrices. Pascal-matrices P defined by
i+d=a
Edgr= [i] !

scaled Hilbert-matrices H with

Hij := lem(1,...,2n-1) / (i+j-1) ,

inverse Hilbert-matrices H™ ! (inverse of the original
Hilbert-matrix with entries 1/ (i+j-1) implying integer
components), Zielke-matrices Z defined by (3.1), inverse

Zielke-matrices 2~} where

z_l = (_1)i+j

i3 %33

and special ill-contitioned matrices Q taken from [Ru90]. It
is absolutely necessary that all entries of those matrices are
exactly representable in the floating-point mesh in use
because a single rounding of some component destroys the
property of ill-conditioness. In the following table we
display the maximum dimension of the first five "standard"
matrices up to which they are exactly representable in IEEE

754 single precision, and the corresponding condition numbers.

19

matrix Biiax condition HAlly-Na~tN,
P 15 7.07016
o 11 1.2,415
H 6 2.9,47
o 10 1.13415
z 10 1.15415

Table 7. Largest, in single precision representable

matrices

The 6-th class of matrices Q is constructed to contain exactly
representable matrices of arbitrary high condition number. we
use them to explore the scope of applicability of the
algorithm.

We use three different right hand sides to test algorithm 6:
bl = eq, the first unit vector,

(; =i, 3, =1, ... 9% ane

o o
w ™
I |

= randomly chosen uniformly distributed within

(-104, + 104;.

The first r.h.s. produces as the solution the first column of
the inverse of the matrix. For each of those r.h.s. we apply
standard Gaussian elimination (std.) and algorithm 6 (new),
both with residual correction with double precision
accumulation of inner products. In the first three columns of
the following table we display the type of the matrix A, the
number of rows and columns n and the condition number (in
1-norm). In the latter six columns the number of iterations

are displayed which are necessary such that the relative error

20

ka—A—le_/HA_lbﬂm against the true solution is less than
2-10"7(=2723, resp. less than 2:10"4 (numbers in paranthesis) .

If in 100 iterations the relative error stays larger than

2-1074 then div. is displayed.

21

by by b3
matrix n cond std. new std. new std. new
P 8 4.09,8 5 0 6 0 5 0
9 5.8409 div. 1 div. 1 div. 1
10 9.01010 (56) 1 7L} 1 95 4
1 1.31012 div. 2 div. 3 div. 2
12 2.09413 div. 2 div. 3 div. 2
13 3.0,414 div. 4 div. 6 div. 5
14 4.74915 div 32 div. (6) div. (7)
15 7.01016 div. (28) div. (83) div. (89)
H 6 2.9;97 2 1 3 0 31
7 9.9148 9 1 div. 1 (5) 1
8 3.41010 div. 3 div. 2 div. 2
9 1.1412 div. (2) div. 3 div. (1)
10 3.51013 div (4) div. (2) div. (2)
1.1 1.21015 div. (16) div. (89) div. (15)
Hl 6 2.9997 10 5 0 1 0
Z 6 1.19,8 30 30 30
7 6.1109 Ak 1 12 1 11 7 8
8 3.41011 div, 2 div. il div. 1
9 1.99413 div. 3 div. 2 div. 6
10 1.14415 div. (3) div. B div. (3)
27l 6 1.14,8 30 a0 30
¥ | 6.1109 11 1 23 1 11 1
8 3.41011 div. 2 div. 2 div. 2
9 1.91413 div. 3 div. 3 div., (2)
10 1.19(15 div. (3) div. (6) div. (3)
Q 4 1.91012 div. 1 div. 1 div. 1
4 1.21014 div. 3 div. 2 div.
6 5.0y017 div. 14 div. 9 div. 12
6 3.9,019 div. div. div, div. div. div.

Table 8. Number of residual corrections k for

Ix*-a=lbn /1A 1bll, < 21077 resp. 2-1074

22

Similar computations have been performed in double precision
as the base precision and totally similar results were
obtained. As in section 1 we monitor the ratio

cond (A) /cond (RxA) of improvement of the condition number. It
is typically about 107 according to 24 bits of precision
(computing in single precision). For example we obtained for

Hilbert matrices

n cond (A) /cond (R«A)

2.2567
1.3447
1.4446
1.1446
L olynT
1.6147

= O W oo o

e

Table 9. Improvement of condition by preconditioning

As we mentioned before the computation of the approximate
inverses R and S can be replaced by an LU-decomposition with
backward substitution. The modifications to the algorithm are
obvious. However this version performs not as good as
algorithm 6. For illustration we display the part of table 8

for Hilbert matrices which is typical for the other examples.

23

by by b3
matrix n cond std. new std. new(LU) std., new
H 6 2.9947 3 0 2 1 3 1
T 9.99,8 (2) 1 (8) 1 (2) 1
8 3.4;,10 div. 2 div. 2 div. 3
9 1.1;912 div. (3) div. 6 div. (4)
10 3.59p913 div. div. div. div. div. div.
11 1.21015 div., div. div. div. div. div.

Table 10. Using LU-decomposition instead of gj (algorithm 5)

One might try to use SxR as an improved approximate inverse of
A. This does not work as long as SxR is stored to single
precision. A valid heuristic seems to be that for

cond (A) > 224 (the inverse of the relative rounding error
unit) single precision does not suffice to store an

approximate inverse R allowing p(I-RA) < 1.

The practical applications of algorithm 6 are very limited. It
is expensive (3n3 or at least 5/3-n3 for the LU-version), more
expensive than Gaussian elimination in double precision (which
is 4/3-n3 counting one double precision operation as 4 in
single precision, an assumption which can be adapted when the

doubled precision has to be simulated).

24

5. Bibliography.

[1] Bjdrck, A.: Iterative Refinement and Reliable Computing,
in "Advances in Reliable Numerical Computing", eds.
M. Cox and S. Hammarting, Oxford University Press.

[2] MATLAB User‘s Guide, The MathWorks Inc., 1987.

[3] Rump, S.M.: A class of arbitrarily ill-conditioned
floating-point matrices, appears in SIAM Journal on
Matrix Analysis and Applications, 1990.

[4] Skeel, R.: Scaling for Numerical Stability in Gaussian
Elimination, Journal of the ACM, Vol. 26, No. 3
494-526, 1979.

[5] wilkinson, J.H.: The Algebraic Eigenvalue Problem, Oxford
University Press, 1988.

[6] Wilkinson, J.H.: The use of single precision residuals in
the solution of linear systems, Unpublished

manuscript, NPL (1977).

25

