Computing 42, 225 —238 (1989) Computing

© by Springer-Verlag 1989

Guaranteed Inclusions for the Complex Generalized Eigenproblem
S. M. Rump, Hamburg

Received July 28, 1988; revised November 21, 1988

Abstract — Zusammenfassung

Guaranteed Inclusions for the Complex Generalized Eigenproblem. A method is described which produces
guaranteed bounds for a solution of the generalized complex eigenproblem. The method extends a
similar approach for general systems of nonlinear equations to the special case of complex pencils, where
under weaker assumptions stronger assertions can be proved.
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Key words: Generalized eigenproblem, inclusion of solution, guaranteed results, error bounds.

Einschliefung der Losung fiir das allgemeine, komplexe Eigenproblem. Es wird eine Methode zur
Berechnung garantierter Schranken fiir die Losung des komplexen allgemeinen Eigenproblems
beschrieben. Die Methode erweitert einen dhnlichen Ansatz fiir allgemeine nichtlineare Gleichungs-
systeme in der Art, daB fiir den vorliegenden speziellen Fall weitgehende Folgerungen aus schwicheren
Voraussetzungen gezogen werden kdnnen.

0. Introduction

Let T be one of the sets C (complex numbers), C" (complex vectors with n
components) or C"*" (complex square matrices with n rows and columns). In the
power set PT operations are defined by

A,BeEPT: AxB:={axb|acA,beB} for xe{+,—,., /)

with obvious restrictions for /. The order relation in R is extended to a partial
ordering in C and extended componentwise in C" and C"*".

A denotes the interior of a set A, I, the m x m identity matrix, ¢, the k-th unit.
(row-)vector.

Sets occurring in an expression several times are treated independently, which means
for example for A,Be PT

A+B-A={a,+b-a,|a,,a,e A and be B} .

This is fundamental for the following. In practical implementations this will always
be satisfied automatically.
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The sets [7<PT of intervals over T are defined by
[A,B]elT:«<>{xeT|A<x<B} for A,BeT.

Power set operations in 17 are induced by those in P7 whereas interval operations
& are defined by

AelT,BelT,: A®B:=n{CelT;|A*B<C},

where 7', T}, T are either one of the sets C, C* or C**" such thatfor X € T}, Ye T,,
X = Y is well-defined and X * Ye Tj.

Theseinterval operations are welldefined (see [117, [12], [2]). Intervals the bounds
of which are floating-point numbers are defined in a similar way as well as operations
between those. For more details see [2], [4] or [15]. [4] gives a very nice
introduction to inclusion algorithms. For the following discussion it suffices to know
that operations between intervals with floating-point bounds are welldefined, are
quickly executable on digital computers and give sharp bounds (in terms of
intervals) of the solution set.

One purpose of the following discussions will be to formulate theorems allowing to
calculate sharp inclusions of the solution by diminishing overestimations introduced
by interval calculations. Thereby, mathematically equivalent formulations may
differ vastly in the corresponding practical results.

1. First Results

For A,BeC"*" the problem will be discussed finding inclusions of an
eigenvector/eigenvalue pair of the pencil A —/ B. First we derive a theorem which
follows from a general theorem for the inclusion of the solution of systems of
nonlinear equations (see [15]).

We use a normalization

¢, . x={ (1.1)

for the eigenvector x with some 0+ { € C. Other normalizations are possible as well.
The problem is rewritten to find a zero of a nonlinear system f:C"*!' - C"*! with

X Ax—JABx
G)=(007) a2

where xeC", {eC. The Jacobian J of f computes directly as
A—AB —B
J:=( , x). (1.3)
ey 0

A nonlinear system similar to (1.2) has been discussed by Krawczyk [7]. We use
these ideas and the principles of inclusion algorithms [15] extended to the
generalized eigenproblem.
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The following ideas and corresponding algorithms can be regarded as the extension
of a traditional numerical algorithm to an interval-type algorithm providing results
which are based on a (good) floating-point approximation and which are guaranteed
to be correct.

With these preliminary remarks we can prove the following theorem.

Theorem 1: Let A,BeC"*", ReC"* V>t e ], (eC with (+0. Let
XePC" AePC be nonempty, compact and convex sets with XX and 1€ A and

define
(55) (AJE—IB:E)
Z:=| .)]-R. . (1.4)
A e X—¢
and
A"{I R (A—AB —BX)} (X—x") {5
o (TR (P | (1)
If '

X
Z+ A S interior (A) (1.6)

then there exist some £€X, A€ A with AX=1B% and ¢,%=(.

Proof - In every e-neighborhood of R there exists a nonsingular matrix. Therefore,
by (1.6) some nonsingular R exists satisfying

- .. (X
7 + A < interior (A) (1.7)

where Z and A are defined similar to Z and 4 by replacing R by R. Regarding /€ A
and using the definition (1.2) of /" and (1.7) yields for every xe C", Ae C with xe X,
A€ A after short computation

X o X X ~ [Ax—JABx
A A A epx—{_
¥\ .~ [AX—JBX% . [A—71B —Bx X—%
A e X—{ A 0 A—4
X\ ~ [AX—]BX . (A—AB —BX X—x
~]—R- N +<91,.,—R- . e
A ex—_ ey 0 A—4
| | (X)
interior .
A

Brouwer’s Fixed Point Theorem yields the existence of some Xe X, 1e A with

()7 ()- )

and the nonsingularity of R and the definition of f finishes the proof. O
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The theorem for nonlinear equations in [15] yields, moreover, the uniqueness of the
pair X, 1. It should be mentioned that Theorem 1 can be proved without assuming X
and A to be convex using finer arguments. The aim of the next chapter is to prove the
uniqueness of the eigenvalue/eigenvector pair as well as the individual uniqueness of
the eigenvector and eigenvalue within X and A, respectively.

2. Main Results

For the succeeding discussions we use the following abbreviations.

Let A,BeC"*"; ReCnthxntl). g Cn,
J,LeC, G:PC""' S>PC"*! defined by

G(Y)-—z I R-S (Y_)E)
M - +{n+1_ : (Y)} M_-:

with YePC", MePC and

Z_(fz)_R (A}'Z—/TBJE) -~ -
=\ . . € .

S(Y):=<A_’w _BY)EPU""'“W“)
0

and
/
€y

k is a fixed integer between 1 and n, all operations
in use are the power set operations.

The problem is to find inclusions of an eigenvalue/eigenvector pair of the pencil
A—/B. In (2.1) there are no assumptions on any of the used entities 4, B, R, £, 1
and (.

We will use the fact that for xeC", Ae C and f defined by (1.2),

oo ()

as short computation yields. We first state the main result and give the proof in
several steps.

Theorem 2: With the abbreviations (2.1) let {#0, X € PC" and A€PC both be
nonempty, compact and connected and suppose

G (X) Cinterior (X) (2.3)
A A

a) there exists one and only one eigenvector X of the pencil Ax = ABXx normalized to
e« Xx=_ satisfying xe X,

b) there exists one and only one eigenvalue J. of the pencil Ax=J.Bx satisfying e,

¢) % and 1 satisfy AX=1B%.

Then
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First we proof the existence and uniqueness of an eigenvector/eigenvalue pair within
(X, A4). Note that the assumptions in Theorem 2 are weaker than in Theorem 1
because according to (2.1), S(Y) contains only A— /B instead of A— A - B in the
upper left corner and %, 1 are not supposed to be elements of X, A, respectively.
Furthermore, X and A are not supposed to be convex but only connected. For this
purpose we need the following important technical lemma.

Lemma 3: With the assumptions of Theorem?2 the matrix R and every matrix
Q € S(X) are nonsingular.

Proof: Follows by Theorem 5 in [16] and (2.1). O

Lemma 4: With the assumptions of Theorem?2 there exists one and only one
eigenvector/eigenvalue pair of Ax — J.BXx subject to the normalization e, x = { within
(X, A), i.e.

IteX3leA:X+0 and A=/B% and

yeX, ued, e,y=_and Ay=uBy implies y=X, u=1,
Proof: Using (2.2) and (2.3) yields

X X X ) . X
{( )—R-f( )IXEX,AEA}EG( )Emterlor( )
A A A A

implying the existence of a fixed point £€ X, /e A with

%
R -f(i)=0. (2.4)

Using Lemma 3 yields Ax=/Bx and ¢}, £ ={ and therefore £ 0. For the proof of
the uniqueness of the eigenvector/eigenvalue pair (X, 1) we assume the existence of
x,yeX and 4,ue A with e, x=e¢,y=_ and

Ax=/ABx and Ay=uByand x#y. (2.5)
In the following we need the nonsingularity of every matrix Q(z), z€ X defined by
A—JB —B:z
Q(z):= , (2.6)
e} 0

which follows by Lemma 3. Assume, / is an eigenvalue, i.e. there exists some v e C”
with Av=/Bv, v#0. If ¢, - v=0 then using (2.6) we have

which is a contradiction because v #+0 and Q(x) is not singular. If ¢ - v#0, then we
may assume w.l.o.g. ¢ - v={_ and therefore

vV—X v—y
Q(x)-(;- A)ZO and Q(yJ-(f >=0-
(T l{.‘_ﬂ
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Now v+ Xx or v# y because of x # y showing the existence of a nonzero vector in the
kernel of Q(x) or Q(y), which is a contradiction. Therefore,  is no eigenvalue and
especially,

47 and 1+#p. (2.7)

If A= u then short computation yields
X+0(y—x)

(e
Then (2.2) shows that (x+d (y—x), ) would be a fixed point of G for every §eC

contradicting (2.3), because by y+#x we have x+d*(y—x)edX for some 6*eR.
Therefore,we may assume 1+ p for the following.

Let 6 C and define

)=0 for every 0eC.

N(§):=(1—=8)-(u—AD+6(A—1). (2.8)
Then
N(@)=0<=35(A—p)=i—pu. (2.9)
We assume for the moment (4 —p) 5/ — u and define
L 6{&—2’). 3 ;
w(d):=x+ NG) (y—x)eC
and
=T+ 2= G Dec 2.10
O'(l:).—" ‘f"m( - )E . ( )

Moreover,let f,: C"™' - C"*! be defined by o
1 (':) - (‘:)_ R. ((A N IB;CWW__(‘Z_A] Bz) for ze C" (2.11)
and weC", g eC.
Next we show that (w(d), a(9)) is a fixed point of f | 5, .
(A=7ZB)-w(8)—(a(8)— 1) B- w(d)=

§(A—7) p=7 ., ‘ B
(A—)TB){x+ NG) -(y—x)}—N(é)(A—A)-B-(x+6(y—x))—
~ S(A—=2), " 7 - B
(A—Z)Bx+ NG) ((ju—;L)By—(A—ll)Bx)—m(l_l)-B-((l—5)x+5y)—
SA=1? u-17 212
{X—A—WN(55—~W(A—A)(1~—6)}-Bx+

{5(’1_%( -7 d(l—?f)é}ﬁ’ _
Ne) TN V=

(A=7)-{1=N(©) ' (6(A=D)+(u—2(1—-9))} - Bx=0.
Moreover, e, - w(d)={ implies with (2.11)
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7 (w(é)) (w(a))f Il 5eC with (A— )54 2.13)
_ = or a with (41— — U .
x+d(y—x) 0_{5) 0'(6) nu au’
(x,4) and (y, )" are fixed points of G by (2.2). With (2.3) and x,ye€ X this shows
X,y € X\0 X and the existence of some d,, §, € Rwith §, <0< 1<§, and the property
that 6eR and 6, <0<, implies x+J(y—x)e X where x+6,(y—x)edX and
xX+0,(y—x)edX.

By (2.3) we have

u X
{fxw{},_x, (f?) lue X, ne/l}ginterior (/1) for all 0, <0<0,. (2.14)

w(0)=x and w(1)=y because A+ 1 and therefore, together with (2.14),
w(0)e X\0X forall 6, <6<, and (A—p)d#i—pu (2.15)

because w(9) forms for §, < <, a connected curve which, by (2.3) and (2.13), cannot
intersect the boundary of X. Suppose (41— u)/(A—pu)e[d,,9,]. Then x #y, (2.9) and
(2.10) show that w(d) tends to infinity for §—(1—pu)/(J—p). This implies the
existence of some w(6*)e d X for §; <6* <4, and 6* #(1— w)/(/ — ) contradicting
(2.15).

Therefore,
- —K ¢[0,,0,] and w(d) is well-defined for 6, <6 <4,. (2.16)
A—u : _
Together with (2.15) and (2.8) this implies

S(A—7) ‘
5, < - <4, for all §, <0<, 2.17
Ao - Dtop—n 2 : @17)

N (6) defined by (2.8) has constant sign for all §,; < <J,. Suppose N (6)>0. Then the
left inequality in (2.17) yields for 6 =6, using 6, <0

o1 - {(1=0) (u—A)+6,(A—2)} <6, (A— D)=
U—T+8,A—p)>A—T=8,(A—)>i—pu=Ai<pu.

The right inequality in (2.17) yields for 6 =0, using 6,>1
A=A<pu—I+6,A—pW=A—pu<d,(A—p)=i>pu.

For N (0) <0 the left inequality in (2.17) for 6 =4, and the right inequality in (2.17)
for 6 =90, yield the same contradiction which therefore demonstrates the incorrect-
ness of assumption (2.5) and proves Lemma 4. ]

Next we prove the individual uniqueness of the eigenvalue in A.

Lemma 5: With the assumptions of Theorem?2 let p be an eigenvalue of Ax—ABx

with e A. Then every eigenvector y corresponding to p can be normalized to €, y ={
and lies in X.
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Proof: Let ye C" be an eigenvector corresponding to p. Define g : C"*'— C"*! by

w i A—ocB —BX w—X
g =2+, 41 —R- ; : ~ |5
o e, 0 o—A

for we C", g€ C. Then short computation yields

w w
9( )ZG( ) for all weC", ¢eC
g o

and therefore by (2.3)

X ' . X
{g()lxeX,ieA}gmterlor( )
A A

Applying Theorem 5 in [16] yields the nonsingularity of every matrix

!

A—oB —BX .
P(o):= 0 for all 6eC with 6e A.
"

Then P(y)-(y,0) must be nonzero and therefore ¢} - y#+0. W.l.0.g. we assume

e y=_
(g“(t))=c(r) for teC", veC. (2.18)
v H

Define g, : C"— C" by
Then by (2.3), g, maps X into itself, is continuous and affine. By Theorem 11 in [16]
there exists some

ze X with g,(z)=z. (2.19)
Let
z z
G( ):( *) for some p*eC. (2.20)
u)  \u
Suppose u# p*. Then we define h: C—C" by -
. H—V
h(v):=¢.z+(1—¢&)-y with {::M—-; (2.21)
—u

and z from (2.19). By (2.20), (2.2) and (1.2),

OGOy e
M T M e z—_

Furthermore,by (2.21) and (2.22)

R. (A-h(V)—#Bh(V)):R ( (A—uB)¢z )=
e h(v)—{ elzte(1=4)y—C¢ (2.23)
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G(hwgz(mw)_( 0*):(hfg for all veC. (2.24)
u M u—p u

h is continuous in v and for ce R

This implies

R +8)—h()=——z+—— "y
_ p—u p—p
We still suppose u# p* implying z#y by (2.20) and therefore | h (v)| — oo for v—c0.

By (2.24) h(v) is a fixed point of g, for every v e C. This implies the existence of some
v¥e C with h(v¥)e 0 X contradicting (2.3). This contradiction shows u = u* and with

(2.20)
z Z
o(2)-()
TV
Then short computation yields

G (z+5(y—z))=(z+5(y—z)) for every deC

&

H H
implying. y=2z because otherwise some 6*eR with z+d*(y—z)edX would
contradict (2.3). From (2.19) we know y=ze X which finishes the proof. H

The existence of two eigenvalues within A implies the existence of two pairs of
eigenvectors/eigenvalues contradicting Lemma 4. Next we prove the individual
uniqueness (subject to normalization) of the eigenvector within X.

Lemma 6: With the assumptions of Theorem?2 let y be an eigenvector of Ax —J.Bx
with ye X. Then the corresponding eigenvalue pe C satisfies pe A.

Proof": Define g, : C—C by

( : )=G(y> for zeC", veC. (2.25)
g, (v) v

Then by (2.3), g, maps A into itself, is continuous and affine. By Theorem 11 in [16]
there exists some '

ceC with g (0)=0cand geA. (2.26)
Let
¥
G (y)=<y ) for some y*eC". (2.27)
o o
Suppose p# 0. Then define
V—0
v(v):=y*+n(y—y* with 11r:=JM (2.28)
—a

using ¢ from (2.26). By (2.27), (2.2) and (1.2)

LR (GH () e
o o o e y—1_ o e y—{_

16 Computing 42/2—-3
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Furthermore, by (2.28) and for every ve C we have
G(y>=(y>_R‘((Ava)y)=(y)_#—v R, ((uja)By)z
v/ \v e y—¢ v/ p—o exy—{
— * _
Ll U))
v/ u—o 0 v

Therefore, every ve C is fixed point of g, contradicting g,(A4) Sinterior (A1) which
follows by (2.3). This implies =0 and (2.26) finishes the proof. |

(2.30)

The existence of two eigenvectors within X implies the existence of two pairs of
eigenvectors/eigenvalues contradicting Lemma 5.

This finally finishes the proof of Theorem 2.

3. Practical Applications

For the practical application on computers sets may be represented by intervals. All
theorems mentioned in the previous chapters can be implemented and be used on
digital computers by using intervals (over complex numbers, vectors, matrices) as
sets and by substituting each power set operation by its corresponding interval
operation for xe€ {+, —,-, /}. A necessary condition for the implementation of an
interval arithmeticis a precisely defined floating-point arithmetic or operations with
directed roundings [5].

Data afflicted with tolerances may be treated as well. In this case the input data are
sets of matrices, in practical computations, for example, interval matrices, and all
assertions of Theorem 2 are true for each individual matrix within the tolerances.

In the following we give some numerical examples. The computer in use is an
IBM 3090 using the programming package ACRITH [1] for interval operations.
The programming environment ABACUS is used (see below). Matrices A and B are
chosen to be random Hilbert and Pascal matrices (defined below). The approxi-
mations X and 1 are computed as an eigenvector/eigenvalue pair of B! A; all
floating-point computations (including B~') are performed using LINPACK and
EISPACK routines.

Theorem 2 is used as an a posteriori check on the accuracy of X and 4 by defining X,
A, the starting intervals to check on an inclusion, to be £ - (1+¢)and 1 - (1 +¢), where
¢is 107 '*. The precision in use is 14 hex or approximately 16 decimal digits on an
IBM 3090.

The inclusion algorithm is implemented using ABACUS. This is an interactive
programming environment allowing to program in mathematical notation as the
following original ABACUS subroutine for an inclusion of the solution of the
generalized eigenproblem demonstrates.
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module(A4, B, x, [, X, L)
n =size (x); {zeta, k) =max (abs(x));
C=(A—-I1+B, —Bsx;nulls(l,n+1)>; C(n+1,k)=1;
R=1/C; Z=ival {(x;I>—R={Axx—1xBxx; x(k)—zeta);
C=ival {(A—1I1*B, —B=*x;nulls(l,n+1)>; C(n+1,k)=1;
C=Id—R=«C; X=Z;e=1+/—1e—14; kk=0;
loop
{(Y=Xxe; X=Z+Cx»(Y—{x;1)); kk=kk+1;
if X in0 Y or kk= =15 then exit;}
Af X in0 Y then {display ‘inclusion’; L=X (n+1); X=X (1:n);}
else {display ‘no inclusion’; X ={>; L={>;}

Fig. 1. ABACUS subroutine for the generalized eigenproblem

Id denotes the identity matrix (automatically adjusting its size), 1 +/—1 e — 14 is the
interval with left bound 1 —1e— 14 and right bound 1+ 1 e—14. The keyword ival
prior to an expression forces the expression to be evaluated using interval
operations. If in an expression at least one interval variable occurs (regardless
where) the whole expression is evaluated using interval operations. in(O denotes
inclusion of the left hand side in the interior of the right hand side.

The algorithm works similarly to other inclusion algorithms introduced in [15].
Especially, e-inflation is used.

In the following tables we display the
1. “number of interval iterations” which is kk in the algorithm above,

2. “minimum number of digits guaranteed”, which means the minimum number of
digits coinciding in each left and right bound of the inclusion of elgenvector and
eigenvalue, and the

3. ““accuracy of the approximation”, which is the number and the minimum number
of correct digits of the approximation 4 and X, respectively.

The random matrices R, S have uniformly distributed components between 0 and 1
and one eigenvector/eigenvalue pair has been chosen randomly. Hilbert matrices
and Pascal matrices of dimension n are defined by

(Hp);;:=lem(1,2,...,2n—-1)/(i+j—1),

(Pp);j: Z(H_ji— 1)-

For Hilbert and Pascal matrices all eigenvector/eigenvalue pairs were treated. The
following results were achieved.

The computation for Hg — /4 - Py was real because the approximations X and 1 were
real. This may be a reason for the better results than for Py — A - Hg. The number of
digits guaranteed is larger than the number of correct digits of the approximations
because of the Newton step within the interval iteration. Such a Newton step
performed in floating-point arithmetic would, in general, improve an approxi-
mation. However, it should be stressed that a floating-point iteration may very well
pretend convergence.

16*
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Table 1. Computational results

interval minimum number accuracy of the

problem eigenpair iterations of digits approximation
guaranteed X

Rio—4-Sip 2 16 12 14

R,0—42:8,5 2 16 12 13

Hg—4- Py 1 1 11 9 9

2 1 11 9 10

3 1 10 10 10

4 1 11 11 10

5 1 12 10 9

6 1 14 8 7

7 1 14 7 6

8 1 14 6 5

Py—J.Hg 1 2 8 8 7

2 2 8 8 7

3 2 9 9 8

4 2 11 7 7

5 2 12 6 6

6 2 14 6 5

7 2 14 5 4

8 2 14 3 3

Finally it should be mentioned that even in “degenerated”™ cases (singular matrix B),
when there are fewer solutions thanthe dimension of the matrix, the method works.
The following example also illustrates the interval iteration.

Let
1 2 1 2
A= , = .
3 4 2 4
Then det(4 —AB)=21—2 and the only solution of the generalized eigenproblem
A—JBis x=(0,1Y and A=1. We take £=x and Z=1. Then

0 0 —2\! -2 10
R=|1 0 -4 = 0 0 1
0 1 0 —-1/2 0 0

We take k=2, X:=%+¢ and A:=7+¢ and according to (2.1) we obtain
0 0 —2+2¢ +¢&
1 0 —4+4¢ A +e )=
0 1 0
+

0 0 +8¢
-+ 0
0 0 -+
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Therefore, G(X, A) is included in the interior of (X, A) if and only if 8&?<e¢ or
0 <e<1/8. This shows that ¢ cannot be 0 because inclusion in the interior is assumed
and it should not be too large to allow (2.3) to be satisfied.

4. Conclusion

A method has been presented allowing the guaranteed inclusion of a solution of the
generalized eigenproblem A — /4 B. The corresponding algorithm can be used as an a
posteriori criterion to check on the accuracy of computed approximations. Due to a
Newton-kind iteration the calculated inclusions are very sharp. The method allows
only simple eigenvalues to be treated, in fact the algorithm proves that the enclosed
eigenvalue is simple. The problem can easily be transformed into an n x n nonlinear
problem.

The inclusion of multiple eigenvalues is an open problem. All results calculated by
the inclusion algorithm are guaranteed to be correct, no false results are possible.
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