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Abstract — Zusammenfassung

Least Significant Bit Evaluation of Arithmetic Expressions in Single-Precision. Single-precision floating-
point computations may yield an arbitrary false result due Lo cancellation and rounding errors. This is
true even for very simple, structured arithmetic expressions such as Horner's scheme for polynomial
evaluation. A simple procedure will be pr 1 for fast calculation of the value of an arithmetic
expression to least significant bit accuracy in single precision computation. For this purpose in addition
to the floating-point arithmetic only a precise scalar product (cf. [2]) is required. If the initial floating-
point approximation is not too bad, the computing time of the new al gorithm is approximately the same
as for usual floating-point computation, If not, the essential progress of the presented algorithm is that
the inaccurate approximation is recognized and corrected. The algorithm achieves high accuracy, i.e.
between the left and the right bound of the result there is at most one more lloating-point number, A
rigorous e«imation of all rounding errors introduced by floating-point arithmetic is given for general
triangular lincar systems. The theorem is applied to the evaluation of arithmetic expressions,

AMS Subject Classifications: 65G03, 65F99.

Key words: Inclusion, automatic verification of correctness, roundig error, high accuracy. error
estimation.

Bestmiigliche EinschlieBung des Wertes eines arithmetischen Ausdrucks in einfachgenaver Rechnung,
Durch Ausldschung und Rundungsfehler kénnen in Gleitpunkirechnungen beliebig groBe Fehler
entstehen. Dies trifft bereits zu fiir sehr einfache, strukturierte Ausdriicke wie etwa das Horner Schema
zur Auswertung von Polynomen. Hier wird ein cinfacher Algorithmus vorgestellt zur schnellen
Berechnung des Wertes cines arithmetischen Ausdrucks. Der Wert wird in einfacher Genauigkeit
«emngeschlossen*, d. h. es werden Schranken fiir den Wert berechnet. Zu diesem Zweck wird zusiitzlich
2u den vier (Gleitpunkt-)Grundrechnungsarten nur ein genaucs Skalarprodukt benétigt (s. [2]). Wenn
dic erste Gleitpunkt-Approximation nicht zu schlecht ist, ist die Rechenzeit des neuen Algorithmus von
der gleichen GréBenordnung wie die fiir gewdhnliche Gleitpunktrechnun 2. Andernfalls wird, und das ist
der wesentliche Fortschritt, die Ungenauigkeit der Niiherung festgestellt und korrigiert, Die Genauig-
keit der EinschlieBung ist fast bestmoglich, d., h. zwischen linker und rechter Grenze liegt maximal eine
weitere Gleitpunktzahl. Eine rigorose Fehlerabschiitzung aller Rundungsfehler durch Gleitpunki-
Arithmetik fir allgemeine lineare Gleichungssysteme mit Dreiecksmatrix wird gegeben. Der Satz wird
auf die Auswertung arithmetischer Ausdriicke angewandt.

0. Introduction

Let § be a subset of R, e.g. the set of single precision floating-point numbers. For the
definition of operations in S, VS, (n-tuples over S) and MS (n*-tuples over S) we refer
to [3,4] (see also [5]). For this purpose a monotone and antisymmeltric projection
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O : R— S (similar for vectors and matrices) is needed. The operations in S, V'S and
MS aredenoted by [¥], € { +, —, -, /} with well-known restrictions for division. The
main property holding in all spaces is (cf. [3,4])

=

(RG) AFEB=(A*B) =xe{+,—,./}

where 4,BeS. VS, MS (all meaningful combinations; for details see [3,4]). The
operations &, *xe {+, —, ., /} in the corresponding interval spaces 1S, [ V'S and IMS
are defined in [3,4]. Again, a monotone, antisymmetric, outwards directed
rounding {» : PR — 1S (similar for vectors and matrices) is required. The fundamen-
tal property is

(RG) A®B=<>(A*B) *E{+>_1'5/}'
For a thorough discussion see [3,4], for a compact introduction see [5].

All these operations are well-defined and effectively implementable on computers.
This is demonstrated in [3, 4]. For this purpose especially a precise inner product is
necessary (cf. [2]).

As long as no overflow or underflow occurs, for [] the following error estimation is
satisfied.

(E) Va,beS:|aEb—axb|=Ze|laxb| xe{+,—,./}.

This holds not only for floating-point operations in S but also for vector and matrix
operations (cf. [1, 3,4]). Moreover

(E) VA BelS: A® B=(A*B)-[1—¢1+e], xe{+,—,-./}.
This is also true in case of multiplication for 4, Be[VS.

For A=[a,b]elR with a,be R the diameter d (4), the absolute value | A| and the
midpoint m(A) are defined by

d(A):=b—a;|A|=max(|al,|bl); m(4):=%(a+b).
For A=[a,b]€lS with a,be S the midpoint of A is defined by
m(A):=aB(BHa) 2.

Because [] is a monotone projection we have [ml (4)=a. IfbEa or (hHa) 112
causes underflow or if a=b, then a = [m] (4) < b. Otherwise the error estimation (E)
states for ¢,de S with c*d=0 :

cEHd=(cxd)-(1+&) for xe{+,—,.,/}.

If 6<)/2—1 then -
(bEa)UiDé(bE]a}/Z-(lH)éT-(1+£)2§b—a,
a+(bHa)[[122a+b—a=b and
am(baa)mz(;p(ﬁ(bEa)@jZ)éﬂb:b.

Therefore
a< [l ([a,b]) £b.
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This is not true in general for i ([a,b]):=(a B b) ] 2.

In case 2¢S the estimations remain valid when replacing 2 by some a€S with
a=(1+e).

1. Arithmetic Expression

Under an arithmetic expression we understand a finite formula consisting of
constants and +, —, -, /. (,). Here constants are elements of SR which is a set of
floating-point numbers. The arithmetic expression can be transformed to a quotient
of two expressions, where in the numerator and denominator quotients may occur
but only with constants in the denominator. Example (for constants a,b):

42> (@—b)(b—a)+4a*/b
(b—a) b—a .

Further an expression can be altered in such a way, that at most one factor in every
product is an expression itself (the other are constants). Example (numerator of (1)):

(a*—b)(b—a)+4a’/b —(a*—b)b—(a*—b)a+4a*/b. (2)

Therefore we consider restricted expressions which can be obtained by applying the
following rules:

2B 1
a +b (1)

1. A constant is a restricted expression.

2. The sum and difference of two restricted expressions is a restricted expression.
3. The product of a restricted expression and a constant is a restricted expression.
4. A restricted expression divided by a constant is a restricted expression.

When evaluating a restricted expression, each rule means computing an in-

termediate result. Let a, b, ¢, ... be constants and x, y values of subterms. Then a new
intermediate result z is obtained in one of the following ways:

L. w=a

2. z=x4y

3. z=x-a

4, z=Xx/a or a-z=Xx.

So a restricted arithmetic expression can be regarded as a system of linear equations.
The variables are the intermediate results.

The final division of the including intervals for numerator and denominator of the
original arithmetic expression introduces an additional relative error of the
magnitude of the relative rounding error unit.

The transformation of an arithmetic expression into a restricted arithmetic
expression resp. the quotient of two restricted expressions can be performed
automatically. An effective algorithm for this process has been implemented.

Applyingonly 1.,2.,3. and 4. may result in many variables. The number of variables
can be reduced. Example for (2):

14*
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X, =a Xy=x3-b
b B o=, (3)
X3=X;—b Xe=—a-X3+X;+4. x,

n

For calculating the value of a polynomial p&)=Y a;- &" ' we obtain the linear
i=0
system

Xo=do; Xj11=¢ -X;+a;,, for 0<ign—1. (4)

Obviously the linear system of a restricted arithmetic expression is lower triangular.
So it is easy to solve by forward substitution and, which is most important, this
process can be iterated. Moreover, not only approximations can be achieved but an
inclusion of the value of the expression with high accuracy.

2. The Algorithm

Let a linear system with lower triangular matrix be given:
L.x=b with Le MS, be VS and L;=0 for i<j. (5)
Here L;; denotes the ij-th component of L.

An approximate solution of (5) can be obtained by

k=1
xk=(b,‘E|Lki|Z|xi)mka, 1<k<n. (6)
i=1

Applying the Bohlender algorithm (cf. [2]) we get instead of (6)

Boai.
xkzm{hk_ 2 Lk;-xs}lIle I=k=n.
i=1

with only two roundings in the computation of each component. Let (%, ..., X )=5%
be any approximate solution of (5). Then the residue of (5) with respect to that
approximation can be included with least significant bit accuracy using Bohlender’s
algorithm:

Ak=0{bk—iLk,--f,}. I=sk=n.
Then with =
Yk—O{Ak—kil Lk,--.f‘-}®ka, Il=sk=n (7)
i=t
and Y:=(Y,,..., ¥,) we have
L™'. hexd Y.
Therefore the value of the arithmetic expression is included in %, & Y,.

Ifthe diameter of X, & ¥, is small enough, we are ready with an inclusion of the value
of the given arithmetic expression. If not, an iteration is performed with a residue of
higher order: Let ;=% and %':= [ (Y).
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Compute

k k
Akzo{bk—ZLki i Z x}} 1=k<n

i=

and then Y, again by (7). Then
L' be® oY )
and the value of the arithmetic expression is included in X° & ! & ¥,

Applying again Bohlender’s algorithm we obtain a sharper inclusion ¢} (3° + %' + Y)
instead of (8).

We summarize this procedure in an algorithm.

Algorithm 1: Evaluation of arithmetic expressions.

A) {Initialization} Ei
for k:=1tondo x:=[] {b I }]IlLHU p:=0; goto C);

i=1
B) {Computation of midpoint}

for k:=1 to ndo X{:=[m] (¥,);
C) {Computation of residue}
for k:=1 to n do Ak::O{bk

IIM-.;
HM;-
\-...—\,—-.J

D) {New inclusion}
for k:=1tondo Y,:=O { Z l D Lys;

E) {End of loop}
U:=0 { Zp: X+ Y,,}: p:=p+1;
if {succ (sjl;:c::(inf(U))}gsup(U) or (p>10 and underflow)}
then goto F) else goto B);
F) {Result}

U is an inclusion of the value of the arithmetic expression described by
L=

inf(U) resp. sup (U) denotes the lower resp. upper bound of U. Therefore inf(U),
sup(U)eS. Further succ(s), se S denotes the successor of s in the floating-point
screen S. Therefore the condition

succ (succ (inf(U))) = sup (U)

bounds the diameter of U to two units of the last digit of the mantissa of U. In case of
underflow the succeeding estimations are not valid, therefore in this case p is limited
to 10 to assure termination of the algorithm.

In algorithm 1 it is important to use Bohlender’s algorithm in the steps A), C), D)
and E).
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3. Accuracy of the Result

Next we estimate the diameter of the intervals ¥;, 1 i<n and therefore especially
the maximum error of the final inclusion

P

o (Z X+ Y,,)
i=o0

of the value of the arithmetic expression after the p-th iteration. As long as no over-

or underflow occurs these estimations include all rounding errors during com-

putation as well as the overestimation due to dependecies of intervals. We start the
discussion with some definitions.

Define )
M;:=max {l—;jii I 1} for 1£isn 9)
and :
Niz= ﬁ M, for 15ign. (10)
v=1

To distinguish the 4, resp. Y; for different values of p we introduce a superindex p to
the 4, resp. Y;. To avoid misunderstandings we repeat the steps B), C) and D) of
algorithm 1 in short (vector) notation. Here, for instance, X7 denotes the vector
(%2, s XE).

B) X7:= [m] (Y");

C) 4%:=0 {b— i L-ii};

i=0

k—1
D) for k:=1tondo Y"':={ {A;‘.’— ¥ Lki'YF+]}®ka;

i=1
We assume in the following that during computation no over- or underflow occurs.

Define

Y?
AB:=0; AP:= max il for 1Zisn,pz1 (11)
1zvsi N,
d(yy) .
D§:=0; Df:= max for 1£i<n, p=1. (12)

1svsi o

To prove the succeeding lemma we need the following relation.

i=%
YF“={<> (AF‘ Y Ly YEH)} O Ly
v=1

i-1
E{(Af* b4 L”-Y{,’”)/Ll-,}-[l—s,l—i-s]z for 1<i<n, p=0.
v=1

(13)
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Lemma 2: For Af, D! from definitions (11), (12) the following estimations hold:
A7
p+1< P l+ 2(i—v+1) 14
Z{|LN|N L } i

+l|

L d(ae ¥
DP+1<Z {Il‘(ﬁ{lﬁ-s)z“'l :

both for 1Zi<n and p=0.
Proof: From (13) we get (cf. [13]) for 1 <i<n and p=0

|Y5J+1|<{| |+M max Y£’“|}.(1+a)2.

43}.(1+a)2“—"’, (15)

|Lu| 1gvsi-1
Therefore
| 7T | A7 )
N < |Lz.-|‘Nr+A?jll (14+¢?* for 1Zi<n,p=0.
This implies (14) by induction. Again from (13) we get (cf. [1]) for 1<i<n, p=0
+1 d(4p) +1 2 +1
d(¥Y1*h)= 7 |+M max d(Y2t)s. (1462 +| YPH!|. 4e.
i 1svsi-1
Therefore
d(Yrt) d (A7) | Y771
== = 4+ D (e ——— . 4
TR [T A LT
for 1=i<n and p=0. This implies (15). O

The next lemma estimates the diameter and absolute value of AP dependent on
d(yrth,

Lemma 3: For 1=i<n and p=0 the following is true:
|47 =(1+8)- Y | Ly, |-d(YEH) (16)
v=1
and
d(Ar* ) Ze-|AP7Y, (17)
Proof: Steps C) and B) of the algorithm yield for p=0 and x* with L.x*=h

A"“:(}{b—pill,-ij}

O{L X*— ZL 2 w“}

S

This implies (16) because of

In

P
x*e Y H4 yrti,
j=0
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Estimation (17) is clear because {»: R— [S rounds to the interval of smallest possible
diameter.

O

The following theorem gives an estimation of d(¥?*?) depending on d(¥Y?™").

Theorem 4: For 1=<i=<n and p=0 the following estimation holds:

DP*2<56. (L+e)P L. 2. DP*Y, (18)
Proof":
15) 1 d(Av*Y) 8 g i
it < A2 ‘7‘4 1 2(i—v)
D! g {ILWI L (14+e*+ N e (148

(17.14) & ‘Ap'l'il v IAp+1| ‘
= Z {(1+£)2+ —F (148 D g (14 7Y
= |Ln| N =1 |Luu|'Nu
Z Z | le 2(i=p+1)
(14e)Ptrrih. 5g
v=1 u=1 |L,uy| N

v h d(yp+i) .
1+,2| 2u+3.5
1 zl. azl u‘ |-N i : 8

d(Yﬂ+1)
N

u

III\o\
1l M -

o

§58-Z y {N - max d(YZ*h)+ }(l g 2ut3
=1 @g= "

1sasp—1

+1
igasﬂ' Z { %}_[l_l_a)zl'—zu-#s_
v=1 u=1 NM
For 1=pu=sv=i,
d(Yp+1)

Deti<pDe*! and —* S<petl and DITIsDIti<DPt.
N
u

Then D§*'=0and Y (2v—1)=i finishes the proof. O
v=1

Corollary 5: For p=0 the (p+1)-st inclusion of the value of the arithmetic
expression satisfies:

' d(y!
d(yﬁ+s)§{8'5'(l+£)2"+l-nz}p-N". max ( v).

1=svEn

(19)

v

As far as no over- or underflow occurs (19) is a rigorous estimation of the diameter of
the inclusion of the value of the arithmetic expression including all rounding errors.
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It is a worst case estimation. The estimation remains valid when using any X" e ¥?
instead of [m] (Y7) in step B) of Algorithm 1.

Theorem 4 and Corollary 5 have been derived (and are valid) for arbitrary triangular
linear systems. In this context they are applied to an algorithm for evaluating
arithmetic expressions.

4. Computational Results

The algorithm described to compute the value of arithmetic expressions has been
implemented on a mini-computer based on the Z80 with decimal arithmetic and
12-digit mantissa, on a UNIVAC 1108 and on an IBM 370/168. Following we give
some sample tests for the algorithm.

1. at+b—afora=1,,30.b=1

2. bP(4a*+b*—4a>)—8a® for a=470832, b=665857

5 5 N2
.Y at-% ( x ai) for aj=7951407+i—3, 15i55
i=1 i=1
Remark: Expressions like this occur in least square approximation.

4. f(1)=((543339720 ¢ —768398401) t — 1086679440) t + 1536796802
a) t=1.4142
b) t=1.41421356238
c) t=1.414213561

5. (f(1—h)—2f(1)+£(1 +h)/h* for

4970t —4923
fn= 5 ;
4970 t* —9799 t +4830
a) h=1,,—4
b) h=1,,—5
¢) h=1,,—12

This formula has to be treated as a single expression.

The following table shows the computational results on the minicomputer of the
Institute for Applied Mathematics at the University of Karlsruhe. On this computer
a 12-decimal-digit floating-point arithmetic with maximum accuracy (cf. [2]) is
implemented. In the columns of the table are displayed from left to right:

The number of the example.

The floating-point approximation X.

The correct value x* of the expression rounded to 12 decimal digits.
The number p of iterations in the algorithm.

The final result U of the algorithm.
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5 x* P U
. 0.0 +1.0 | +1.0
2. +5.0,,23 +1.0 2 +1.0
3, —~ 100000.0 +10.0 | +10.0
4.2) +0.280 +0.282673919360 i +0.282673919360
4.b) +0.00695 +7.32719247117,5— 14 2 +7.32719247n§m— 14
4.0) ~0.01 +2.89746134369,, 9 2 + 2.8974613436210 —9
5.2) 90.00895 70.7881908792 1 70.788190879?
5.b) 4500.004 93.7679047546 2 93.767904754;
5.0) 0.0 94.0000000000 3 SN

93.9999999999

The displayed final results U in the fifth column of the table are either points, i.e.
exact floating-point numbers, or intervals where between the left and the right
bound there is at most one floating-point number. As seen from the fourth column in
the table typically one iteration is necessary to achieve least significant bit accuracy
of the result.

Finally we demonstrate the estimation on the accuracy of the result by example 4. b).
The linear system is the following:

Xy =a a= 543339720
—t Xy %y =b . b= —768398401
—t . Xy+%, =i ¢=—1086679440
—1 - X3+x,=d d= 1536796802

Then M, =1 and M,=M;=M,=t and N;=¢r"! for 1Zi<4.
Computing with 12 decimal digits in the mantissa yields

X0 =543339720
%2=0.0037517336
0= — 1086679439.99

X3 =0.0066386684238
and
Y!=[—0.00663866842374, — 0.00663866842372].

The first approximation x{ for the value of the polynomial is the result computed by
Horner’s scheme with a maximum accurate arithmetic. The magnitude of the
approximation is completely incorrect. The first inclusion is

R0 Yi=[6.10"14,8.10714]

which demonstrates the magnitude of the correct solution. The second iteration
yields
Xi=—0.00663866842373
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and
Y2=[3.27192471173. 10715, 3.27192471174. 10~ 157,

Therefore the second inclusion is the final result:
QX+ X4+ Y3)=[7.32719247117- 104, 7.32719247118. 10717, (20
Estimation (19) yields
d(Y)£1.7.107%, whereas in fact d (¥2)=10"26.
Furthermore estimation (19) tells that
d(Y5")=<(8.01-1071%.2.10 14

which corresponds to at least 18 correct figures of ¢ (£ + £} + %2+ ¥3).
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