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Abstract. Recently Oishi published a paper allowing lower bounds for the minimum singular value of coefficient matrices of

linearized Galerkin equations, which in turn arise in the computation of periodic solutions of nonlinear delay differential equations

with some smooth nonlinearity. The coefficient matrix of linearized Galerkin equations may be large, so the computation of a

valid lower bound of the smallest singular value may be costly. Oishi’s method is based on the inverse of a small upper left

principal submatrix, and subsequent computations use a Schur complement with small computational cost. In this note some

assumptions are removed and the bounds improved. Furthermore a technique is derived to reduce the total computationally

cost significantly allowing to treat infinite dimensional matrices.
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1. Main result. Certain periodic solutions of nonlinear delay differential equations with some smooth

nonlinearity can be calculated by some Galerkin equations. Oishi’s paper [3] discusses how to obtain a lower

bound for the smallest singular value of the coefficient matrix G of the linearized Galerkin equation.

Throughout this note ‖ · ‖ denotes the `2-norm, and we use the convention that matrices are supposed to be

nonsingular when using their inverse. Dividing the matrix G into blocks

G :=

(
A B

C D

)
(1)

with a square upper left block A of small size, often ‖G−1‖ is in practical applications not too far from

‖A−1‖. In other words, the main information on ‖G−1‖ sits in A. Moreover, the matrix G shares some

kind of diagonal dominance so that ‖D−1‖ can be expected to be not too far from ‖D−1d ‖ for the splitting

D = Dd +Df into diagonal and off-diagonal part.

Based on that Oishi discusses in [3] how to obtain an upper bound on ‖G−1‖ = σmin(G)−1 by estimating

the influence of the remaining blocks B,C,D. Oishi proves the following theorem.

Theorem 1.1. Let n be a positive integer, and m be a non-negative integer satisfying m ≤ n. Let G ∈Mn(R)

be as in (1) with A ∈ Mm(R), B ∈ Mm,n−m(R), C ∈ Mn−m,m(R) and D ∈ Mn−m(R). Let Dd and Df be

the diagonal part and the off-diagonal part of D, respectively. If

‖A−1B‖ < 1, ‖CA−1‖ < 1 and ‖D−1d (Df − CA−1B)‖ < 1, (2)
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then G is invertible and

‖G−1‖ ≤
max

{
‖A−1‖,

‖D−1d ‖
1− ‖D−1d (Df − CA−1B)‖

}
(1− ‖A−1B‖)(1− ‖CA−1‖)

. (3)

In a practical application the matrix G may be large. So the advantage of Oishi’s bound is that with small

computational effort a reasonable upper bound for ‖G−1‖, and thus a lower bound for σmin(G)−1, is derived.

In particular the clever use of Schur’s complement requires only a small upper left part A of G to be inverted,

whereas the inverse of the large lower right part D is estimated using a Neumann expansion.

For p := min(m,n), denote by Im,n the matrix with the p × p identity matrix in the upper left corner. If

m = n, we briefly write Im. Oishi’s estimate is based on the factorization [2] of G using its Schur complement

G =

(
Im 0

CA−1 In−m

)(
A 0

0 D − CA−1B

)(
Im A−1B

0 In−m

)
.

It follows

‖G−1‖ ≤ ϕ(CA−1) max
{
‖A−1‖, ‖(D − CA−1B)−1‖

}
ϕ(A−1B) (4)

where for N ∈Mm,n−m(R)

ϕ(N) :=

∥∥∥∥∥
(
Im −N
0 In−m

)∥∥∥∥∥ =

∥∥∥∥∥∥
(
Im N

0 In−m

)−1∥∥∥∥∥∥ =

∥∥∥∥∥∥
(

Im 0

NT In−m

)−1∥∥∥∥∥∥ =

∥∥∥∥∥
(

Im 0

−NT In−m

)∥∥∥∥∥ .
To bound ‖(D − CA−1B)−1‖ the standard estimate

‖(D − CA−1B)−1‖ = ‖
(
I +D−1d (Df − CA−1B)

)−1
D−1d ‖ ≤

‖D−1d ‖
1− ‖D−1d (Df − CA−1B)‖

based on a Neumann expansion is used. In practical applications as those in [3] this imposes only a small

overestimation, and often the maximum in the middle of (4) is equal to ‖A−1‖.

Thus it remains to bound ϕ(N) for N ∈ {CA−1, A−1B} which is done in [3] by ϕ(N) ≤ 1

1− ‖N‖
requiring

‖N‖ < 1. The following lemma removes that restriction and gives an explicit formula for ϕ(N).

Lemma 1.2. Let H ∈Mn(R) have the block representation

H =

(
Ik −N
0 In−k

)

for 1 ≤ k < n and N ∈Mk,n−k(R) with ‖N‖ 6= 0. Abbreviate µ := ‖N‖ and define

α :=

1

2

1 +
1√

1 + 4
µ2


1/2

∈ (0, 1).

Then

ψ(N) := ‖H‖ = ‖H−1‖ =

√
1 + 2αµ

√
1− α2 + α2µ2 . (5)
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Proof. Let x ∈ Rk and y ∈ Rn−k. Then∥∥∥∥∥H
(
x

y

)∥∥∥∥∥
2

=

∥∥∥∥∥
(
x+Ny

y

)∥∥∥∥∥
2

≤ (‖x‖+ ‖N‖‖y‖)2 + ‖y‖2

with equality if, and only if, ‖Ny‖ = ‖N‖‖y‖ and x is a positive multiple of Ny. Let u ∈ Rk and v ∈ Rn−k

with ‖u‖ = ‖v‖ = 1 and Nv = ‖N‖u and define y := αv and x :=
√

1− α2 u. Then

∥∥∥∥∥
(
x

y

)∥∥∥∥∥ = 1 and

ν(α) :=

∥∥∥∥∥H
(
x

y

)∥∥∥∥∥
2

=
(√

1− α2 + αµ
)2

+ α2 = 1 + 2αµ
√

1− α2 + α2µ2, (6)

so that the maximum of ν(α) over α ∈ [0, 1] is equal to ‖H‖2. A computation yields

dν(α)

dα
=

2µ√
1− α2

(
1− 2α2 + αµ

√
1− α2

)
.

Setting the derivative to zero and abbreviating β := α2 gives

β2 − β +
1

4 + µ2
= 0

with positive solution

β =
1

2

1 +
1√

1 + 4
µ2

 ∈ (0, 1)

for nontrivial N . That proves the lemma.

The lemma removes the first two assumptions in (2). In practical applications those are usually satisfied, so

the advantage is that they do not have to be verified. That proves the following.

Theorem 1.3. Let n,m and G ∈Mn(R) with the splitting as in (1) be given. With the splitting D = Dd+Df

into diagonal and off-diagonal part assume

‖D−1d (Df − CA−1B)‖ < 1. (7)

Then G is invertible and

‖G−1‖ ≤ max

{
‖A−1‖,

‖D−1d ‖
1− ‖D−1d (Df − CA−1B)‖

}
ψ(A−1B) ψ(CA−1) (8)

using ψ(·) as in (5) in Lemma 1.2.

For a matrix G arising in linearized Galerkin equations the norm ‖(D − CA−1B)−1‖ of the inverse of the

Schur complement is often dominated by ‖A−1‖. That is because of the increasing diagonal elements Dd

of the lower right part of G, implying that ‖D−1d ‖ is equal to the reciprocal of the left upper element

of Dd and ‖D−1d (Df − CA−1B)−1‖ to become small. In that case the bound (8) reduces to ‖G−1‖ ≤
‖A−1‖ ψ(A−1B) ψ(CA−1). It can be adapted to other norms following the lines of the proof of Lemma 1.2.
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2. Computational improvement and an infinite dimensional example. For both the original

bound (3) and the new bound (8) the main computational effort is to estimate ‖D−1d (Df−CA−1B)‖ requiring

O((n−m)2m) operations. It often suffices to use ‖N‖ ≤
√
‖N‖1‖N‖∞ =: π(N) and the crude estimate

‖D−1d (Df − CA−1B)‖ ≤ π(D−1d Df ) + π(D−1d C)π(A−1B) =: γ. (9)

That avoids the product of large matrices and to compute the `2-norm of large matrices, thus reducing the

total computational cost to O((n−m)m2) operations. For instance, in Example 3 in [4] with n = 10, 000 and

k = 0.9 the bound (9) is successful in the sense that max
(
‖A−1‖, ‖D

−1
d ‖

1−γ

)
= ‖A−1‖ for dimension m ≥ 13

of the upper left block A. The additional computational cost for (9) is marginal, so in any case it is worth

to try. If successful, then the computational cost for dimension n = 10, 000 reduces from 8 minutes to less

than 2 seconds on a standard laptop.

In order to compute rigorous bounds, an upper bound for the `2 norm of a matrix C ∈Mn(R) is necessary.

An obvious possibility is to use ‖C‖2 ≤
√
‖C‖1‖C‖∞. Denoting the spectral radius of a matrix by %(·),

better bounds are obtained by ‖C‖22 ≤ ‖|C|‖22 = %(|C|T |C|) and Collatz’ bound [1]

%(|C|T |C|) ≤ max
i

(|C|T (|C|x))i
xi

,

which is true for any positive vector x. Then a few power iterations on x yield an accurate upper bound for

‖|C|‖2 in some O(n2) operations. More sophisticated methods for bounding ‖C‖2 can be found in [6].

A practical consideration, in particular for so-called verification methods [4, 5], is that the true value µ = ‖N‖
is usually not available. However, ν(N) in (6) is increasing with µ and implies

‖N‖ ≤ µ ⇒ ‖H‖ = ‖H−1‖ ≤
√

1 + 2αµ
√

1− α2 + α2µ2 . (10)

For example, π(N) can be used for an upper bound µ of ‖N‖. Applying this method to (8) to bound ψ(N)

for N ∈ {A−1B,CA−1} using ‖N‖ ≤ π(N) entirely avoids the computation of the `2-norm of large matrices.

To that end we show how to compute an upper bound of ‖G−1‖ for the third example in [4] for infinite

dimension. The matrix G is parameterized by some k ∈ (0, 5, 1) with elements Gij = k|i−j| for i 6= j and

(1, . . . , n) on the diagonal. As before m denotes the size of the upper left block A.

We first show how to estimate γ in (9) for arbitrarily large n. Define

P = D−1d Df ⇒ Pij :=

0 if i = j

k|i−j|/(i+m) otherwise
.

Then for every fixed s ∈ {1, . . . , n−m}

n−m∑
j=1

Psj =

s−1∑
j=1

ks−j/(s+m) +

n−m∑
j=s+1

kj−s/(s+m) < 2

∞∑
j=1

kj/(1 +m) =
2k

(1− k)(m+ 1)

and

n−m∑
i=1

Pis =

s−1∑
i=1

ks−i/(i+m) +

n−m∑
i=s+1

ki−s/(i+m) < 2

∞∑
i=1

ki/(1 +m) =
2k

(1− k)(m+ 1)

proves

‖D−1d Df‖ ≤
√
‖D−1d Df‖1‖D−1d Df‖∞ <

2k

(1− k)(m+ 1)
. (11)
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That estimate is valid for any dimension n > m. For Q = D−1d C we have Qij := k|m+i−j|/(m + i), so that

for every fixed s ∈ {1, . . . , n−m}

m∑
j=1

Qsj ≤
s−1∑
j=1

km+1−j/(m+ 1) <
k

(1− k)(m+ 1)
,

and for every fixed s ∈ {1, . . . ,m}

n−m∑
i=1

Qis =

n−m∑
i=1

km+i−s/(m+ i) <
k

(1− k)(m+ 1)
.

It follows

‖D−1d C‖ < k

(1− k)(m+ 1)
. (12)

In order to estimate ‖A−1B‖ we split B = [S T ] into blocks S ∈ Mm,q and T ∈ Mm,n−m−q and 1 ≤ q <

n−m. Then Bij := km−i+j implies Tij := kq+m−i+j and

‖T‖ ≤

√√√√√( m∑
i=1

kq+m−i+1

)n−m−q∑
j=1

kq+m−1+j

 <
kq+1

1− k
,

so that

‖A−1B‖ ≤ ‖A−1S‖+ ‖A−1T‖ < ‖A−1S‖+
kq+1‖A−1‖

1− k
. (13)

Summarizing and using (11), (12), and (13), (9) becomes

‖D−1d (Df − CA−1B)‖ < 2k

(1− k)(m+ 1)
+

k

(1− k)(m+ 1)

(
‖A−1S‖+

kq+1‖A−1‖
1− k

)
=: δ .

Note that only “small” matrices are involved in the computation of δ. For given k, we choose m and q large

enough to ensure max
(
‖A−1‖, ‖D

−1
d ‖

1−δ

)
= ‖A−1‖. Then it is true for the infinite dimensional matrix G as

well. The computational effort is O(max(m2q,m3))

Note that the bound is very crude with much room for improvement. Nevertheless, k = 0.9, m = 25 and

q = 35 ensures max
(
‖A−1‖, ‖D

−1
d ‖

1−δ

)
= ‖A−1‖ for infinite n with marginal computational effort.

In our example, symmetry implies ‖A−1B‖ = ‖CA−1‖, so that inserting the above quantities proves the

bounds displayed in Table 2.1 for arbitrarily large dimension n.

Table 2.1

Bounds of ‖G−1‖ infinite dimensional G with k = 0.9 and choices of m and q.

m / q 30/50 30/100 50/100 100/100 200/100

‖G−1‖ ≤ 3.07 2.75 2.61 2.50 2.45

Numerical evidence suggests that the true norm does not exceed 2.39. The total computing time for infinite

dimensional G with m = 200 and q = 100 is less than 0.09 seconds on a laptop.
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3. Comparison of the original and new bound. In [3] the bounds on ‖G−1‖ are tested by means

of three typical application examples. The first example is a tridiagonal matrix G with all elements equal to

2 on the first subdiagonal, all elements equal to 3 on the first superdiagonal, and (1, . . . , n) on the diagonal.

Therefore, with increasing dimension n ≥ 21, neither ϕ(CA−1) nor ϕ(A−1B) change. Since the maximum

in (4) is equal to ‖A−1‖, the original bound and the new bound using (4) and (5) do not change for any

n ≥ 21, i.e., they are valid for the infinite dimensional case. Computed bounds for different size m of the

left upper block are displayed in Table 3.1. Computational evidence suggests that ‖G−1‖ does not exceed

3.12 for infinite dimension.

Table 3.1

Bounds of ‖G−1‖ infinite dimensional G in Example 1 [4] and choices of m.

m 20 50 100 200

original bound 3.84 3.36 3.25 3.19

new bound 3.45 3.25 3.18 3.15

In the second example in [3] the upper left 5 × 5 matrix in G is replaced by some random positive matrix.

Since the lower (n−5)×(n−5) block in G is still tridiagonal, again the original and new bound do not change

for any dimension n ≥ 21. An example for the original, the new bound and for ‖G−1‖ is 1.909, 1.648, 1.449.

The third example in [3] was already treated in the previous section. For k close to 1 the bounds (3) and (8)

are getting weak. For different values of k and dimension n the results are displayed in Table 3.2. For the

true value of ‖G−1‖ verified bounds were computed using verification methods, so that the displayed digits

in the last column are correct.

Table 3.2

Bounds of ‖G−1‖ using dimension m = 20 of the upper left block A for different parameters k and dimensions n of G.

k n original bound new bound ‖G−1‖
0.9 50 3.7548 2.9231 2.3882

100 3.7566 2.9237 2.3882

1000 3.7566 2.9237 2.3882

0.95 50 11.5604 4.8093 2.9483

100 12.1180 4.8644 2.9483

1000 12.1214 4.8647 2.9483

0.96 50 32.2895 6.1486 3.1352

100 39.9103 6.3328 3.1352

1000 40.0604 6.3359 3.1352

0.97 50 ∞ 9.0043 3.3798

100 ∞ 9.7451 3.3803

1000 ∞ 9.7816 3.3803

We see not much dependency on the dimension of the original and the new bound, and practically no

dependency of ‖G−1‖. With k getting closer to the upper limit 1 there is more improvement by the new

bound, but naturally the bounds become also weaker compared to ‖G−1‖. For k ≥ 0.97 the original bound

fails because the assumptions ‖CA−1‖ < 1 and ‖A−1B‖ < 1 are not satisfied.
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