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IEEE-754 precision-p base-β arithmetic implemented in binary

SIEGFRIED M. RUMP, Institute for Reliable Computing, Hamburg University of Technology,
and Visiting Professor at Waseda University, Faculty of Science and Engineering

We show how an IEEE-754 conformant precision-p base-β arithmetic can be implemented based on some
binary floating-point and/or integer arithmetic. This includes the four basic operations and square root
subject to the five IEEE-754 rounding modes, namely the nearest roundings with roundTiesToEven and
roundTiesToAway, the directed roundings downwards and upwards, as well as rounding towards zero. Ex-
ceptional values like∞ of NaN are covered according to the IEEE-754 arithmetic standard.

The results of the precision-p base-β operations are computed using some underlying precision-q binary
arithmetic. We distinguish two cases. When using a precision-q binary integer arithmetic, the base-β pre-
cision p is limited for all operations by β2p ≤ 2q , whereas using a precision-q binary floating-point arith-
metic imposes stronger limits on the base-β precision, namely β2p ≤ 2q for addition and multiplication,
β2p ≤ 2q−1 for division and β2p ≤ 2q−3 for the square root. Those limitations cannot be improved.

The algorithms are implemented in a Matlab/Octave flbeta-toolbox with the choice of using uint64 or
binary64 as underlying arithmetic. The former allows larger precisions, the latter is advantageous for the
square root, whereas computing times are similar. The flbeta-toolbox offers precision-p base-β scalar, vector
and matrix operations including sparse matrices as well as corresponding interval operations. The base β
can be chosen in the range β ∈ [2, 64]. The flbeta-toolbox will be part of Version 13 of INTLAB [Rump 1999],
the Matlab/Octave toolbox for reliable computing.

Categories and Subject Descriptors: G.1 [Numerical Algorithms]: Numerical Algorithms

General Terms: Computer arithmetic, precision-p base-β IEEE-754 arithmetic, interval arithmetic, Matlab

Additional Key Words and Phrases: Floating-point arithmetic, precision-p, base-β, IEEE-754, double round-
ing, interval arithmetic, INTLAB

1. OVERVIEW
Suppose a binary integer or floating-point arithmetic following the IEEE-754 standard
with precision q is available. This note aims to emulate an IEEE-754 precision-p base-
β arithmetic for β ≥ 2 with specifiable exponent range (Emin, Emax). The arithmetic
covers the four basic operations and the square root including rounding to nearest in
roundTiesToEven and roundTiesToAway, directed roundings, rounding towards zero,
exceptions and gradual underflow, i.e., subnormal numbers.

All results in the precision-p base-β arithmetic shall be IEEE-754 conformant in-
cluding overflow, underflow and exceptional values such as∞ and NaN.

Previous work includes flap [Stewart 2009], a Matlab toolbox for decimal arithmetic
with rounding to nearest. According to Pete Stewart [Stewart 2014] he tested his tool-
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box thoroughly, however, without any claim of rigor. Indeed, at least for precision larger
than 8 decimals, examples of incorrect rounding can be found1.

There are several publications on the emulation of a lower precision binary arith-
metic in binary with correct rounding, for example [Moler 2019; Higham and Pranesh
2019; Flegar et al. 2019; Fasi and Mikaitis 2020; Meurant 2020]. Much more power-
ful is the MPFR library [1] implementing a multiple precision binary arithmetic with
correct rounding.

The emulation of a lower precision in the same base β with correct rounding accord-
ing to IEEE-754 is discussed in [Rump 2017]. As an example for binary arithmetic,
the fl-toolbox emulating precision-p in binary64 (double precision) for p ≤ 26 is imple-
mented in INTLAB [Rump 1999], the Matlab/Octave toolbox for reliable computing.

A base-β arithmetic for β 6= 2 is not easily available. Therefore we describe in the
present paper the emulation of a precision-p and general base-β arithmetic in binary
arithmetic, for example in binary64. A main problem is that, for example, a correct
result x :=

√
a is approximated by some α computed in binary arithmetic, but the

precision-p base-β rounding of x and α need not to coincide. That effect [Muller et al.
2018] is called “double rounding”, see Section 5. Double rounding cannot occur for
β = 2 and large enough working precision, i.e., simulating a lower precision binary
arithmetic in binary [Roux 2014; Rump 2017]. For odd base the situation is more in-
volved, see Section 3.1.

We store precision-p base-β numbers as a pair (m, e) of binary64 numbers comprising
signed mantissa and exponent. For internal computations we use a q-bit binary arith-
metic with the choice of uint64 or binary64. Since the square of a mantissa should be
effectively computable without error, that naturally limits the precision p by β2p ≤ 2q.
No matter which format is used for the underlying arithmetic, always q ≤ 64 so that
the mantissa of precision-p base-β numbers can be stored in 32 bits, i.e., in both in-
ternal formats without error. Only internal operations are performed in binary64 or
uint64, the pairs (m, e) are stored in binary64.

When using binary64 for the underlying arithmetic, then rounding to nearest in
roundTiesToEven is involved, and the possibility of double roundings reduces the max-
imal precision of base-β numbers by β2p ≤ 2q = 253 for addition, subtraction and mul-
tiplication, by β2p ≤ 2q−1 = 252 for division, and by β2p ≤ 2q−3 = 250 for the square
root. As we will see, those limits cannot be improved.

The underlying format uint64 offers a larger precision for base-β numbers, namely
β2p ≤ 264 suffices for all five operations. However, special care for the square root
is necessary because it is not available in uint64. There is not much difference in
computing time between binary64 and uint64 as underlying format, see Section 8.

All algorithms are implemented in the Matlab/Octave flbeta-toolbox with the choice
of using uint64 or binary64 as underlying format. The former allows larger precisions,
the latter is advantageous for the square root. The toolbox offers precision-p base-β
scalar, vector and matrix operations including sparse matrices as well as a precision-p
base-β interval arithmetic. The base β can be chosen in the range β ∈ [2, 64], where
the limit β ≤ 64 is due to the limited number of characters for output. The flbeta-
toolbox will be part of Version 13 of INTLAB [Rump 1999], the Matlab/Octave toolbox
for reliable computing.

One of my motivations for writing this paper and the flbeta-toolbox is to have a
versatile and easy-to-handle tool for testing hypotheses. For example, let fl(·) be the
rounding into some precision-p base-β arithmetic, and set t̃ := fl(t) for t ∈ R. Then

1For example, define x = 1017 + d · 109 for 0 ≤ d ≤ 28448869 and e = 5 · 108 − 1. Then x + e rounded to
nearest in 9 decimal digits precision equals x, but flap yields x+ 109, the successor of x. Note that all x and
e are exactly representable in 9 decimal digits
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the relative rounding error unit is u := 1
2β

1−p, and the error according to the first and
second standard model is defined byE1(t) := |t−t̃|/|t| andE2(t) := |t−t̃|/|t̃|, respectively
[Higham 2002]. In [Jeannerod and Rump 2017] we proved that for a precision-p base-
β number x the maximum errors of t :=

√
x according to the standard models are

E1(t) = 1 − 1/
√

1 + 2u and E2(t) =
√

1 + 2u − 1, respectively, that both bounds are
sharp and are achieved if, and only if, x = (1 + 2u)β2e with e ∈ Z. As an example,
executable INTLAB-code to verify this for precision-6 base-5 arithmetic is

p = 6; beta = 5; u = beta^(1-p)/2; flbetainit(p,beta,100);
x = flbetasequence(1,beta^2); s = sqrt(double(x)); S = double(sqrt(x));
E1 = abs((S-s)./s); E2 = abs((S-s)./S);
[ max(E1) max(E2) ; 1-1/sqrt(1+2*u) sqrt(1+2*u)-1 ]

After initialization the vector x comprises all precision-p base-β numbers in the inter-
val [1, β2], the next statements are standard Matlab code. The output is

ans =
1.0e-03 *
0.159961610237117 0.159987202047573
0.159961610237236 0.159987202047684

with results coinciding up to rounding errors of the binary64 square roots. It is
straightforward to compute the maximum error for different roundings.

The note is organized as follows. After introducing notations and definitions, the
rationale of our approach and the arithmetical operations are presented in Section 3
together with proofs of correctness. In Sections 4 and 5 implementation details for the
internal uint64 and binary64 computations are given, and the maximum precision p
for an emulated base-β arithmetic is derived together with proof of optimality. Follow-
ing a final normalization of the computed result and the conversion from binary64 into
precision-p base-β arithmetic is briefly discussed. The note finishes with some compu-
tational results and comparison with other packages.

2. NOTATION
Let 1 ≤ p ∈ N and a pair E := (Emin, Emax) with Emin, Emax ∈ Z and Emin ≤ 0 ≤ Emax

be given. Denote by2

Fp,β,E := {mβe : m, e ∈ Z, |m| < βp, Emin ≤ e ≤ Emax} (1)

a set of precision-p base-β floating-point numbers, and set

Fp,β,E := Fp,β,E ∪ {±∞} and F∗p,β,E := Fp,β,E ∪ {NaN}. (2)

For example, Fp,β,E with E := (0, 0) is the set of integers being less than βp in absolute
value.

We will use an internal representation according to Table I. The internal compu-
tations in the underlying q-bit arithmetic use binary64 or unsigned integers uint64,
where in the latter case we take care that in all computations the mantissa of interme-
diate results is nonnegative. Mantissas and exponents assume always integer values
and are stored in binary64. That requires the technical assumption

2(Emax − Emin + p) < 253, (3)

2For the sake of better exposition of the following results and proofs we choose an integer mantissa because
directed rounding is natural to understand and rounding to nearest follows by the “0.5”-rule. It is equivalent
to the often used “m1.m2 . . .mp” format by shifting the exponents by p− 1.
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Table I. Representation of precision-p base-β numbers mβe.

Quantity Condition on m Condition on e

normalized number βp−1 ≤ |m| < βp Emin ≤ e ≤ Emax

denormalized number 1 ≤ |m| < βp−1 e = Emin

realmax βp − 1 e = Emax

realmin βp−1 e = Emin

subrealmin 1 e = Emin

±0 ±0

±∞ ±∞

NaN NaN

which means that exponents are limited by Emax − Emin . 1015.
The exceptional cases ±0,±∞ and NaN are represented by m according to Table I

without condition on e, otherwise always βp−1 ≤ |m| < βp for normalized and 1 ≤ |m| <
βp−1 for denormalized numbers.

The arithmetic operations shall follow the IEEE-754 floating-point arithmetic stan-
dard [IEEE 1987; 2008; 2019]. The set of nonzero floating-point numbers with |m| <
βp−1 and e = Emin represents the underflow range. Exceptional values like ±∞ and
NaN are defined and treated as in IEEE-754. Note that always Fp,β,E = −Fp,β,E . For
example, in the exceptional case p = 1, β = 2 the set F1,2,E consists only of powers of 2,
namely F1,2,E = {±2e : Emin ≤ e ≤ Emax}∪ {±0,±∞}, and there is no underflow range.

Very thorough and readable introductions to all aspects of floating-point arithmetic
are [Muller et al. 2018] or [Brent and Zimmermann 2010].

The largest normalized, smallest normalized and smallest denormalized positive
floating-point numbers realmax, realmin and subrealmin, respectively, in F are de-
fined according to Table I. Hence

0 6= f ∈ F normalized ⇔ |f | ≥ realmin .

We consider the five rounding functions

fl%: [−R,R]→ F with R := realmax and % ∈ {�E ,�A,∇,∆,3} (4)

according to (5) (see [Brent and Zimmermann 2010, Section 3.1.9], [IEEE 2019]):

�E to nearest |fl�E
(x)− x| = min{|f − x|: f ∈ F}, rounding ties to even

�A to nearest |fl�A
(x)− x| = min{|f − x|: f ∈ F}, rounding ties to away

∇ downwards fl∇(x) := max{f ∈ F: f ≤ x}
∆ upwards fl∆(x) := min{f ∈ F: x ≤ f}
3 towards zero fl3(x) := sign(x) · fl∇(|x|).

(5)
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For real numbers outside the representable range, i.e., x ∈ R\[−R,R] roundings are
defined by

�E(x) =


sign(x) · realmax if |x| < (βp − 1

2 )βEmax

sign(x) · realmax if |x| = (βp − 1
2 )βEmax and β is odd

sign(x) · ∞ otherwise

�A(x) =

 sign(x) · realmax if |x| < (βp − 1
2 )βEmax

sign(x) · ∞ otherwise.

(6)

The definitions for % ∈ {∇,∆} are as in (5), and �(x) = sign(x) · realmax for x ∈
R\[−R,R], i.e., no operation may cause overflow in rounding towards zero.

The definition of roundTiesToEven for even base β is clear because the mantissa
of exactly one of the neighbors of the midpoint of two adjacent precision-p base-β is
even3. For odd base β, however, the precision-4 base-3 numbers 11123 and 11203 are
adjacent numbers but both are even in base 3. We follow the suggestion in [Brent and
Zimmermann 2010] to require that in m · βe the whole significand m interpreted as an
integer in the interval [−βp+1, βp−1] should be even. In our example, the first number
is 41 in decimal, the second 42 is even and wins.

Roundings respect the order, i.e., are monotonic in the sense that

x, y ∈ R, x ≤ y ⇒ fl%(x) ≤ fl%(y) for % ∈ {�E ,�A,∇,∆,3}. (7)

We also use flZ
% :R → Z, the rounding into Z according to the rounding mode %. For

% ∈ {∇,∆,3} this corresponds in Matlab/Octave to floor, ceil and fix, for % = �A it
corresponds to round. For % = �E there used to be no immediate Matlab statement,
but from Version 2022a Matlab’s function round allows several “tiebreaker” options
including ties to even.

3. THE UNDERLYING ARITHMETIC
The precision-p base-β arithmetic will be emulated by some underlying machine arith-
metic A covering the nonnegative integers in [0, β2p), and allowing addition, subtrac-
tion, multiplication and division by 2.

For the remaining of this section we fix the precision p, the base β and the exponent
range [Emin, Emax] and write shortly F and F for Fp,β,E and Fp,β,E , respectively.

3.1. Computing a proxy result using the underlying arithmetic A
Let x denote the true real result of an operation. The problem of “double rounding”
is avoided by computing some intermediate result x′ such that the precision-p base-β
rounded results of x and x′ coincide. That is similar to ordinary division in IEEE-754
where the true result is replaced by some approximation with finite bit representation.
If x′ is computed using a precision-q base-β arithmetic, then for even base β double
rounding cannot occur for large enough q, however, for odd base β double rounding
may occur for any q > p [Rump 2017]. Thus we need some method to represent and
compute the intermediate result x′.

In our approach, the intermediate result x′ is, up to scaling by a power of β, equal
to A/B for computable integers A,B. In some sense that is a base-free representation.
The scaling is chosen such that the correctly rounded integer division A/B is equal to

3An exception is F1,2,E comprising only powers of 2, so that the mantissa of a nonzero number always equals
1. In that case we follow the “0.5”-rule so that, for example, 6 is rounded into 8, or 12 into 16.
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the desired precision-p base-β rounded result (see Subsection 5.1). In the following we
sketch that process.

For given 0 6= x ∈ R a pair (M ′, e′) representing fl%(x) according to Table I is com-
puted in three basic steps. We assume that special cases like ±∞, NaN and alike are
treated separately. The first and main step is as follows.

First step.
Define a proxy (µ, e) := P(x) such that x′ := µ · βe satisfies fl%(x′) = fl%(x).

The proxy is not unique, only the property is important. More precisely, let a, b ∈ Fp,β,E
with a, b 6= 0 be given, i.e., a = maβ

ea and b = mbβ
eb with (ma, ea) and (mb, eb) according

to Table I. Then A,B ∈ A are computed such that µ := A/B has the desired property.
Care is necessary that all operations for computing A and B are effectively computable
in the underlying arithmetic in A.

For addition, subtraction and multiplication, B is some power of β, so that µ is a
scaled integer. For division and square root, both A and B are some integers such
that µ := A/B has the desired property. In all cases µ is a real number satisfying
fl%(µ · βe) = fl%(x).

Second step.
Calculate M := flZ

%(µ) satisfying fl%(x) = Mβe.

The mantissa M is correct for infinite exponent range, however, (M, e) may not satisfy
the representation specified in Table I. Basically, M = A/B where care is necessary
thatM is computed correctly according to the rounding mode %. In particular, in uint64
results larger than % := 264 − 1 are always rounded into %.

Third step.
The pair (M, e) is normalized into (M ′, e′) := N (M, e) as described in Section 6 with
the property that M ′βe

′
is the correctly rounded result fl%(x) = M ′βe

′
= Mβe and

satisfies the representation according to Table I including exceptional cases.

After that final step we arrive at the desired representation.
A pair (µ, e) := P(x) according to Table II is called a proxy of 0 6= x ∈ R. The

proxy is a relation, not necessarily a function, it states properties of µ ∈ R, e ∈ Z. In
the first two cases (µ, e) is the unique pair satisfying x = µβe and the representation
stated in Table II. In the third case, any pair (µ, e) with the stated properties satisfies
|µ|βe ∈ I :=

(
0, 1

2β
Emin

)
and µx > 0, so that fl%(x) = fl%(µβe) for all |x| ∈ I and all

roundings % ∈ {�E ,�A,∇,∆,3}. That allows some freedom to choose any µ with |µ| in
the open interval (0, 1

2 ).

Table II. Proxy of 0 6= x ∈ R as a pair P(x) = (µ, e).

condition on x property of µ property of e

βp−1+Emin ≤ |x| βp−1 ≤ |µ| < βp Emin ≤ e
1
2
βEmin ≤ |x| < βp−1+Emin 1

2
≤ |µ| < βp−1 e = Emin

0 < |x| < 1
2
βEmin |µ| ∈

(
0, 1

2

)
, µx > 0 e = Emin

For the remaining of Section 3 we assume a = maβ
ea and b = mbβ

eb to be given s.t.

(ma, ea) and (mb, eb) are according to Table I (8)

and satisfy

a, b ∈ Fp,β,E and a, b 6= 0. (9)
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Therefore, in particular 1 ≤ |ma|, |mb| < βp and Emin ≤ ea, eb ≤ Emax. If a pair a, b ∈ F∗
does not meet (9), the precision-p base-β result is computed by some case distinctions.

Let an operation ◦ ∈ {+,−,×, /,
√
·}, a rounding % ∈ {�E ,�A,∇,∆,3} and a, b

according to (8) and (9) be given. Next we show how to compute the integer triple
(A,B, e) using the underlying arithmetic A such that a ◦ b = µ · βe for µ := A/B and
◦ ∈ {+,−,×, /}, and

√
a =

√
µ · βe for µ := A and ◦ =

√
·. Moreover, the following

properties will hold true with one exception for (16):

A,B, e are effectively computable using the given operations in A, (10)

all case distinctions are effectively executable, (11)

(µ, e) satisfies the representation in Table II, (12)

fl%(a ◦ b) = fl%(µ · βe) for ◦ ∈ {+,−,×, /}, and (13)

fl%(
√
a) = fl%(µ · βe), (14)

the quantity A is a positive integer in the range [1, β2p), (15)

the quantity B is a positive integer in the range [1, β2p−1], (16)

the quantity e is an integer satisfying |e| < 253. (17)

By “effectively computable” we mean that only the required operations in A are used.
The mentioned exception for (16) is base β = 2, underlying arithmetic uint64, precision
p = 32 and one particular case of multiplication. In that, and only that case B = β2p =
264 may happen which is not in uint64. However, in Section 4 we will show how to
resolve that.

Concerning (13), we show in fact that a ◦ b = A/B · βe for ◦ ∈ {+,−,×, /} except for
results a ◦ b in the denormalized range.

The problem to compute M = flZ
%(µ), where µ = A/B for ◦ ∈ {+,−,×, /} and µ =

√
A

for positive integers A,B in the interval (0, β2p) depends on the underlying arithmetic
used to compute (µ, e), and on the rounding mode. We discuss in Sections 4 and 5
two possibilities to do that, namely uint64 and binary64, both with pros and cons.
Note that in any case the mantissa is in the interval (−βp, βp) ⊆ (−232, 232) and may
be stored in binary64. Thus, using uint64 or binary64 as the underlying arithmetic
does not affect the storage scheme of a precision-p base-β number. Only for (ma, ea) +
(mb, eb) care is necessary when computing C := βea−ebma + mb because the type cast
uint64(mb) produces 0 for negative mb. Then, set B := uint64(abs(mb)) and use C =
βea−ebma +B for positive b, and by βea−ebma −B for negative b.

Recall that the exponent range Emin, Emax is stored in binary64 numbers thus allow-
ing for an exponent range limited by (3), i.e., Emax − Emin . 1015.

3.2. Logarithm to base β
At certain places we need e := blogβ(M)c for an integer M ∈ [1, β2p). In principle, e is
effectively computable by storing the powers of β in an array and comparisons using a
binary search. When using uint64 as the integer precision-q binary arithmetic, another
possibility is

betapowers = uint64(beta).ˆuint64(0:2*p-1);

[˜,e] = max( fliplr(x(:) >= betapowers) , [] , 2 );

e = reshape( length(betapowers)-e , size(x) ); % 2p - e

which is working for arrays x as well. If there is a binary floating-point format with
division according to IEEE-754 and with enough bits to store the integers in the inter-
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val [1, β2p), then it suffices to compute blogβ(M)c = blog2(M)/ log2(β)c in floating-point
using the function log2, the latter just extracting the mantissa bits. Then only one
rounding error can occur, in the division, and the result is correct because βe is a
floating-point number and there cannot be another floating-point number between the
true and the computed result, regardless of the rounding mode.

3.3. Addition and subtraction
Since Fp,β,E = −Fp,β,E , it suffices to treat addition. Let x := a+ b and note that a, b 6= 0
by assumption (9). After some case distinctions and using the notation (8) we may
assume without loss of generality a > 0 , a ≥ |b| and x 6= 0, so that ea ≥ eb and x > 0. To
satisfy that, the operands a and b are possibly interchanged and the signs are changed.
This has to be taken into account for directed roundings using ∇(−x) = −∆(x).

First, assume ea > eb + p. Then

|b| = |mb|βeb ≤ (βp − 1)βeb ≤ (βp − 1)βea−p−1 < βea−1 ≤ 1

2
βea .

Hence, fl�E
(a + b) = fl�A

(a + b) = a. For the other rounding modes it follows that the
result is either a itself or one of its neighbors, and that is easily computed based on
some case distinctions on the sign of b and on the rounding mode. Note that ea > eb + p
implies that a is normalized.

Second, assume ea ≤ eb + p and define C := βea−ebma + mb ∈ N so that x = Cβeb .
Using ea − eb ≥ 0 and x > 0 it follows

1 ≤ C ≤ βea−eb(βp − 1) + βp − 1 < β2p (18)

so that C is a positive integer in the interval [1, β2p) and is effectively computable. For
eC := blogβ(C)c, which is also effectively computable, it follows 0 ≤ eC ≤ 2p − 1. Set
k := eC − p+ 1 and define the triple (A,B, e) by

(A,B, e) :=


(
C , βk , k + eb

)
if k ≥ 0 and k + eb ≥ Emin(

Cβ−k , 1 , k + eb
)

if k < 0 and k + eb ≥ Emin(
Cβeb−Emin , 1 , Emin

)
if k + eb < Emin.

(19)

In order to verify that the powers of β in (19) are effectively computable, we use 0 ≤
eC ≤ 2p−1 and k = eC−p+1 in the first two cases, and in the third case 0 ≤ eb−Emin <
−k = p− 1− eC ≤ p− 1, so that only powers β` with 0 ≤ ` ≤ p are used.

A straightforward computation confirms a+ b = µ ·βe for µ := A/B in all three cases.
In the first case 0 ≤ k ≤ p, so that B satisfies (16) in all three cases of (19). In the first
and second case

βp−1 = βeC−k ≤ Cβ−k < βeC+1−k = βp, (20)

and in the third case eC − p+ eb = k + eb − 1 ≤ Emin − 2 together with eb ≥ Emin and

1 ≤ Cβeb−Emin ≤ Cβp−eC−2 < βeC+1βp−eC−2 = βp−1, (21)

so that, together with (18), A satisfies (15) in all three cases of (19). In the first two
cases (20) and in the third case (21) prove that (µ, e) satisfies the representation in
Table II. Finally note that (3) verifies that all integer computations in (19) concerning
the exponent e are effectively computable, and that (17) is satisfied.

3.4. Multiplication
By assumption (9) we may assume without loss of generality a, b > 0, so that x := ab >
0. In case of sign changes and directed rounding, ∇(−x) = −∆(x) may be used.
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We use the notation (8) and denote µ′ := mamb and ec := ea + eb. Hence x = µ′βec

and Table I implies 1 ≤ µ′ < β2p. Thus, according to Subsection 3.2, e′ := blogβ(µ′)c is
effectively computable and 0 ≤ e′ ≤ 2p − 1. Abbreviate k := e′ − p + 1 and define the
triple (A,B, e) by

(A,B, e) :=



(
mamb , β

k , k + ec
)

if k ≥ 0, k + ec ≥ Emin(
mambβ

−k , 1 , k + ec
)

if k < 0, k + ec ≥ Emin(
mamb , β

Emin−ec , Emin

)
if k ≥ 0, Emin − p ≤ k + ec < Emin(

mambβ
−k , β−k+Emin−ec , Emin

)
if k < 0, Emin − p ≤ k + ec < Emin

(1 , 4 , Emin) if k + ec < Emin − p.

(22)
Suppose k < 0. If a is normalized, then βp−1 ≤ ma and mb = µ′/ma < βe

′+1−(p−1) =
βk+1 ≤ 1 implies mb = 0, a contradiction. Applying the same argument to b it follows
that both a and b must be denormalized if k < 0, so that

k < 0 ⇒ ma,mb < βp−1, ea = eb = Emin and 1 ≤ µ′ < β2p−2. (23)

In the second and fourth case, k < 0 implies A ∈ Z and

1 ≤ mambβ
−k < βe

′+1+p−1−e′ = βp.

Hence 1 ≤ mamb < β2p in all five cases of (22), so that A satisfies (15) in all five cases.
In the first case 0 ≤ k = e′ − p+ 1 ≤ p. and in the third case

0 ≤ k < Emin − ec ≤ k + p = e′ + 1 ≤ 2p. (24)

If Emin − ec < k + p or e′ < 2p − 1, then B = βEmin−ec ≤ β2p−1 and (16) is satisfied. If
Emin − ec = k + p = e′ + 1 and e′ = 2p − 1, then k = p and Emin − ec = 2p. That is the
exception to (16) mentioned in Section 3.1. In that case

1 ≤ mamb = A ≤ (βp − 1)2 < β2p − 1 and B = β2p. (25)

Note that 264 is not in uint64, and in case β2p = 264 the uint64 computation of β2p

results in 264 − 1. That special case (25) will be addressed separately in Section 4.
In the fourth case

0 = −k + k < −k + Emin − ec ≤ p, (26)

and therefore B satisfies (16) in all five cases but the exception (25). All quantities
A,B, e are effectively computable, and obviously x = A/B · βe in the first four cases.
Define µ := A/B and recall βe

′ ≤ µ′ = mamb < βe
′+1. In the first two cases of (22),

βp−1 = βe
′−(e′−p+1) = βe

′−k ≤ µ < βe
′+1−k = βp

shows that the pair (µ, e) satisfies the representation in Table II. Furthermore, k+ec−
Emin ≤ −1 together with

0 < µ = mambβ
ec−Emin < βe

′+1+ec−Emin = βp+k+ec−Emin ≤ βp−1

proves this is also true in the third and fourth case. In the fifth case,

0 < x = mambβ
ec < βe

′+1+ec = βk+ec+p ≤ βEmin−1 ≤ 1

2
βEmin

and e = Emin imply µ = β−ex ∈ (0, 1
2 ) and µx > 0. Thus, (µ, e) is according to the repre-

sentation in Table II. By (3) all integer computations in (22) concerning the exponent
e satisfy (17).
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Concerning the powers of β in (22), we use 0 ≤ e′ ≤ 2p − 1 to see −p + 1 ≤ k =
e′−p+1 ≤ p in the first two cases, (24) in the third and (26) fourth case, so that subject
to the exception (25) only powers β` with 0 ≤ ` ≤ 2p− 1 are used.

3.5. Division
By assumption (9), we may assume without loss of generality a, b > 0, so that x := ab >
0. In case of sign changes and directed rounding, ∇(−x) = −∆(x) may be used.

We use the notation (8) and define µ′ := ma/mb, and we set ea := blogβ(ma)c and
eb := blogβ(mb)c. Then

βea−eb−1 < µ′ < βea−eb+1 (27)

and therefore blogβ(µ′)c ∈ ea − eb + α, α ∈ {−1, 0}. Note that

blogβ(µ′)c = ea − eb ⇔ ma/mb ≥ βea−eb ⇔ ma ≥ βea−ebmb ⇔ βeb−eama ≥ mb

and define

e′ :=


ea − eb if ea − eb ≥ 0 and ma ≥ βea−ebmb

ea − eb if ea − eb < 0 and βeb−eama ≥ mb

ea − eb − 1 otherwise.

(28)

Now |ea − eb| ≤ p − 1 implies that both products in the first two cases are integers in
[1, β2p−1), so that e′ = blogβ(µ′)c is effectively computable. Moreover, 0 ≤ ea, eb ≤ p − 1
yields

−p ≤ e′ ≤ p− 1. (29)

Denote ec := ea − eb so that x = a/b = µ′βec . Abbreviate k := e′ − p+ 1 and define

(A,B, e) :=


(
β−kma , mb , k + ec

)
if k + ec ≥ Emin(

β−kma , β
−k−ec+Eminmb , Emin

)
if Emin − p ≤ k + ec < Emin.

(1 , 4 , Emin) if k + ec < Emin − p.
(30)

Then (29) gives

0 ≤ −k = p− 1− e′ ≤ 2p− 1, (31)

thus β−k ∈ Z ∩ [1, β2p−1] and

1 ≤ β−kma = βp−1−e′ma

mb
mb < βp−1−e′+e′+1+p = β2p

show that A satisfies (15) in all cases of (30). In the second case of (30),

Emin − p ≤ k + ec ≤ Emin − 1 ⇒ 1 ≤ −k − ec + Emin ≤ p, (32)

and that proves B satisfies (16) in all cases.
Defining µ := A/B, a straightforward computation yields x := a/b = µ ·βe in the first

two cases of (30). All quantities A,B, e are effectively computable. Next we show that
(µ, e) with µ := A/B satisfies the specification in Table II. In the first case, βe

′ ≤ µ′ =

ma/mb = βkµ < βe
′+1 gives

βp−1 = β−k+e′ ≤ µ < β−k+e′+1 = βp,

and in the second case −p ≤ k + ec − Emin ≤ −1 and µ = µ′βec−Emin yield

β−1 ≤ βk+p−1+ec−Emin = βe
′+ec−Emin ≤ µ < βe

′+1+ec−Emin = βk+p+ec−Emin ≤ βp−1.
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That means, due to e = Emin, that x belongs to the second or third case of Table II, and
the specification is satisfied because x = µ · βe. In the third case of (30), k + ec + p ≤
Emin − 1 implies

0 < x =
ma

mb
βec < βe

′+1+ec = βk+p+ec ≤ βEmin−1 ≤ 1

2
βEmin ,

so that e = Emin yields µ = β−ex ∈ (0, 1
2 ) and µx > 0. Thus, again (µ, e) is according to

the representation in Table II. Finally, by (3) all integer computations concerning the
exponent e meet (17).

Concerning the powers of β in (30), we use (31) in the first, and 0 < −k−ec+Emin ≤ p
in the second case, so that only powers β` with 0 ≤ ` ≤ 2p− 1 are used.

3.6. Square root
Let x :=

√
a for positive a. We use the notation (8) and define µ′ :=

√
ma, so that

x = µ′βea/2. According to Subsection 3.2, e′ := blogβ(ma)c is effectively computable and

0 ≤ e′ ≤ p− 1 and 1 ≤ β−e
′
ma < β. (33)

Define the pair (A, e) by

(A, e) :=



(
β2p−2−e′ma ,

2−2p+ea+e′

2

)
if 2 | (ea + e′), 1− 2p+ ea + e′ ≥ 2Emin(

β2p−1−e′ma ,
1−2p+ea+e′

2

)
if 2 - (ea + e′), 1− 2p+ ea + e′ ≥ 2Emin(

βea−2Eminma , Emin

)
if 1− 2p+ ea + e′ < 2Emin

(34)

Setting µ :=
√
A, a straightforward computation yields x :=

√
a = µ · βe. The factors of

ma in the first two cases are integers because 2p− 2− e′ ≥ p− 1 ≥ 0, and

β2p−2 ≤ β2p−2−e′ma < β2p−1−e′ma < β2p

shows (15) in the first two cases. In the third case,

0 ≤ −Emin ≤ ea − 2Emin ≤ 2p− 1− e′ ≤ 2p− 1 (35)

shows that the factor of ma is an integer, and

βea−2Eminma < βea−2Emin+e′+1 < β2p

proves that A satisfies (15) in the third and therefore in all cases. Moreover, the quan-
tities e′ and A are effectively computable. In the first two cases, using (33),

βp−1 = β
2p−2

2 ≤ β
2p−2

2 (β−e
′
ma)

1
2 ≤
√
A ≤ β

2p−1
2 (β−e

′
ma)

1
2 < β

2p−1
2

√
β = βp.

In the third case, the condition implies ea− 2Emin + e′+ 1 ≤ 2p− 1, so that, again using
(33),

0 <
√
A < β

ea−2Emin+e′+1

2 ≤ βp− 1
2 .

Since e = Emin in that case, the pair (µ, e) satisfies the second or third line of the spec-
ification in Table II. Finally, by (3) all integer computations concerning the exponent e
satisfy (17). In particular, division by 2 occurs only for even numerator.

Concerning the powers of β in (34), we use 0 ≤ e′ ≤ p− 1 to see p− 1 ≤ 2p− 2− e′ <
2p − 1 − e′ ≤ 2p − 1 in the first two, and (35) in the third case, so that only powers β`
with 0 ≤ ` ≤ 2p− 1 are used.
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4. IMPLEMENTATION USING UINT64

For integers A,B computed by the methods of the previous sections we show how to
compute the correctly rounded image ofA/B and

√
A. Note that in Matlab the rounding

does not affect the result of an integer operation, i.e., for uint64 variables A,B with real
quotient q and m ≤ q < m+ 1 for m ∈ N, the Matlab statement Q = A/B gives

Q =

m if q < m+ 0.5

m+ 1 otherwise

independent of the rounding mode4. The result of a division by zero is 264 − 1 if the
numerator is nonzero, otherwise the result is zero.

Our general assumption for the implementation using uint64 is

βp ≤ 232 for ◦ ∈ {+,−,×, /,
√
·}, (36)

so that the positive integers A,B in the interval (0, β2p) are representable in uint64;
the exception (25) will be addressed separately. We first treat the four basic operations,
and after that the square root. Then

R = rem(A, B)

assures5 that Q = (A-R)/B is an integer and computed in uint64 without error. It fol-
lows A = BQ + R. We show that M = flZ

%(µ) = flZ
%(A/B) for the rounding modes in (5)

and ◦ ∈ {+,−,×, /} is, using the operations in uint64, correctly computed according to

% = �A M = A/B

% = �E M =



Q if 2R < B

Q + 1 if 2R > B

Q if R = B/2 and 2 ∗ (Q/2) = Q

Q + 1 otherwise

% ∈ {∇, �} M = Q

% = ∆ M =

 Q + 1 if R > 0

Q otherwise

(37)

Assume that we are not in the exceptional case (25), so that B ≤ β2p−1 by (16).
Since Q and R are computed without error, the computed value for M is correct for
% ∈ {�A,∇, �,∆}. For % = �E we note that 2R < 2B ≤ β2p implies that 2R is com-
puted without error as well and the first two case distinctions for �E are effectively
computable. Furthermore we use the trick that if neither of the first two cases of �E
applies, then 2R = B follows, B must be even and therefore R = B/2. Thus, the com-
puted value of M is correct for all five roundings % ∈ {�A,�E ,∇, �,∆}.

Next, consider the exceptional case (25) where we have to treat the case β2p = 264.
Then 1 ≤ A < 264 − 1, and B = 264 is not in uint64 but stored6 as B’ := 264 − 1.
That means that B is replaced by B’ in the case distinctions in (37). The remainder

4As noted by the referee, Matlab’s function idivide offers rounding modes fix, round, floor and ceil.
However, compared to the built-in integer division those are up to three times slower.
5Note that rem(A,B) denotes the nonnegative remainder of the integer division A/B.
6The result of an uint64 operation is always in [0, 264−1]; if the true result exceeds that range, it is rounded
into the corresponding boundary value.
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R = rem(A,B’) = rem(A,B) = A does not change, and Q = (A-R)/B = (A-R)/B’ = 0.
Furthermore, 1 ≤ A < 264 − 1 implies that A/B = A/B’, so that the computed result is
correct for % ∈ {�A,∇, �,∆}.

For % = �E the comparison 2R < B changes into 2R < B’. Now R = A and

2R < B′ ⇔ 2A < 264 − 1 ⇔ A ≤ 263 − 1

imply that Q = 0 is correct in the first case. Furthermore, with operations in uint64,

2R > B′ ⇔ 2A > 264 − 1

is not possible in uint64 because 264 − 1 is the maximal integer in uint64. Next, in
uint64 division B’/2 = 263, so that

R = B′/2 ⇔ A = 263

and Q = 2*(Q/2) = 0 imply that the result M = 0 in rounding ties to even is correct.
Recall that the second case 2R > B is not possible for computation in uint64. Thus, if
neither of the first three cases in the case distinction for �E holds true, then A > 263

and the rounded result M = 1 is correct.
For the square root we have to compute b

√
Ac for the given uint64 integer A with

1 ≤ A < β2p. Consider the Matlab code

a = double(A);
s = sqrt(a);
S = uint64(fix(s));

The first statement may cause a conversion error because of the 53-bit precision in
binary64, but in the last statement the type cast by uint64 does not change the result
because s ≤ βp ≤ 232. Hence, S = fix(s). We will show

S− 1 ≤ b
√
Ac ≤ S. (38)

The standard error analysis for binary64 with u = 2−53 denoting the relative rounding
error unit yields

A(1− u) ≤ a ≤ A(1 + u) and s/(1 + u) ≤
√
a ≤ s/(1− u).

Suppose m2 ≤ A < (m + 1)2 for an integer m in [1, βp). Note that m is exactly repre-
sentable in binary64. Then b

√
Ac = m and βp ≤ 232 give

S = fix(s) ≤ s ≤ (1 + u)
√
a ≤
√
A(1 + u)3/2 < (m+ 1)(1 + u)3/2 < b

√
Ac+ 2

and show the left inequality in (38). Conversely, first suppose A = m2. Then

|
√
a−m| = |a−A|

√
a+
√
A
≤ uA√

A(
√

1− u + 1)
< um

shows that s = sqrt(a) = sqrt(double(m2)) = m =
√
A if m =

√
A is not a power of

2, and otherwise that is trivially true. Since m =
√
a is in binary64, it follows s =

√
A

and S = b
√
Ac if A = m2. It remains the case m2 < A < (m + 1)2. Then double(A) ≥

double(m2) yields

s = sqrt(A) ≥ sqrt(double(m2)) = m,

and therefore S = fix(s) ≥ m = b
√
Ac. That proves the right inequality in (38). An

example with equality on the left in (38) is m = 67108865 and A = m2 − 1, so that
b
√
Ac = m− 1, but S = m.
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It is clear from the proof that rarely b
√
Ac = S − 1. Now A ≤ β2p − 1 and S ≤

b
√
β2p − 1c < βp imply that S2 > A is effectively decidable. By setting R := S − 1

if S2 > A and R := S otherwise, we obtain the true downward rounded square root
R := b

√
Ac of A.

The rounded image M = flZ
%(µ) = flZ

%(
√
A) is computed using uint64 arithmetic

according to

% ∈ {∇, �} M = R

% ∈ {�A,�E} M =

 R if A− R ≤ R2

R + 1 otherwise

% = ∆ M =

 R if A = R2

R + 1 otherwise

(39)

The rationale behind that is as follows. Since always A 6= (R + 1
2 )2, no care about ties

is necessary.7 Therefore, in rounding to nearest, the result is R if

A < (R+
1

2
)2 ⇔ A ≤ R2 +R ⇔ A−R ≤ R2

with the latter being effectively decidable. Since R2 ≤ A, the condition A = R2 is
effectively decidable as well. The correctness of (39) for the other rounding modes is
clear, and that finishes the part how to compute the correctly rounded result in uint64.

When emulating precision-p base-β arithmetic in uint64, the maximal precision p =
b32/ log2(β)c for base β is given in Table III.

Table III. Maximal precision p for emulating base-β arithmetic in uint64.

base β 2 3 4 5 6 7 8 9 10 16 32 64
max p 32 20 16 13 12 11 10 10 9 8 6 5

5. IMPLEMENTATION USING BINARY64

In order to emulate the precision-p base-β arithmetic in a precision-q binary floating-
point arithmetic, we need stronger assumptions on the precision p, namely

β2p ≤ 2q if ◦ ∈ {+,−,×}

β2p ≤ 2q−1 if ◦ = /

β2p ≤ 2q−3 if ◦ =
√
·

(40)

Later we will show that the restrictions in (40) on p cannot be improved. When using
binary64 we have q = 53.

In addition to (4) and following, we denote by flZ
% rounding into Z, by fl(p)

% rounding
into precision-p base-β, and by fl(2)

% rounding into the precision-q binary floating-point
arithmetic, all following the rounding mode %. Since, according to (40), all integers
{m ∈ Z: |m| < β2p} are exactly representable in the precision-q binary floating-point

7That is not true without the assumption Emin ≤ 0 ≤ Emax as by a 3-digit decimal arithmetic and exponent
range (Emin, Emax) = (3, 5). Then x = 225 · 104 implies that

√
x = 15 · 102 is equal to the midpoint between

the denormalized numbers 1 · 103 and 2 · 103.
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arithmetic, we can compute for the four basic operations and the square root the non-
negative quantities A,B as described in the previous sections. Then (15) and (16) imply
that 1 ≤ A,B < β2p ≤ βq. Note that the special case (25) causes no problems because
(40) implies that B = β2p is representable in the precision of the binary floating-point
arithmetic.

Denote µ = A/B for ◦ ∈ {+,−,×, /} and µ =
√
A for ◦ =

√
·. Then µ ∈ M :=

(−β2p, β2p) because µ satisfies the representation in Table II. We will show that

flZ
%(µ) = flZ

%(fl(2)
% (µ)) for % ∈ {�E ,�A,∇,∆,3}, (41)

i.e., there is no harm by double rounding and fl(p)
% (x) = M · βe for the pair (M, e) as in

Subsection 3.1.

5.1. Double rounding in binary64

The set S% ⊂ R of “switching points”8 of a rounding % ∈ {�E ,�A,∇,∆,3} is defined to
be the set of real numbers s with the property that in every ε-neighborhood of s there
exist x1, x2 with fl%(x1) 6= fl%(x2). For rounding of µ ∈M into Z it follows S% =M∩Z for
a directed rounding % ∈ {∇,∆,3}, whereas S� = {m− 0.5 : m ∈M} ∪ {(βp − 0.5) · βE}
for a nearest rounding � ∈ {�E ,�A}. Any real µ not inM must be rounded to one of
its neighbors in M, and there is a relevant switching point s deciding that based on
the order relation between x and s.

We first consider directed roundings. Then the set of relevant switching points for
flZ
%(·) are the integers from −βp + 1 to βp − 1. An erroneous double rounding can only

occur if µ and fl(2)
% (µ) are on opposite sides of a switching point s including the case

that one of them is equal to s. But q ≥ p implies that all of them are representable in
precision-q binary, so this is not possible by the monotonicity of the rounding (7).

It remains to show that erroneous double rounding cannot occur for a nearest round-
ing. In that case the relevant set of switching points for flZ

�(·) with � ∈ {�E ,�A} are
the midpoints of adjacent integers from 0 to βp. By q ≥ p + 1 all of them are rep-
resentable in precision-q binary as well. Again, erroneous double rounding can only
occur if µ and fl(2)

� (µ) are on opposite sides of such a switching point.
Let s be the relevant switching point for µ for the rounding flZ

�(·) with � ∈ {�E ,�A}.
We first consider the four basic operations, that is the case µ = A/B with β2p ≤ 2q for
◦ ∈ {+,−,×} and β2p ≤ 2q−1 for division, respectively.

Since s is representable in precision-q binary and rounding is monotone, an erro-
neous double rounding can only occur if µ 6= s but fl(2)

� (µ) = s. The rounding in q-bit
binary and µ > 0 imply

|s− µ| = |fl(2)
� (µ)− µ| ≤ uµ

for the relative rounding error unit u := 2−q. Moreover, µ 6= s implies s−µ = s−A/B 6=
0 for A,B ∈ Z with 1 ≤ A,B < β2p and 0 < µ < βp. Since s is half-way between adjacent
integers, 2sB − 2A is a nonzero integer.

First, suppose that |2sB − 2A| ≥ 2. Then (40) yields

1

B
≤ |2sB − 2A|

2B
= |s− µ| ≤ uµ ≤ β−2pA

B
<

1

B
(42)

for ◦ ∈ {+,−,×, /}, a contradiction.

8called rounding boundary in [Brent and Zimmermann 2010]
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Second, suppose that |2sB − 2A| = 1. For division we use β2p ≤ 2q−1 and obtain
similarly to (42)

1

2B
=
|2sB − 2A|

2B
= |s− µ| ≤ uµ ≤ 1

2
β−2pA

B
<

1

2B
,

again a contradiction. It remains ◦ ∈ {+,−,×} provided that |2sB − 2A| = 1. We first
note that according to (19) and (22) the denominator B is always a power of β, say
B = βk, and 2s ∈ N and |2sB − 2A| = 1 imply that β is odd. Next we use the refined
error estimate [Sterbenz 1974; Knuth 1998]

|s− µ|
|µ|

≤ u
1 + u < u. (43)

If A ≤ 2q−1, then (43) implies with

1

2B
=
|2sB − 2A|

2B
= |s− µ| < uµ = 2−q

A

B
≤ 1

2B

a contradiction. Hence we may assume without loss of generality 2q−1 < A. The
rounded result s = fl(2)

� (µ) is half-way between adjacent integers v and v + 1, and
|2sB − 2A| = 1 together with s = v + 1

2 and B = βk being odd yields

2q−1 < A = sB ± 1

2
⇒ 2q−1 < sB.

Now s 6= µ and s = v + 1
2 not being power of 2 implies with

1

2B
= |s− µ| ≥ us =

2−qsB

B
>

1

2B

again a contradiction. That proves (41) for ◦ ∈ {+,−,×, /} for q satisfying (40).
Finally we consider the square root. In that case µ =

√
A with 1 ≤ A < β2p and β2p ≤

2q−3. As before an erroneous double rounding can only occur if µ 6= s but fl(2)
� (µ) = s. It

follows 4µ2 = 4A 6= 4s2, where 4s2 is an integer. Hence, abbreviating M = max(|µ|, |s|),

1 ≤ |4(s2 −A)| = 4|s+ µ||s− µ| < 8M |s− µ| (44)

using s 6= µ. Thus
1

8M
< |s− µ| ≤ uM = 2−qM ≤ 1

8
β−2pM,

and therefore M2 > β2p, a contradiction to M ≤ βp.
One may try to relax the condition on q in (40) for division into β2p ≤ 2q, and for the

square root into β2p ≤ 2q−2. From the proofs above it follows that the only exceptions
for that are |2sB − 2A| = 1 and |4(s2 − A)| = 1, respectively. As we will see in the next
subsection, these cases do indeed exist, so the conditions on q in (40) are optimal.

When emulating precision-p base-β arithmetic in IEEE-754 binary64 corresponding
to 53 mantissa bits, the precision p for addition, subtraction and multiplication must
satisfy β2p ≤ 253, for division β2p ≤ 252, and for the square root β2p ≤ 250. Although the
first condition is weaker, the maximal p is the same as for division. The corresponding
maximal values of p for different bases are given in Table IV. Compared to Table III
using uint64 as underlying arithmetic allows at least one more β-digit precision.
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Table IV. Maximal precision p for emulating base-β arithmetic in binary64.

base β 2 3 4 5 6 7 8 9 10 16 32 64
max p for +,−,×, / 26 16 13 11 10 9 8 8 7 6 5 4

max p for
√
· 25 15 12 10 9 8 8 7 7 6 5 4

5.2. Optimality of the choice of q
We will show that β2p ≤ 2q for division and β2p ≤ 2q−2 for the square root does not
suffice to avoid errors in the double rounding (41), i.e.,

flZ
�(µ) 6= flZ

�(fl(2)
� (µ))

may happen. First, consider β = 3 and p = 4 with β2p = 6561 ≤ 2q = 8192 for q = 13.
Define

A = 445510 = 20010000β and B = 6710 = 2111β .

Denote by flrb(·) rounding to nearest in precision r and base b. Then
flpβ(A/B) = flpβ(2110.111022001 . . .β) = 2110β = 6610,

and, for q = 2, p = 8,
flq2(A/B) = flq2(1000010.011111100001 . . .2) = 1000010.1000002 = 66.510 = 2110.1β , (45)

the midpoint between 2110β and 2111β . Hence roundTiesToAway in base β implies
flpβ(flq2(A/B)) = 2111β = 6710 in contrast to (45). For roundTiesToEven in precision
base β = 3 with p = 7 and q = 23, choosing

A = 434338210 = 22011200000000β and B = 211110 = 2220012β

produces
flpβ(A/B) = flpβ(2211012.111111022 . . .β) = 2211012β = 205710,

but
flq2(A/B) = 2057.510 = 2211012.111 . . .β ,

the midpoint between 2211012β and 2211020β . Hence rounding ties to even in base β
results in flpβ(flq2(A/B)) = 2211020β = 205810.

One might think that for even base β things are different because the midpoint
between adjacent base-β numbers is representable. That is not the case. Choose β = 6
and p = 4, so that q = 21. Then roundTiesToAway causes a double rounding error for

A = 138283210 = 45350000β and B = 108510 = 5005β ,

and in roundTiesToEven for
A = 130377610 = 43540000β and B = 102710 = 4431β

for rounding to even in base β.
Next we show that β2p ≤ 2q−2 for square root does not suffice to avoid errors in the

double rounding. Let p = 4 and β = 12, so that q = 31. Then A = 2073510 = BBBBβ
implies

flpβ(
√
A) = flpβ(BB.BABBBBBBBBBBB8049 . . .β) = BB.BBβ ,

but
flq2(
√
A) = flq2(1000111.11111111100011100011100010001 . . .2)

= 1000111.1111111110001110001110012

= BB.BB60000584160111A50B7A28 . . .β
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just above the midpoint between BB.BBβ and 100β . Thus flpβ(flq2(
√
A)) = 100β = 14410

instead of BB.BBβ due to a double rounding error both in roundTiesToEven and
roundTiesToAway.

6. FINAL NORMALIZATION IN BINARY
So far we showed how to compute a proxy (µ, e) = P(x) according to Table II. Let a
rounding % ∈ {�E ,�A,∇,∆,3} be given, and set M := flZ

%(µ). Note that 0 ≤ M ≤ βp.
Then fl%(x) = M · βe if fl%(x) is in Fp,β,E , i.e., is real and finite, but the representation
(M, e) may not be according to Table I. A final normalization N : Z2 → Z∗×Z is defined
by

N (M, e) :=



(M/β, e+ 1) if |M | = βp, e < Emax

(+∞, Emax) if M = βp, e ≥ Emax, % ∈ {�E ,�A,∆}
(βp − 1, Emax) if M = βp, e ≥ Emax, % ∈ {∇,3}
(−∞, Emax) if M = −βp, e ≥ Emax, % ∈ {�E ,�A,∇}
(−βp + 1, Emax) if M = −βp, e ≥ Emax, % ∈ {∆,3}
(M, e) otherwise.

(46)

Checking the individual cases verifies that the pair (M ′, e′) := N (M, e) is the correctly
rounded precision-p base-β result fl%(x) and satisfies the representation in Table I.

7. CONVERSION BETWEEN BINARY64 AND BASE β

We add some remarks on the conversion from binary64 into a precision-p base-β for-
mat. As has been noticed, the exponent range of the latter may be huge. Very large or
very small binary64 input may not be converted without error, so some care is neces-
sary to avoid overflow or underflow.

Let d be a positive binary64 number. Define

` :=


51 + dlog2(βp)e if d < 2−1023βp

−2 if d > 21022

0 otherwise
(47)

and set d′ := 2`d. In the first case,

d′ = 251+dlog2(βp)ed ≥ 251βp2−1074 = 2−1023βp,

so that in either case 2−1023βp ≤ d′ ≤ 21022. Setting e := blog2(d′)c it follows

2−1022 ≤ 1/d′ ≤ βp−1/d′ ≤ βp−1−e < βp/d′ ≤ 21023,

so that βp−1−e is a normalized floating-point number. Define m′ := d′βp−e−1. Then

βp−1 = m′βe/d′ ≤ m′ = d′βp−e−1 < βp,

and d′ = m′β1+e−p is a precision-p base-β representation for infinite exponent range. If
one of the first two cases in (47) applies, then set e′ := blog2 2−`m′c, note that 2−`m′ is
a normalized floating-point number, and set m := 2−`m′βp−e

′−1. Then βp−1 ≤ m < βp

and

d = 2−`d′ = 2−`m′β1−e−p = mβ2+e+e′−2p

is a valid precision-p base-β representation of d, still for infinite exponent range. Fi-
nally, that representation is adapted to Table I.
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8. SOME COMPARISON WITH OTHER PACKAGES
The arithmetic described in this note has been implemented in the flbeta-toolbox which
will be part of Version 13 of INTLAB [Rump 1999], the Matlab/Octave toolbox for re-
liable computing. We use Matlab Version 2023a under Windows 10 on a Laptop. The
data in the following tables V and VI show the time ratio against ordinary binary64
floating-point. We compare the flbeta-toolbox using uint64 and binary64 representa-
tion, the quarter precision Matlab package fp8 and half precision package vfp16 from
[Moler 2019], and flap from [Stewart 2009].

All packages but the last provide a correctly rounded result according to IEEE 754.
That is not true for the flap package, so that the comparison is not quite fair. In ad-
dition, the flbeta-toolbox allows for bases from 2 to 64, so that the approach is more
general than all other packages. In that sense the comparison is biased.

The tested operations displayed in Table V are a+ b, a× b, a/b and
√
a for scalar a, b.

We use β = 2 for the flbeta-toolbox; there is no difference in timing when using another
base β. As can be seen there is hardly a difference between uint64 and binary64 rep-
resentation for the flbeta-toolbox, and fp8 and vfp16 are generally faster than flbeta.
Note that fp8 does not provide a square root.

Table V. Time ratio to binary64 for a+ b, a ∗ b, a/b and
√
a and scalar a, b.

operation flbeta(uint64) flbeta(binary64) fp8 vfp16 flap
plus 78.7 75.1 40.0 60.0 28.5

mtimes 84.2 81.1 43.2 67.5 32.1
mrdivide 86.1 83.0 45.4 67.0 66.1

sqrt 48.9 48.4 - 46.9 22.2

Next we perform the same test for a being a 10× 10 matrix and scalar b and show the
results in Table VI. In addition to the previous operations we show the time ratio for
reading access a(index) and writing access into the array a. Again there is not much
difference between uint64 and binary64 representation for the flbeta-toolbox, but fp8
and vfp16 are mostly slower than flbeta.

Table VI. Time ratio to binary64 for a 10× 10 matrix a and scalar b.

operation flbeta(uint64) flbeta(binary64) fp8 vfp16 flap
plus 116.0 103.9 204.0 229.3 37.3

mtimes 101.5 98.4 143.8 236.7 39.2
mrdivide 103.8 98.8 141.7 227.1 77.3

sqrt 39.8 38.8 - 163.2 21.4
indexread 533.2 532.1 1038.0 1731.9 248.7

indexwrite 749.2 755.1 685.1 1102.2 262.7

There are three other packages, namely CPFloat [Fasi and Mikaitis 2020], chop
[Higham and Pranesh 2019] and floatp [Meurant 2020], all of them emulating bi-
nary floating-point arithmetic in different formats. The first two packages CPFloat
and chop provide a rounding from binary64 into the desired binary format. Arithmetic
expressions like a+ bc are evaluated as chop(a+chop(b*c)), and the result is correctly
rounded without double rounding [Roux 2014; Rump 2017] because the desired binary
precision does not exceed 26 bits.

The comparison with respect to CPFloat is biased because it could not be compiled
using OpenMP, so only one thread is used.
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Computations in CPFloat and chop are fast because there is no operator concept
implying severe interpretation overhead, only roundings have to be added. Therefore,
comparison with the other packages is not quite fair because no toolbox with operators
is provided. The third package floatp is a toolbox with operator overloading, however,
it seems not tuned for performance. In particular, division and square root is imple-
mented using a Newton iteration, therefore we did not include it in the previous tests.

The data up to now is particularly biased because our flbeta-toolbox, in contrast to all
others, emulates a general base-β arithmetic whereas other packages are restricted to
binary or decimal. In that sense comparing the other packages to INTLAB’s fl-toolbox
is more fair. The latter is based on [Rump 2017] where the emulation of a lower pre-
cision base-β arithmetic based on a given base-β arithmetic is shown. The fl-toolbox
implements the special case β = 2, i.e., simulation of binary in binary.

Given two matrices A,B, we show results for all packages including CPFloat, chop
and floatp for the matrix multiplication AB in the sense that all intermediate products
and sums are computed using the emulated arithmetic. In order to save roundings and
to reduce interpretation overhead [Rump 2012] we use outer products AB =

∑
A:kBk:

to compute AB. Outer products are used in flap and the toolboxes of INTLAB, and we
added the matrix multiplication to CPFloat, chop and fp8. For flbeta we emulated a
decimal arithmetic with maximal precision, i.e., p = 7 for binary64 underlying arith-
metic; the timing for uint64 is almost identical.

The packages CPFloat and chop provide the rounding of real numbers (vectors, ma-
trices) into the desired format. As has been mentioned before a statement like a + bc
has to be transformed, e.g., into chop(a+chop(b*c)). The other packages provide Mat-
lab classes so that a+b*c becomes an executable statement.

This degree of comfort is payed by a significant overhead for interpreting the user-
defined classes. To add a more fair comparison we wrote small Matlab toolboxes for
CPFloat and chop using classes and operator overloading. We show results for both the
original code and when using classes. Moreover, we add data on INTLAB’s fl-toolbox
emulating 26-bit precision binary arithmetic.

Table VII. Matrix multiplications A ·B for n× n matrices A,B, time in [sec].

n fl CPFloat(class) chop(class) flap flbeta fp8 vfp16 floatp
10 0.00069 0.00004(20) 0.00059(98) 0.0012 0.0090 0.0080 0.068 1.71
25 0.0013 0.00014(42) 0.0028(49) 0.0057 0.033 0.084 1.00 25.4
50 0.0034 0.00057(138) 0.012(21) 0.024 0.11 0.63 12.2

100 0.018 0.0034(73) 0.059(115) 0.14 0.59 4.9
200 0.089 0.030(103) 0.38(93) 1.15 3.83 39.1
500 3.6 0.66(1.77) 9.2(19.7) 16.9 65.0

1000 29 5.2(13.4) 75(153) 134

The timings are shown in Table VII, where places are left empty when large computing
times are to be expected. In order to save horizontal space, the timings for CPFloat and
chop without and with using classes (in parenthesis) are displayed in one column. The
interpretation is that the trailing digits are to be replaced by the digits in parenthesis
to obtain the timing for using classes. For example, the timing for n = 50 for the
original CPFloat without classes is 0.00057, the timing with classes is 0.00138 seconds.

According to the documentation, the newer CPFloat has the same functionality as
chop, but in our measurements it is about one order of magnitude faster. CPFloat is
also faster than our fl-toolbox.
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Both CPFloat and chop, also with toolbox, and flap are faster than flbeta, where fp8,
vfp16 and floatp are slower. However, the flbeta-toolbox addresses arbitrary bases β,
and that has a price.

We tested other combinations of precisions and bases, but encountered no surprises
concerning computing time. As the algorithms are the same for different combinations
of precision and bases, that comes as expected.

The flbeta-toolbox offers to use an arbitrary base β ≥ 2, provides correct rounding,
treatment of subnormal numbers and exceptions according to the IEEE754 standard.
Sparse data storage and an interval arithmetic with precision-p base-β bounds is in-
cluded as well. This makes the package well suited for experimenting in non-binary
bases with variable precision floating-point arithmetic in Matlab.
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S. Torres. 2018. Handbook of floating-point arithmetic. 2nd edition, Birkhäuser, Boston.
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