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Abstract There are simple algorithms to compute the predecessor, successor,
unit in the first place, unit in the last place etc. in binary arithmetic. In this
note equally simple algorithms for computing the unit in the first place and
the unit in the last place in precision-p base-β arithmetic with p ě 1 and
with β ě 2 are presented. The algorithms work in the underflow range, and
numbers close to overflow are treated by scaling. The algorithms use only the
basic operations with directed rounding. If the successor (or predecessor) of
a floating-point number is available, an algorithm in rounding to nearest is
presented as well.
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1 Notation and main result

Let FN denote the set of normalized precision-p base-β floating-point numbers

FN :“ t ˘mβe with βp´1 ď m ď βp ´ 1 and Emin ď e ď Emaxu, (1.1)

and denote by

FD :“ t ˘mβEmin with 1 ď m ă βp´1u (1.2)

the set of denormalized numbers. Then F :“ FN Y FD Y t0u is the set of all
precision-p base-β floating-point numbers.1 Set F˚ :“ FYt´8,8u and let an
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1 Note that our definition of Emin and Emax differs by p ´ 1 from that in [13,8].
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arithmetic on F˚ following the IEEE 754 standard [7,8] be given. That means
in particular that in RoundToNearest all floating-point operations have mini-
mal error, bounded by the relative rounding error unit u :“ 1

2β
1´p. Moreover,

different rounding modes are available, also with best possible result.

In [19] we introduced the “unit in the first place” (ufp) which is defined by

0 ‰ r P R ñ ufpprq :“ βtlogβ |r|u

and ufpp0q :“ 0. For all real r P R it is the value of the left-most nonzero digit2

in the base β-representation.

In contrast, the often used “unit in the last place” (ulp) depends on the
precision of the floating-point format in use. For a nonzero finite base-β string
it is the magnitude of its least significant digit, or in other words, the distance
between the floating point number and the next floating point number of
greater magnitude [6]3. There are several other definitions of the unit in the
last place, in particular for real r R F, cf. [12,13,2]. We use the definition
above, namely ulpprq “ βe for r P FN according to (1.1), ulpprq “ βEmin for
r P FD, and ulpp0q “ 0. All definitions have in common that they depend not
only on the basis β but also on the precision of the floating-point format in
use.

We invented the unit in the first place in [19] because it was very helpful
if not mandatory to formulate complicated proofs of the validity of our new
floating-point algorithms for accurate summation and dot products. We de-
veloped a small collection of rules using ufp, so that based on that no further
understanding of the many properties of the IEEE 754 floating-point arith-
metic was necessary to follow the proofs.

The main difference in the definition of ulp compared to ufp is to separate
the use of the basis and of the precision. First, ufp is defined for a general real
number, only depending on the basis β, and second precision-related results use
ufp and the relative rounding error unit, i.e., the precision p. That separation
was useful to formulate our proofs in [19] and following papers.

There are simple algorithms to compute the predecessor, successor, unit in
the first place, unit in the last place etc. in binary arithmetic [14,10,5,11,3,
13], but apparently no method is known to compute the unit in the first place
in a base-β arithmetic. Jean-Michel Muller [15] proposed a method based on
the results in [9], however, it needs up to log2pβq iterations. We are interested
in a flat, loop-free algorithm with few operations.

Recently we wrote a toolbox for an IEEE 754 precision-p base-β arithmetic
with specifiable exponent range[18] as part of INTLAB [16], the Matlab/Oc-
tave toolbox for reliable computing. As part of this we present in this note
a simple algorithm to compute the unit in the first place for a precision-p
base-β arithmetic with p ě 1 and β ě 2. The algorithm works correctly in
the underflow range, where numbers close to overflow are treated by scaling.

2 Using a finite representation if possible, i.e., avoiding infinitely many trailing β´1-digits.
3 Harrison notes this in [6], which is different from what is called “Harrison’s-ulp” [13,2]



Unit in the first place (ufp) in precision-p base-β 3

That algorithm requires a directed rounding, i.e., RoundToZero, RoundUp or
RoundDown; we could not construct a simple algorithm in RoundToNearest.

In addition, as a reply to suggestions by the referees, we present some
additional algorithms to compute ufp and ulp. Those require a specific directed
rounding mode and/or access to the predecessor/successor of a floating-point
number. Since these algorithms are pretty obvious and the proofs of correctness
are trivial, we banned them into the appendix.

We formulate our algorithm to compute the unit in the first place in the
rounding mode RoundToZero and call the corresponding mapping fl˛ : RÑ F.
It follows that the result of a floating-point operation with positive real result
x is maxtf P F : f ď xu, and that operations cannot cause overflow.

The predecessor and successor of x P R in F˚ is defined by

predpxq :“ maxtg P F˚ : g ă xu

succpxq :“ mintg P F˚ : x ă gu,

respectively. In precision-p base-β arithmetic we have

Emin ă k ď Emax ñ predpβkq “ p1´ β´pqβk (1.3)

0 ă f P FN and f ‰ ufppfq ñ predpfq “ f ´ β1´pufppfq (1.4)

0 ă f P FN ñ succpfq “ f ` β1´pufppfq (1.5)

Note that (1.5) includes the case p “ 1, β “ 2 for which F is the set of powers
of 2, i.e., f “ ufppfq for all f P F, and succpfq “ f `β1´pufppfq “ 2f . Among
the properties of ufp [19] is

0 ‰ f P F ñ ufppfq ď |f | ď βp1´ β´pq ¨ ufppfq. (1.6)

Next we present in Figure 1.1 our algorithm to compute ufppfq for f P F in
precision-p base-β arithmetic and RoundToZero or RoundDown. It is obvious
how to adapt the algorithm for RoundUp. We assume that subrealmin, the
smallest positive denormalized floating-point number equal to βEmin , is avail-
able. Overflow is easily avoided by proper scaling, but we omit that technical
detail. Note that in a practical implementation, the constants p1 and phi in
lines 2 and 3 of Algorithm ufp would be stored rather than calculated, and
the extra input parameters p and beta would be omitted.

Fig. 1.1: Algorithm ufp in RoundToZero or RoundDown

1 function S = ufp(f,p,beta) % precision-p, base-beta

2 p1 = 1 - subrealmin; % p1 = pred(1)

3 phi = beta^(p-1) + 1;

4 q = phi*abs(f); % result in the normalized range

5 S = q - p1*q; % S = ufp(f)

Theorem 1.1 Let S be the result of Algorithm ufp applied to f P F, where
Emin ď ´1 ă p ď Emax. Suppose that all operations are executed in precision-
p base-β floating-point arithmetic following the IEEE 754 standard with p ě 1
and β ě 2 in RoundToZero or RoundDown, and that |f | ă βEmax´p`1. Then
S is equal to ufppfq.
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Remark 1.1 The usual problems in the denormalized range are avoided be-
cause q P FN , so that the multiplication in line 5 are in the normalized range.
The result of the final subtraction may be in the denormalized range but is
error-free because of Sterbenz’ lemma [21].

Proof The result is correct for f “ 0, so henceforth we assume f ‰ 0. We first
verify that the used constants p1 and phi are in F. The rounding RoundToZero
or RoundDown implies that p1 in line 2 is the predecessor of 1, and (1.3) and
Emin ď ´1 yield p1 “ 1 ´ β´p. Moreover, ϕ P F follows by βp´1 ` 1 ď βp ď

βEmax . Note that this includes the case ϕ “ 2 for p “ 1.
The input f is used only in line 4, and since ufppfq “ ufpp|f |q we may

henceforth assume without loss of generality that f ą 0. The monotonicity of
the rounding, (1.6) and (1.5) imply

ϕf ď pβp´1 ` 1qβp1´ βpq ¨ ufppfq “ pβp ` β ´ 1´ β1´pq ¨ ufppfq

ă p1` β1´pqβpufppfq “ succpβpufppfqq,

so that the rounding mode implies q “ fl˛pϕfq ď βpufppfq. Therefore,

βp´1ufppfq ď ufppqq ď βpufppfq. (1.7)

Hence q is always in the normalized range FN and f ă βEmax´p`1 yields
ufppfq ď βEmax´p and q ď βpufppfq ď βEmax .

We distinguish two cases. First, assume ufppqq “ βpufppfq, which implies
that q “ βpufppfq is a power of β. Then q ě βpβEmin ą βEmin and (1.3) yield

r :“ fl˛pp1´ β
´pqqq “ predpqq “ p1´ β´pqq

and therefore S “ fl˛pq ´ rq “ fl˛pβ
´pqq “ fl˛pufppfqq “ ufppfq. According to

(1.7) it remains the second case

ufppqq “ ufppfl˛ppβ
p´1 ` 1qfqq “ βp´1ufppfq. (1.8)

Note that p “ 1 and β “ 2 belongs to the first case ufppqq “ βpufppfq. Next
βp´1f P FN and (1.5) give

q “ fl˛ppβ
p´1 ` 1qfq “ fl˛pp1` β

1´pqβp´1fq

ě fl˛pβ
p´1f ` β1´pufppβp´1fqq “ succpβp´1fq

ě succpβp´1ufppfqq “ succpufppqqq.

The monotonicity of the rounding, (1.6), q ą ufppqq and (1.4) yield

q “ fl˛pqq ą fl˛pp1´ β
´pqqq “: r

ě fl˛pq ´ β
1´pp1´ β´pqufppqqq ě fl˛pq ´ β

1´pufppqqq

“ predpqq,

and therefore r “ predpqq “ q´β1´pufppqq “ q´ufppfq. Hence S “ fl˛pq´rq “
fl˛pufppfqq “ ufppfq. The theorem is proved. [\



Unit in the first place (ufp) in precision-p base-β 5

Fig. 1.2: Algorithm ufp in executable INTLAB code

function S = ufp(f)

feature('setround',0) % rounding RoundToZero

p = flbetainit; % precision p

p1 = 1 - subrealmin('flbeta'); % predecessor of 1

phi = flbeta(1,p-1) + 1; % beta^(p-1) + 1

q = phi*abs(f); % result in the normalized range

S = q - p1*q; % ufp(f)

Algorithm ufp will part of the flbeta toolbox in INTLAB. Executable INT-
LAB code, which is almost identical to the one given in Figure 1.1, is shown
in Figure 1.2, Here flbeta is a user-defined data type, where the precision
p ě 1, the base β ě 2 as well as the exponent range pEmin, Emaxq can be
specified through initialization by flbetainit. As in every operator concept,
an operation is executed in flbeta-arithmetic if at least one of the operands
is of type flbeta. The flbeta toolbox respects the rounding mode; in line 2
it is switched to RoundToZero using the internal Matlab command feature.

The result of p = flbetainit as in line 3 without input and with one out-
put argument is the precision p in use. The constructor flbeta(m,e) generates
the flbeta constant mβe. Otherwise the code is self-explaining.

Finally we want to mention that the flbeta toolbox was very useful
for testing in different precisions p, different bases β and exponent ranges
Emin, Emax. Frankly speaking, we found Algorithm ufp experimentally when
playing around with different possibilities. However, we did not find a simple
algorithm in the nearest rounding RoundTiesToEven.

We close the main part of this note with some open problems. As has been
mentioned, we did not succeed to find a simple algorithm to compute ufp solely
in rounding to nearest. Here “simple” means few operations without loop.

Problem 1.1 Given a precision-p base-β arithmetic following IEEE 754, find
a simple algorithm to compute the unit in the first place (ufp) in rounding to
nearest.

The problem is solved [17] in binary for p ě 1.

Problem 1.2 Given a precision-p base-β arithmetic following IEEE 754, find
a simple algorithm to compute the unit in the last place (ulp) in rounding to
nearest.

Concerning units of a floating-point number, there is a third quantity of in-
terest, namely, the magnitude of the least nonzero digit in a finite base-β
representation. Historically [15], Shewchuk [20] uses this quantity implicitly
for defining his “nonoverlapping expansion”, with the notation ωpfq it ap-
pears in [4], and in [1] the notation ulspfq (unit in the least significant place)
is used. For example, in a precision-3 decimal arithmetic and f “ 42 we have
ufppfq “ 10, ulppfq “ 0.1 and ulspfq “ 1.
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Problem 1.3 Given a precision-p base-β arithmetic following IEEE 754, find
a simple algorithm to compute the unit in the least significant place (uls) in
any rounding mode.

2 Appendix

We add some more algorithms to compute ufp and ulp requiring specific round-
ing modes, namely RoundDown, RoundUp and/or RoundToNearest.

To compute ulppfq in RoundUp [or RoundDown] we can just follow the
definition ulppfq “ succp|f |q ´ |f | for nonzero f P F..

Fig. 2.1: Algorithm ulp in RoundUp

1 function S = ulp(f)

2 f = abs(f);

3 s = f + subrealmin; % succ(abs(f))

4 S = s - f; % S = ulp(f)

The result is correct in precision-p base-β floating-point arithmetic for any
nonzero floating-point number f with |f | ă pβp ´ 1qβEmax , i.e., with absolute
value not equal to the largest representable floating-point number realmax. If
there is a possibility to obtain the successor of a floating-point number, then
replacing line 3 by s = succ(f); produces correct code in any rounding mode
because the computation in line 4 is error-free.

In RoundDown or RoundToZero, a little more effort is necessary to com-
pute ulppfq. The algorithm in Figure 2.2 works for vector or matrix input as
well. That is, by the way, also true for the previous algorithms.

Fig. 2.2: Algorithm ulp in RoundDown or RoundToZero

1 function S = ulp(f,beta)

2 f = abs(f);

3 p = f - subrealmin; % pred(abs(f))

4 S = f - p; % S = ulp(f) if f is not power of beta

5 index = find( f+S == f ); % f is power of beta

6 if any(index(:)) % S = ulp(f)/beta

7 S(index) = S(index) * beta; % correct S

8 end

The computed S in line 4 is correct for positive f P F except powers of β in the
normalized range. Otherwise, S is corrected in lines 5-8. The result is correct
for nonzero f P F with |f | ă realmax.

Sometimes if-statements may cause quite some computational overhead.
The algorithm in Figure 2.3, working for nonzero f P F with |f | ă realmax,
closes that gap. If f is not a power of β, then f + S is the successor of f, so
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that d = 0 in line 5. Hence S is not changed in line 6. Otherwise, if f is a power
of β, then S = ulp(f)/beta and f + S is equal to f in floating-point in the
chosen rounding modes. Hence d = -S = -ulp(f)/beta, and the computed S

is corrected into ulppfq because d is a power of β and the computation in line
6 is error-free. However, the algorithm in Figure 2.3 is about twice as slow as
the previous one in Figure 2.2.

Fig. 2.3: Algorithm ulp in RoundDown or RoundToZero without if-statement

1 function S = ulp(f,beta)

2 f = abs(f);

3 p = f - subrealmin; % pred(abs(f))

4 S = f - p; % S = ulp(f) if f is not power of beta

5 d = ( ( f + S ) - f ) - S; % d=0 <=> f is not a power of beta

6 S = S - (beta-1)*d; % correction of S

Finally, if there is a possibility to obtain the successor of a floating-point
number, then ufp can be calculated in any rounding mode by the algorithm
in Table 2.4. The algorithm works, as for Theorem 1.1, correctly for nonzero
f P F satisfying |f | ă pβp ´ 1qβEmax´p`1 except that f must be nonzero.

Fig. 2.4: Algorithm ufp in any rounding mode if successor is available

1 function S = ufp(f,p)

2 f = abs(f)*beta^(p-1); % scaled f

3 s = succ(f);

4 S = s - f;

That means the posed Problem 1.1 to find a simple algorithm to compute the
unit in the first place in RoundToNearest is solved if such an algorithm for
the successor is available. In [17] we presented a simple algorithm for binary
arithemtic but only estimates for precision-p base-β.
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