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Abstract The numerical computation of the Euclidean norm of a vector is
perfectly well conditioned with favorite a priori error estimates. Recently there
is interest in computing a faithfully rounded approximation which means that
there is no other floating-point number between the computed and the true real
result. Hence the result is either the rounded to nearest result or its neighbor.

Previous publications guarantee a faithfully rounded result for large di-
mension, but not the rounded to nearest result. In this note we present several
new and fast algorithms producing a faithfully rounded result, as well as the
first algorithm to compute the rounded to nearest result. Executable MAT-
LAB codes are included. As a by product, a fast loop-free error-free vector
transformation is given. That transforms a vector such that the sum remains
unchanged but the condition number of the sum multiplies with the rounding
error unit.

Keywords Euclidean norm · rounding error · faithful rounding · error-free
transformation

Mathematics Subject Classification (2020) 65G99, 65G50

1 Notation and introduction

We assume a precision-p binary floating-point arithmetic with rounding to
nearest according to the IEEE 754 standard [10] to be given and denote the set
of floating-point numbers by F. Then F is symmetric, i.e., F = −F, and there
is a smallest and largest positive normalized floating-point number realmin
and realmax, respectively. We define P := [realmin, realmax] and call N :=
−P ∪ {0} ∪ P the normalized range.
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To be more precise, for “rounding to nearest” we assume RoundTiesToEven
which means that a real number being the midpoint of two adjacent floating-
point numbers is rounded to the one with even mantissa. Calling that rounding
function fl : R → F it follows that fl(a ◦ b) is the floating-point result of a ◦ b
for a, b ∈ F and ◦ ∈ {+,−,×, /}.

In the computation of the Euclidean norm of a vector intermediate results
may be outside N but the final result in N . That is taken care of by case
distinctions and normalization, see [3,1,20]. Henceforth, we assume throughout
this note without loss of generality that neither over- nor underflow occurs,
i.e., all intermediate results are in N .

For u := 2−p denoting the relative rounding error unit [7] the refined error
estimate [31,7,4,23]

x ∈ N : max{|x− f | : f ∈ F} ≤ u

1 + u
|x| (1)

holds true, and the same constant u
1+u bounds the relative error of every

floating-point operation.
Many of our results are also true for a precision-p floating-point arithmetic

with general base β and u = 1
2β

1−p. Since we target on MATLAB implemen-
tations, we restrict our attention to binary.

Throughout this note ‖ · ‖ denotes the Euclidean, i.e., `2-norm. The result
of a floating-point evaluation of an expression is denoted by float(·), where
parentheses are respected but otherwise any order of evaluation may be used.
Hence float(a ◦ b) = fl(a ◦ b) is the floating-point result of a ◦ b for a, b ∈ F
and ◦ ∈ {+,−,×, /}. For example, s := float(‖x‖) denotes a floating-point
approximation of the Euclidean norm of x ∈ Fn using any order of summation.
Standard error estimates [7] yield

|s− ‖x‖| ≤ γn+1‖x‖ where γk :=
ku

1− ku

provided that (n + 1)u < 1. In [11] we proved a refined estimate without
restriction on n.

Lemma 1 Let x ∈ Fn and s := float(
√∑n

i=1 x
2
i ) computed in any order.

Then
|s− ‖x‖| ≤

(n
2

+ 1
)

u‖x‖

is true without restriction on n ∈ N.

The bound is basically sharp, but practical experience and probabilistic ar-
guments [26,8,9] suggest that practically the relative error for the Euclidean
norm and for summation is hardly larger than

√
nu‖x‖.

Recently [6,20] there is interest in algorithms computing a faithful approx-
imation of the Euclidean norm. That means that there is no other floating-
point number between the computed and the true real result. Both are based
on error-free transformations and some kind of double-double arithmetic [2],
where the latter was already considered in [5]. The computed result is thus
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equal to the rounded to nearest result or to one of its neighbors. If the true
result is a floating-point number, that will be the result of the algorithms.

Both approaches [6,20] are devoted to the computation of the Euclidean
norm. In [17] we introduced a novel pair arithmetic cpair and prove sufficient
conditions that for a general arithmetic expression comprised of {+,−,×, /,√}
the result computed using cpair is faithfully rounded. As a by-product it in-
cludes the Euclidean norm. One difference to the well-known double-double
pair arithmetic [2], which is intrinsically used in [6,20], is that a final error-free
transformation is omitted. That speeds up the algorithms in cpair significantly.
While there is not much penalty in the accuracy of the computed result, it
bears the advantage that, in contrast to [2], the higher order part is equal
to the ordinary floating-point result. In that sense cpair is a floating-point
arithmetic together with an error term.

In this note we will give some new algorithms for the computation of a
faithfully rounding of the Euclidean norm as well as for the rounded to near-
est result. All algorithms are given in executable MATLAB code [21]. We
invest particular care in designing fast algorithms diminishing the interpre-
tation overhead. In particular, we avoid loops as they may slow down the
performance significantly.

This note is organized as follows. The next section recalls error-free trans-
formations and some improvements, and mainly error estimates to ensure a
faithfully rounded result. In Section 3 a vectorized error-free vector trans-
formation is given, we recall recent sharp error estimates on summation and
present the first two of our new algorithms to approximate ‖x‖. Those are
based on relative splittings and adopt methods presented in [25]. In the next
section another two new algorithms are presented using absolute splitting as
in [28,29], again with sufficient conditions on a faithfully rounded result. In
Section 5 an algorithm is presented computing the nearest approximation of
‖x‖ with proof of correctness. To our knowledge that is the first of its kind.
The generation of ill-conditioned test examples, i.e., floating-point vectors x
with ‖x‖ very close to a switching point is addressed in Section 6. The note is
closed with computational results on the computing time and the accuracy of
all algorithms and a conclusion.

2 Error-free transformations and previous algorithms

Since a long time it is known [22,13,5,14] that the sum and product of two
floating-point numbers can be expressed as the sum x+y of two floating-point
numbers, and that x and y can be computed using few pure floating-point
operations. It was used implicitly by Neumaier, who wrote the remarkable
paper [24] when he was a bachelor student, otherwise it was basically known
to experts. The methods received wide attention when I coined the term “error-
free transformations” in [25] with numerous papers following thereafter.

For this note we need only the error-free transformations for sum and
product; for details of other error-free transformations see e.g. [23]. Consider
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Fig. 1 Error-free sum

1 function [x,y] = TwoSum(a,b) function [x,y] = FastTwoSum(a,b)

2 x = a + b; x = a + b;

3 z = x - a; y = (a-x) + b;

4 y = ( a - (x-z) ) + (b-z);

We display all algorithms in executable MATLAB code; later some longer
algorithms appear so that we decided to add line numbers. The following is
true [22,25,23,18].

Lemma 2 Let a, b ∈ F be given and x, y be the result of Algorithm TwoSum

applied to a, b. Then

x+ y = a+ b and fl(x+ y) = x. (2)

If |a| ≥ |b|, then (2) is also true for the result of Algorithm FastTwoSum.

The assumptions for Algorithm FastTwoSum can be weakened [23,18], but we
do not need this here. One might use Algorithm FastTwoSum together with
an “if”-statement thereby reducing the number of operations from 6 to 3,
however, that is often slower [25] than applying Algorithm TwoSum.

The proof of correctness [23] relies on the fact that all operations from row
3 on are error-free, i.e., cannot cause a rounding error.

The key to the error-free transformation of multiplication is to split [5]
both factors into a sum of two floating-point numbers such that the product
of the addends does not cause a rounding error. The Algorithm Split for the
binary64 format can be implemented as follows.

Fig. 2 Error-free split of a floating-point number for 53-binary arithmetic

1 function [x,y] = Split(a)

2 y = ( pow2(27) + 1 ) * a;

3 x = y - ( y - a );

4 y = a - x;

In precision-p the factor in line 2 is to be replaced [5] by 2dp/2e + 1. For
various splitting methods and many details see [12]. For the calculation of the
Euclidean norm we need only squares, so we add a specialized method for that.

Since the input is split into two parts we use, for example, the notation Aa to
indicate that A+a = Aa in line 3, and similarly for Bb in Algorithm TwoProduct.

Lemma 3 Let a, b ∈ Fn be given and P, p ∈ Fn be the results of Algorithm
TwoProduct applied to a, b. Then

Pi + pi = ai · bi for all i ∈ {1, . . . , n}. (3)
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Fig. 3 Error-free product and square

1 function [P,p] = TwoProduct(Aa,Bb) function [P,p] = TwoSquare(Aa)

2 P = Aa.*Bb; P = sqr(Aa);

3 [A,a] = Split(Aa); [A,a] = Split(Aa);

4 [B,b] = Split(Bb); p = a.*a - ((P-A.*A)-2*a.*A);

5 p = a.*b - (((P-A.*B)-a.*B)-A.*b);

In binary arithmetic the results P, p ∈ Fn of Algorithm TwoSquare applied to
a ∈ Fn satisfy

Pi + pi = a2i for all i ∈ {1, . . . , n}. (4)

Furthermore, for both algorithms |pi| ≤ u|Pi| for all i ∈ {1, . . . , n}.

Proof The first result (3) is well-known [14,23], where the proof relies on the
fact all operations in lines 3 − 5 do not cause a rounding error. That proves
(4) as well because multiplication by 2 is error-free. The last estimate is a
well-known property [23] of Algorithm TwoProduct. ut

For given x ∈ Fn, previous approaches [6,20] borrow from the double-double
pair arithmetic [2] to calculate a pair (T, t) such that T + t is an accurate
approximation of the sum of squares

∑n
i=1 x

2
i . Another candidate for a pair

arithmetic is the cpair arithmetic [17]. Both are implemented as toolboxes dd
and cpair in INTLAB [27], the MATLAB toolbox for Reliable Computing.

In [6] TwoProduct is used to compute a pair approximation for x2i , in [20]
FMA instructions are used. While this is part of the new floating-point stan-
dard [10] and implemented on many computers, it is not available in MAT-
LAB1. Therefore some of our algorithms avoid that in this note.

Given (T, t) it remains to compute a good floating-point approximation of√
T + t. In [6] just sqrt(T) is used ignoring the lower order part t. In [20] the

algorithm of our cpair arithmetic [17] is used adapted to one output P + p
rather than the pair (P, p).

Fig. 4 Accurate square root of T + t for a given pair (T, t)
1 function res = AccSqrt(T,t)

2 P = sqrt(T);

3 [H,h] = TwoSquare(P);

4 r = ( T - H ) - h;

5 r = t + r;

6 p = r / (2*P);

7 res = P + p;

If (T, t) are such that the correction t is below the last bit of T , i.e., fl(T + t) =
T , then the result of AccSqrt is almost always equal to

√
T , at most one bit

apart. In [20, Theorem 3.6] the following error estimate is proved.

1 There is a simulation of FMA in MATLAB’s “Fixed-Point Designer”-toolbox, however,
until Version 2023a there is no access to the FMA instruction provided by many processors.
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Lemma 4 Let T, t ∈ F be such that fl(T + t) = T , and assume u ≤ 2−5. Let
P, p be the final values in Algorithm AccSqrt when applied to the pair [T, t].
Then

|P + p−
√
T + t| ≤ 25

8
u2
√
T + t.

The theorem estimates the error of P+p rather than that of fl(P+p), otherwise
the additional rounding error u would spoil the result.

Now we can display the Algorithms normG from [6] and normL from [20].
Recall that the latter used an FMA instruction to calculate P, p in line 2,
that is, they use P(i) = x(i).^2 and p(i) = FMA(x(i), x(i),−P (i)) inside
the loop. Since the FMA instruction is not available in MATLAB, we replaced
the computation in the loop by [P,p] = TwoSquare(x) splitting the whole
vector x without loop. In that respect later time comparisons may be more
fair.

Fig. 5 Algorithms by Graillat et al. [6] and Lefèvre et al. [20]

1 function res = normG(x) function res = normL(x)

2 S = 0; [P,p] = TwoSquare(x);

3 s = 0; [S,s] = TwoSum(P(1),P(2));

4 for i=1:length(x) for i=3:length(x)

5 [P,p] = TwoProduct(x(i),x(i)); [H,h] = TwoSum(S,P(i));

6 [H,h] = TwoSum(S,P); [S,s] = TwoSum(H,s+h);

7 c = s + p; end

8 d = h + c; sump = sum(p);

9 [S,s] = FastTwoSum(H,d); [H,h] = TwoSum(S,sump);

10 end [S,s] = FastTwoSum(H,s+h);

11 res = sqrt(S); res = AccSqrt(S,s);

The summation scheme in Algorithms normG and normL is slightly different,
but the main improvement is in the last line: Algorithm normG ignores the
lower order part, whereas normL uses our Algorithm AccSqrt in Figure 4 to
compute the square root approximation of the pair S + s. As we will see in
Section 7 that produces often a nearest rounding.

An alternative is to use the double-double and the cpair toolbox directly:

Fig. 6 Algorithms using double-double and cpair arithmetic

1 function res = normDD(x) function res = normCpair(x)

2 S = sum(dd(x).*x); S = sum(cpair(x).*x);

3 res = AccSqrt(S.hi,S.lo); res = AccSqrt(S.hi,S.lo);

The goal is to guarantee a faithfully rounded approximation to ‖x‖ or even the
rounded to nearest result. In [6] it is proved that, if computed in binary64,
the result is a faithfully rounded approximation to ‖x‖ if n < (24u + u2)−1,
corresponding to n . 3.7 ·1014. Our cpair arithmetic proves similar conditions
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for general arithmetic expressions. Applied to the Euclidean norm the the
result is faithful for n ≤ (βu)−

1
2 when using base-β arithmetic, and that

corresponds to n . 8.3 · 107 in binary64. In [20] we did not find an explicit
limit for n, but the error estimates suggest that it should be a little larger
than that for Algorithm normG.

In order to prove a faithful rounding for our algorithms to be presented we
use the following criterion [17, Lemma 5.3]. That is a specialized version; the
original allows for a much more general computer arithmetic.

Lemma 5 Let r, δ ∈ R and assume |δ| < u
2−u |r|. Then fl(r) is a faithful

rounding of r + δ.

In a typical application a pair (T, t) with r := T + t is an approximation to
some real quantity q. If |r− q| < u

2−u |r|, then fl(r) is a faithful rounding of q.
An application is the following criterion that fl(T + t) is a faithful rounding of
q :=

√
x.

Lemma 6 Let T, t ∈ F with T + t > 0 be given, and let 0 ≤ q ∈ R. Assume

|T + t− q2| ≤ αq2 (5)

for some α ∈ R with α < 1. Let r ∈ R be such that

|r −
√
T + t| ≤ β

√
T + t (6)

for some β < 1. Then

(1− β)
−1
(
β +

α

2(1− α)

)
<

u

2− u
(7)

implies that fl(r) is a faithful rounding of q.

Proof Note that

|
√
x−√y| = |x− y|√

x+
√
y

for positive x, y ∈ R. We show

|
√
T + t− q| ≤ α

2(1− α)

√
T + t. (8)

We distinguish two cases. First, suppose T + t ≤ q2. Then (5) gives

|
√
T + t− q| = |T + t− q2|√

T + t+ q
≤ αq2

2
√
T + t

≤ α

2(1− α)

√
T + t.

Second, suppose T + t > q2. Then using again q2 ≤ T+t
1−α and (5) give

|
√
T + t− q| ≤ αq2

2q
≤ α

2
√

1− α
√
T + t ≤ α

2(1− α)

√
T + t

and proves (8). Hence (6) yields

|r − q| ≤ |r −
√
T + t|+ |

√
T + t− q| ≤

(
β +

α

2(1− α)

)√
T + t,

and r ≥ (1− β)
√
T + t together with Lemma 5 implies the result. ut
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In our applications α is very small. A sufficient criterion that AccSqrt(T,t)

is a faithful rounding of
√
x follows.

Corollary 1 Let T, t ∈ F with fl(T + t) = T , assume u ≤ 2−8 and let res be
the result of Algorithm AccSqrt applied to [T, t]. If 0 ≤ x ∈ R satisfies

|T + t− x| ≤ 31

32
ux,

then res is a faithful rounding of
√
x.

Proof Let [P, p] be the final values in Algorithm AccSqrt when applied to
the pair [T, t], so that res = fl(P + p). Lemma 4 shows that (6) is true for
r := P + p and β := 25

8 u2. Moreover, (5) is true by assumption for α := 31
32u

and q :=
√
x. Hence (7) is true if, and only if,

d := (2− u)(2(1− α)β + α)− 2(1− α)(1− β)u < 0.

Using u ≤ 2−8 yields 64d = −4u + 862u2 − 775u3 ≤
(
−4 + 862 · 2−8

)
u < 0,

and Lemma 6 finishes the proof. ut

3 Faithfully rounding of ‖x‖ based on relative splitting of x

The Algorithms TwoProduct and TwoSquare as in Figure 3 apply to vector
input as well. As a consequence we obtain the following lemma.

Lemma 7 For a, b ∈ Fn the output [P, p] of Algorithm TwoProduct as in
Figure 3 applied to a, b satisfies

∑n
i=1 Pi + pi =

∑n
i=1 aibi, and the output

[P, p] of Algorithm TwoSquare applied to a satisfies
∑n
i=1 Pi + pi =

∑n
i=1 a

2
i .

Furthermore, Pi ≥ 0 and |pi| ≤ uPi for all i ∈ {1, . . . , n}.

Thus one way to approximate ‖x‖ is to compute vectors P, p ∈ Fn with P+p =
‖x‖2 and apply some accurate summation algorithm. Both [6] and [20] follow
that scheme. Note that the vectors P, p are computed based on a relative
splitting of x; later we will an absolute splitting.

In [25] efficient summation algorithms are developed based on TwoSum.
First, q = VecSum(p) transforms an input vector p into a vector q without
changing its sum S but with the property that q1...n−1 is small in absolute
value and qn = float(

∑n
i=1 pi). The error estimates in [25] imply that res =

float(
∑n
i=1 qi) is a very good approximation of the true sum S.

Before continuing, we need to estimate the error of ordinary floating-point
summation. To that end the traditional Wilkinson-type estimate γn−1 can be
used. However, new and optimal bounds are available. The following sharp
bound was shown in [16, Theorem 5].
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Lemma 8 For p ∈ Fn denote S = float(
∑n
i=1 pi) for summation in any order,

and denote by δi the errors in the n − 1 nodes of the evaluation tree. Hence∑n
i=1 pi = S +

∑n−1
i=1 δi. Suppose n ≤ 1 + 1

2u−1. Then

|S −
n∑
i=1

pi| ≤
n−1∑
i=1

|δi| ≤ ϕn−1
n∑
i=1

|pi| with ϕk :=
ku

1 + ku
, (9)

and that bound is sharp as for the input vector p = (1,u, . . . ,u)T .

The Algorithm VecSum is realized by a loop in [25]. In MATLAB we face some
interpretation overhead, so loops should be avoided where possible. That has
been done in TwoSquare, and next we give a new, loop-free version of VecSum,
see Figure 7.

Fig. 7 Error-free vector transformation

1 function p = VecSum(p) function [S,s] = FastVecSum(p)

2 n = length(p); n = length(p);

3 for i=2:n x = cumsum(p);

4 [p(i),p(i-1)] = TwoSum(p(i),p(i-1)); a = [ 0 ; x(1:n-1) ];

5 end z = x - a;

6 y = ( a - (x-z) ) + (p-z);

7 S = x(n);

8 s = y(2:n);

It is easily verified that Algorithms VecSum and FastVecSum produce identical
results. The error analysis follows by Lemma 8.

Lemma 9 For given p ∈ Fn let [S, s] be the output of Algorithm FastVecSum.

Suppose n ≤ 1 + 1
2u−1. Then s ∈ Fn−1,

∑n
i=1 pi = S +

∑n−1
i=1 si and

n−1∑
i=1

|si| ≤ ϕn−1
n∑
i=1

|pi| with ϕk :=
ku

1 + ku
, (10)

and that bound is sharp as by the input vector p = (1,u, . . . ,u)T .

We mention that (10) is true [15, Theorem 2.1] without restriction on n when
replacing ϕk by ku

1+u .
Our first algorithm is based on Algorithm Sum2 in [25], which in turn is

equivalent to Algorithm IV in [24].

Theorem 1 Let res be the result of Algorithm normSum2 applied to x ∈ Fn.

Suppose n ≤
√

31
32u−1/2 and u ≤ 2−8. Then res is a faithful rounding of ‖x‖.

Proof We will prove

|T + t−
n∑
i=1

x2i | ≤
31

32
u

n∑
i=1

x2i (11)
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Fig. 8 Algorithm normSum2

1 function res = normSum2(x)

2 [P,p] = TwoSquare(x(:));

3 [S,s] = FastVecSum(P);

4 [T,t] = FastTwoSum(S,sum(s)+sum(p));

5 res = AccSqrt(T,t);

for the scalars [T, t] computed in line 4 of Algorithm normSum2 in order to
apply Corollary 1. We know

n∑
i=1

x2i =

n∑
i=1

(Pi + pi) and |pi| ≤ uPi for all i ∈ {1, . . . , n} (12)

by Lemma 7, so that Lemma 9 implies

n∑
i=1

Pi = S +

n−1∑
i=1

si and

n−1∑
i=1

|si| ≤ ϕn−1
n∑
i=1

Pi.

Denote the floating-point sum sum(s) by σs, and correspondingly of the floating-
point sum sum(p) by σp. Note that s ∈ Fn−1 and p ∈ Fn. Then Lemma 8 gives

|σs −
n−1∑
i=1

si| ≤ ϕn−2
n−1∑
i=1

|si| ≤ ϕn−2ϕn−1
n∑
i=1

Pi

and

|σp −
n∑
i=1

pi| ≤ ϕn−1
n−1∑
i=1

|pi| ≤ ϕn−1u
n∑
i=1

Pi.

Furthermore, T + t = S + fl(σs + σp). Hence, using S +
∑n−1
i=1 si +

∑n
i=1 pi =∑n

i=1 x
2
i ,

|T + t−
∑n
i=1 x

2
i | ≤ |S + σs + σp −

∑n
i=1 x

2
i |+ u|σs + σp|

≤ (ϕn−2ϕn−1 + ϕn−1u)
∑n
i=1 Pi + u|σs + σp|.

Hence

|σs| ≤ (1 + ϕn−2)

n−1∑
i=1

|si| ≤ (1 + ϕn−2)ϕn−1

n∑
i=1

Pi

and

|σp| ≤ (1 + ϕn−1)

n−1∑
i=1

|pi| ≤ (1 + ϕn−1) u

n∑
i=1

Pi

and a calculation shows

|T + t−
∑n−1
i=1 x

2
i | ≤

(
ϕn−1

(
ϕn−2 + u + u + ϕn−2u + u2

)
+ u2

)∑n
i=1 Pi

=
(
ϕn−1

(
(1 + u)ϕn−2 + 2u + u2

)
+ u2

)∑n
i=1 Pi

≤
(
ϕn−1 (n+ u) u + u2

)∑n
i=1 Pi

≤ (n2 − n+ 1)u2
∑n
i=1 Pi.
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For n = 1 the left hand side in (11) is zero and the result is faithful by Corollary
1. For n ≥ 2, we use (12) to see

n∑
i=1

Pi = |
n∑
i=1

x2i − pi| ≤
n∑
i=1

x2i +

n∑
i=1

|pi| ≤
n∑
i=1

x2i + u

n∑
i=1

Pi, (13)

and again by Corollary 1 the result is faithful if 32(n2 − n+ 1)u ≤ 31(1− u),

and a computation shows that this is true because n ≤
√

31
32u−1/2. ut

Algorithm VecSum is an error-free vector transformation, so as in [25] we may
apply it a second time, thus further diminishing the condition number of the
sum.

Fig. 9 Algorithm normSum3

1 function res = normSum3(x)

2 [P,p] = TwoSquare(x(:));

3 [Q,q] = FastVecSum(P);

4 [S,s] = FastVecSum([p;q]);

5 [T,t] = FastTwoSum(Q,S+sum(s));

6 res = AccSqrt(T,t);

Theorem 2 Let x ∈ Fn be given and apply Algorithm normSum3 to x. Sup-
pose n ≤ ( 17

4 u2)−1/3 and u ≤ 2−8. Then res is a faithful rounding of ‖x‖.

Proof We proceed as in the proof of Theorem 1 and show that the scalars [T, t]
in Algorithm normSum3 satisfy

|T + t−
n−1∑
i=1

x2i | ≤
31

32
u

n∑
i=1

x2i . (14)

The quantities in Algorithm normSum3 are scalars Q,S, T and t as well as
vectors P, p ∈ Fn, q ∈ Fn−1 and s ∈ F2n−2. As before

∑n
i=1 x

2
i =

∑n
i=1(Pi +

pi) with |pi| ≤ uPi for all i ∈ {1, . . . , n}. Furthermore, Lemma 9 implies∑n
i=1 Pi = Q +

∑n−1
i=1 qi and

∑n
i=1 pi +

∑n−1
i=1 qi = S +

∑2n−2
i=1 si as well as∑n−1

i=1 |qi| ≤ ϕn−1
∑n
i=1 Pi and

∑2n−2
i=1 |si| ≤ ϕ2n−2

(∑n
i=1 |pi|+

∑n−1
i=1 |qi|

)
.

Denote the floating-point sum sum(s) by σs. Then

|σs −
2n−2∑
i=1

si| ≤ ϕ2n−3

2n−2∑
i=1

|si|.
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Furthermore, T + t = Q+ fl(S + σs). Hence

|T + t−
∑n
i=1 x

2
i | ≤ |Q+ S + σs −

∑n
i=1 x

2
i |+ u|S + σs|

= |σs −
∑2n−2
i=1 si|+ u|S +

∑2n−2
i=1 si + σs −

∑2n−2
i=1 si|

≤ (1 + u)|σs −
∑2n−2
i=1 si|+ u|

∑n
i=1 pi +

∑n−1
i=1 qi|

≤ ϕ2n−3(1 + u)
∑2n−2
i=1 |si|+ u|

∑n
i=1 pi +

∑n−1
i=1 qi|

≤ (ϕ2n−3ϕ2n−2(1 + u) + u)
(∑n

i=1 |pi|+
∑n−1
i=1 |qi|

)
≤ (ϕ2n−3ϕ2n−2(1 + u) + u) (u + ϕn−1)

∑n
i=1 Pi

=: Φ
∑n
i=1 Pi

and using (13) yields

|T + t−
n∑
i=1

x2i | ≤ (1− u)−1Φ

n∑
i=1

x2i .

The factor Φ is monotonically increasing in n. A direct computation for u ∈
{2−e : 8 ≤ e ≤ 53} and the maximal value n := b( 17

4 u2)−1/3c verifies

(1− u)−1Φ ≤ 31

32
u.

Hence (14) is true and Corollary 1 finishes the proof. ut

The error of floating-point summation in Lemma 9 is sharp but, as has been
mentioned after Lemma 1, highly overestimated in practice: We hardly find
cases with relative error exceeding

√
nu - unless we looked for them. In par-

ticular it seems unlikely that the worst case bound (10) is attained for all
summations in Algorithms normSum2 or normSum3.

Theorems 1 and 2 prove that Algorithms normSum2 and normSum3 compute
a faithfully rounded result if the vector length n satisfies 32

31n
2u ≤ 1 or 4n3u2 ≤

1, respectively. These are sufficient criteria, but in practice the results are
faithful for much larger n.

A rough estimate of this limit under practical assumptions, i.e., when
replacing ϕk in Lemma 8 by

√
ku, suggests a faithfully rounded result for

n . u−1 for Algorithm normSum2 and n . 1
4u−4/3 for Algorithm normSum3. In

other words, in practical applications it suffices to use Algorithms normSum2

and we can always expect a faithfully rounded result.

4 Faithfully rounding of ‖x‖ based on absolute splitting of x

The error-free transformation of ‖x‖2 into (P, p) with P + p = ‖x‖2, as used
in [6] and [20] and our algorithms up to now, is based on a relative splitting of
the xi, i.e., each xi is transformed into a sum of two floating-point numbers.
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Once the vectors P, p are available, any good summation algorithm may
be applied. An alternative to a relative splitting of the xi was first proposed in
[32]. A constant σ larger in absolute value than all summands is chosen. The
split of the vector x into a pair of vectors (r, s) with respect to σ is such that
x = r + s and all bits of r reside in the same range and such that the sum(r)

is error-free. The same principle can be applied successively.
In [32] the splitting was performed using scaling and integer rounding, and

no analysis was given. In [28] we pursued that principle in Algorithm AccSum

with an efficient implementation and thorough error analysis. Based on that
Algorithm AccDot is presented in [28] for the accurate computation of a dot
product xT y. Basically, it first splits xT y = r + s as in TwoProduct and then
applies AccSum. That algorithm can be used for ‖x‖ as well.

Following we split the input vector x into vectors q, b directly such that
sum(q.*q) is error-free. That avoids the costly splitting ‖x‖2 = P + p by
Algorithm TwoSquare. The Algorithm normExtract is presented in Figure 10.
Note that M, in contrast to Algorithm AccSum in [28], is not a power of 2.

Fig. 10 Algorithm normExtract

1 function res = normExtract(x)

2 x = abs(x);

3 u = pow2(-53); % u relative rounding error unit

4 M = 4/(2-(length(x)+8)*u) * norm(x)/sqrt(u);

5 q = ( M + x ) - M;

6 b = x - q; % x = q + b

7 S = sum(q.*q);

8 s = sum( (q+x).*b );

9 [T,t] = FastTwoSum(S,s);

10 res = AccSqrt(T,t);

The bound on the dimension n as for Algorithm normSum2 to guarantee that
the approximation res is a faithful rounding of ‖x‖ is very conservative. We
present this algorithm because it is very fast and, as explained at the end of
the previous section, we can expect a faithful result up to n . 79 million. That
may be sufficient in most practical applications.

To that end we need “ufp” as introduced in [28], the unit in the first place

0 6= r ∈ R ⇒ ufp(r) := 2blog2 |r|c

and ufp(0) := 0. Compared to the often used “ulp”, the unit in the last place,
it bears the advantage that it is independent of a floating-point format and
applies to real numbers as well. The following properties are proved in [28].
For σ = 2k, k ∈ Z, r ∈ R we have

r 6= 0 ⇒ ufp(r) ≤ |r| < 2ufp(r) (15)

σ′ = 2m, m ∈ Z, σ′ ≥ σ ⇒ uσ′Z ⊆ uσZ (16)

f ∈ F and |f | ≥ σ ⇒ ufp(f) ≥ σ (17)
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f ∈ F ⇒ f ∈ 2u · ufp(f)Z (18)

r ∈ uσZ ∩N , |r| ≤ σ ⇒ r ∈ F (19)

a, b ∈ F, a 6= 0 ⇒ fl(a+ b) ∈ u · ufp(a)Z (20)

r̃ := fl(r) ∈ F ⇒ |r̃ − r| ≤ u · ufp(r) ≤ u · ufp(r̃). (21)

Note that, if b 6= 0, fl(a+ b) ∈ u · ufp(b)Z in (20) holds as well.

Theorem 3 Let x ∈ Fn be given and apply Algorithm normExtract to x.
Suppose n ≤ 11

59u−1/3 and u ≤ 2−8. Then res is a faithful rounding of ‖x‖.

Proof As in the previous proofs we will show that the scalars [T, t] in Algorithm
normExtract satisfy

|T + t−
n∑
i=1

x2i | ≤
31

32
u

n∑
i=1

x2i . (22)

Henceforth we assume xi ≥ 0 as justified by line 2 of Algorithm normExtract.
Denote by x̂ := norm(x) MATLAB’s floating-point approximation to ‖x‖.
Then Lemma 1 with β = (n2 + 1)u shows

(1− β)‖x‖ ≤ x̂ ≤ (1 + β)‖x‖. (23)

Note that 4(n+ 2)u ≤ 16nu ≤ 1 implies 1−2(n+ 2)u ≥ 1/2, so that float(1−
2(n+ 2)u) = 1− 2(n+ 2)u by Sterbenz’ lemma [31], and a calculation using
(1) yields for all i ∈ {1, . . . , n}

M = float(ϕx̂) ≥ 4x̂
(1+u)3(2−(n+8)u)

√
u ≥

4x̂
(2−(n+2)u)

√
u = 2x̂

(1−β)
√

u

≥ 2‖x‖/
√

u

≥ 32‖x‖ ≥ xi,

(24)

where ϕ := 4/(2 − (n + 8)u)/
√

u. Lines 5 and 6 of Algorithm normExtract

are similar to Algorithm FastTwoSum in Figure 1. More precisely, the code for
FastTwoSum(M,x) is identical to

N = M + x;

qs = M - N;

b = qs + x;

where q in line 5 of Algorithm normExtract is equal to -qs, and b in line
6 is the same. By (24), Lemma 2 for Algorithm FastTwoSum is applicable,
so that there is no rounding error when subtracting M in line 5, i.e., qi =
fl(M + xi)−M . Using ufp(M + x) ≤ 2ufp(M) by (24) that implies

xi = qi + bi and |bi| ≤ 2u · ufp(M) (25)

and qi ≤ xi + u · ufp(M + xi) for all i ∈ {1, . . . , n}. We distinguish three cases
to show

qi ≤ 2xi. (26)
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First, if 2u · ufp(M) ≤ xi, then ufp(M + xi) ≤ 2ufp(M) proves (26). Second,
if u · ufp(M) ≤ xi < 2u · ufp(M), then ufp(M + x) = ufp(M) and proves (26)
as well. Third and finally, if xi < u ·ufp(M), then fl(M +xi) = M and qi = 0.
Thus (26), (24) and (15) yield∑n

i=1 q
2
i ≤ 4‖x‖2 ≤ uM2 < 4u · ufp(M)2.

Now (20) and (16) yield qi ∈ u · ufp(M + x)Z ⊆ 2u · ufp(M)Z. Hence q2i ∈
u·4u·ufp(M)2Z and (19) show that the floating-point sum of all q2i is error-free,
i.e., S =

∑n
i=1 q

2
i . For ci := float((qi + xi)bi) we see by (1) that

|ci − (qi + xi)bi| ≤ ((1 +
u

1 + u
)2 − 1)|qi + xi||bi| ≤ 2u|qi + xi||bi|

and, if n ≥ 3,

|float(

n∑
i=1

ci)−
n∑
i=1

ci| ≤
(n− 1)u

1 + (n− 1)u

n∑
i=1

|ci| ≤ (n− 1)u

n∑
i=1

|qi + xi||bi|. (27)

Moreover, using (23) and (1 + u
1+u )3 ≤ 1 + 3u,

M = float(ϕx̂) ≤ 4(1 + 3u)

(2− (n+ 8)u)
√

u

(
1 + (

n

2
+ 1)u

)
‖x‖ =: γ‖x‖. (28)

Thus s = float(
∑n
i=1 ci), xi = qi + bi, (26) and (25) yield

|T + t− ‖x‖2| = |S + s− ‖x‖2| = |
∑n
i=1 q

2
i + s− ‖x‖2|

= |s−
∑n
i=1(qi + xi)bi|

≤ (n− 1)u
∑n
i=1 |qi + xi||bi|

≤ (n− 1)u · 3‖x‖1 · 2uM

≤ 6(n− 1)u2
√
nγ‖x‖2.

In order to show (22) we note that 6(n− 1)u2
√
nγ ≤ 31

32u is equivalent to

384(n− 1)
√
nu(1 + 3u)(2 + (n+ 2)u) < 31(2− (n+ 8)u),

which in turn is equivalent to Φ :=
∑3
i=1 αiu

i/2 + α5u
5/2 < 62 where

α1 = 768(n− 1)
√
n

α2 = 31n+ 248

α3 = (384n2 + 2688n− 3072)
√
n

α5 = (1152n2 + 1152n− 2304)
√
n.

Now Φ is monotonically increasing in n, and a direct computation using the
maximal value n := b 1159u−1/3c shows

Φ < 61.9 + 12u4 + 465u6 + 18u10 + 93u12

and verifies (22) for u ≤ 2−8 and n ≥ 3. The case n = 2 follows by an extra
factor 1+2u

1+u in (27). Hence (14) is true and Corollary 1 finishes the proof. ut
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The reason for the severe restriction of the vector length n to guarantee a
faithfully rounded result is the estimate (27). As before, a rough estimate
under the practical assumption ϕk .

√
ku in Lemma 8 suggests a faithfully

rounded result for n . 1
12u−1/2 for Algorithm normExtract.

The limit on the dimension for guaranteed faithful rounding is improved
by the following Algorithm normExtract2 by introducing a second splitting.

Fig. 11 Algorithm normExtract2

1 function res = normExtract2(x)

2 x = abs(x);

3 u = pow2(-53); % u relative rounding error unit

4 M = 4/(2-(n+8)*u) * norm(x)/sqrt(u);

5 q = ( M + x ) - M;

6 b = x - q; % x = q + b

7 N = 8/(2-(n+8)*u) * norm(b)/sqrt(u);

8 r = ( N + b ) - N;

9 c = b - r; % b = r + c

10 [P,p1] = FastTwoSum( sum(2*(q+r).*c), sum(c.*c) );

11 [P,p2] = FastTwoSum( sum(r.*r) , P );

12 [P,p3] = FastTwoSum( 2*sum(q.*r) , P );

13 [P,p4] = FastTwoSum( sum(q.*q) , P );

14 [S,s] = FastTwoSum(P,p1+(p2+(p3+p4)));

15 res = AccSqrt(S,s);

We show this algorithm as yet another example to compute the Euclidean
norm faithfully, however, we refrain from giving a complete analysis. We just
mention that the main errors occur in line 10, namely, the summation of
2(qi+ri)ci and c2i . The following sums of the r2i , the qiri and q2i are error-free.

5 Computation of the nearest rounding of ‖x‖

The algorithms in the previous section adapt Algorithm AccSum in [28] to
the computation of the Euclidean norm of a vector. In [29] we explored that
principle by designing Algorithm NearSum to compute the rounded to nearest
value of the sum of floating-point numbers, and Algorithm AccSign to compute
the sign of the sum. Several other algorithms such as storing the result in an
unevaluated vector, the rounded downward and upward result, treatment of
vectors of huge lengths and more.

Next we derive Algorithm normNearest to compute the nearest value of the
Euclidean norm of a vector. To that end we first present an adapted version
of the Algorithm Transform derived in [28]. In our adaptation we rewrote
the “repeat”- into a “while”-loop and omitted the output parameter σ. Then
Lemma 4.3 in [28] shows the following.
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Fig. 12 Algorithm Transform

1 function [tau1,tau2,p] = Transform(p)

2 M = ceil(log2(length(p)+2));

3 Phi = pow2(2*M);

4 u = 2^(-53); % u rel. rounding error unit, to be adapted

5 sigma = pow2(ceil(log2(max(abs(p)))))/u;

6 t = 0;

7 while ( abs(t) < Phi*sigma )

8 sigma = u*pow2(M)*sigma;

9 q = ( sigma + p ) - sigma;

10 p = p - q;

11 tau = sum(q);

12 told = t;

13 t = t + tau;

14 end

15 [tau1,tau2] = FastTwoSum(told,tau);

Lemma 10 Let tau1, tau2 and r be the result of Algorithm Transform ap-
plied to p ∈ Fk, and suppose k ≤ 1

2u−1/2 − 2. Then

k∑
i=1

pi = τ1 + τ2 +

k∑
i=1

ri, (29)

and the MATLAB statement

res = tau1 + (tau2 + sum(r))

implies that res is a faithful rounding of
∑k
i=1 pi. Moreover,

max
1≤i≤n

|ri| ≤ 2−2Mu|τ1| and |τ2| ≤ u|τ1|. (30)

When replacing the constant Φ in line 3 by Φ = 2M , then τ1 and
∑k
i=1 pi have

the same sign under the weaker assumption k ≤ 1
2u−1 − 2.

Proof The definition of M in line 2 implies 2M ≥ k+ 2 ≥ 2M−1 and therefore

22Mu ≤ 4(k + 2)2u ≤ 1.

Hence the the assumptions of Lemma 4.3 in [28] are satisfied, and the assertions
until (30) follow. The last statement is implied by Theorem 4.2 in [29]. ut

The smaller the constant Φ is, the less “while”-loops are necessary in Algorithm
Transform. As shown in [28] and [29] the chosen constants Φ = 22M for a
faithful result and Φ = 2M for the sign are optimal.

Our Algorithm NearSum needs the predecessor and successor of a floating-
point number. The next Algorithm PredSucc combines Algorithm 1 in [30].

In Theorem 2.2 in [30] it is shown that Algorithms Pred and Succ computes the
predecessor and successor of a floating-point number c provided that u ≤ 1

16
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Fig. 13 Predecessor and successor of c

1 function [pred,succ] = PredSucc(c)

2 C = pow2(53)*c;

3 u = pow2(-53);

4 e = ( u*(1+2*u) ) * abs(C);

5 pred = (C-e)*u;

6 succ = (C+e)*u;

and except for a tiny range near the smallest positive normalized floating-
point number. To avoid that, we scaled the input in line 2 so that, provided no
overflow occurs, Algorithm PredSucc computes the predecessor and successor
of c. Of course, proper scaling avoids overflow.

Now we can present our Algorithm normNearest in Figure 14 to compute
the nearest value of the Euclidean norm of a vector. It borrows from Algorithm
NearSum in [29] and is adapted to our task.

Fig. 14 Algorithm for round to nearest Euclidean norm

1 function res = normNearest(x)

2 [S,s] = TwoSquare(x(:));

3 [tau1,tau2,p] = Transform([S;s]);

4 f = tau1 + ( tau2 + sum(p) ); % f is faithful rounding of ||x||^2

5 delta = Transforms([ tau1 ; tau2 ; p ; -f ]);

6 [f2,succ] = predsucc(f);

7 if delta>0 % hull(f,f2) bracket |x||^2

8 f2 = succ;

9 elseif delta=0 % fl(|x||^2) = f

10 f2 = f;

11 end

12 g1 = sqrt(f); % fl(|x||^2) in {f,f2}

13 g2 = sqrt(f2); % fl_near(|x||) in {g1,g2}

14 if g1==g2 % fl_near(||x||) = g1 = g2

15 res = g1;

16 else

17 [R,r] = TwoSquare(g1); % g1^2 = R + r

18 d = (g2-g1)/2; % power of 2, d maybe negative

19 Delta = Transforms([ tau1 ; tau2 ; p ; -R ; -r ; -2*g1*d ; -d^2 ]);

20 if Delta<0 % |x|| < mid(g1,g2)

21 res = min(g1,g2);

22 elseif Delta>0 % ||x|| > mid(g1,g2)

23 res = max(g1,g2);

24 else % Delta=0, |x|| = mid(g1,g2)

25 res = g1+d;

26 end

27 end

Remark 1 There are obvious ways to improve Algorithm normNearest by uti-
lizing information obtained in the first transformation in line 3 in the following
transformations in lines 5 and possibly 19, or by integrating the call in line 5
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into that of line 3. Moreover, the transformation in Algorithm 3.3 in [29] with
an extra parameter % computing a faithful rounding of % +

∑n
i=1 pi could be

used. We refrain from doing that keep the code simple.

Remark 2 Algorithm Transform in line 3 transforms the input vector [S; s]
into p. The number of “while”-loops is proportional to the condition number
of the sum, i.e., how close the true is sum to the midpoint of adjacent floating-
point numbers. Algorithm Transforms in lines 5 and possibly 19 is applied
to the already transformed vector p, so that in all our examples we did not
encounter more than 2 loops.

Theorem 4 Let x ∈ Fn be given and apply Algorithm normNearest to x,
where Algorithm Transforms in lines 5 and 19 is identical to Transform in
Figure 12 with replacing the constant Φ in line 3 by Φ = 2M . Suppose n ≤
1
4u−1/2 − 4. Then the computed result res is equal to the Euclidean norm of
x rounded to the nearest floating-point number, i.e., res = fl(‖x‖).

Proof Line 2 in Algorithm normNearest and Lemma 3 imply
∑n
i=1 x

2
i =∑n

i=1 Pi +
∑n
i=1 pi, so that Lemma 10 shows that

n∑
i=1

x2i = τ1 + τ2 +
n∑
i=1

pi (31)

and that f computed in line 4 is a faithful rounding of ‖x‖2. Thus pred(f) <
‖x‖2 < succ(f). The vector argument of Transforms in line 5 is equal to

Q := τ1 + τ2 +

n∑
i=1

pi − f =

n∑
i=1

x2i − f.

Lemma 10 shows that the signs of Q and the computed δ coincide, It follows
that ‖x‖2 ∈ (pred(f), f) if δ < 0, ‖x‖2 ∈ (f, succ(f)) if δ > 0, and ‖x‖2 = f if
δ = 0. Thus lines 6 − 11 imply that ‖x‖2 is in the convex union of f and f2.
Denote the pair (f, f2) by (s1, s2) ∈ F2 with s1 ≤ s2, such that

s1 < ‖x‖2 < s2 or s1 = ‖x‖2 = s2 (32)

and s2 ≤ succ(s1) ≤ (1 + 2u)s1. Set gi := fl(
√
si) for i ∈ {1, 2}. Then (1),√

1 + 2u < 1 + u, the monotonicity of the rounding fl(·) and fl((1 + u)x) ≤
fl((1 + u)2fl(x)) ≤ succ(fl(x)) for x ∈ R imply

g2 = fl(
√
s2) ≤ fl(

√
(1 + 2u)s1) ≤ fl((1 + u)

√
s1) ≤ succ(fl(

√
s1)) = succ(g1).

Hence g1 and g2 are equal or adjacent floating-point numbers, and (32) yields

g1 = fl(
√
s1) ≤ fl(‖x‖) ≤ fl(

√
s2) = g2.

In other words, the nearest rounding of ‖x‖ is in {g1, g2}. Thus, if g1 = g2,
the nearest rounding is equal to g1 = g2 which is handled in line 15.
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Otherwise, line 17 implies g21 = R + r. Then d, which is a power of 2
because it is half the distance between g1 and g2, is computed in line 18
without rounding error. Thus the product 2g1d is computed without error as
well, and the sum of the vector argument of Transforms in line 19 is equal to

S := τ1 + τ2 +

n∑
i=1

pi −R− r − 2g1d− d2 =

n∑
i=1

x2i − (g1 + d)2.

Note that the length of the vector argument is 2n+6 and the assumption on n
verifies that Lemma 10 is applicable and implies that sign(Delta) = sign(S).
Now g1 + d is the midpoint between the adjacent floating-point numbers g1
and g2, and the result follows by ‖x‖ ∈ {g1, g2}. ut

We mention that the assumption n ≤ 1
4u−1/2 − 4 can be lifted to n ≤

1
32u−1 − 64 using the ideas in Algorithm AccSumHugeN in [29], but we refrain
from exploring this.

We showed that the f computed in line 4 is a faithful rounding of ‖x‖2. As
has been noted in [6] that does not imply that fl(

√
f) is a faithful rounding of

‖x‖, but likely AccSqrt(f,delta) is.

6 Generation of ill-conditioned examples

A vector p is ill-conditioned with respect to the nearest rounding of ‖p‖ if a
very small change of the input data changes the result. The closer ‖p‖ is to a
switching point, the more difficult and ill-conditioned is the computation of the
nearest rounding. For positive f ∈ F its successor is succ(f) = f + 2u · ufp(f),

so that the switching point is µ = f + u · ufp(f) =: f + δ. Then ε = δ′−δ
δ is

the relative distance of ‖p‖ = f + δ′ to the switching point f + δ.

For given ε it is, in principle, not too difficult to generate a vector p with
‖p‖ having a relative distance ε to a switching point. To that end a multiple
precision package may be helpful. However, when doing this we observed a
severe influence on the timing. The mere presence of a call to the multiple
precision package, of course, outside the loop to be measured, changed the
measured computing time by a factor of 2 and more. Therefore, we wrote
Algorithm GenVec, see Figure 15. Using it ensured reliable computing times.

The challenge is to approximate the anticipated final result ‖p‖ near a
switching point s “from below”: During a loop the vector norm must always
stay below s. That is the principle of Algorithm GenVec, a nice example of our
algorithms with absolute splitting used for faithful and nearest rounding.

The rationale is as follows. The output vector p is computed in K segments
each of length m. The initialization in line 4 ensures that the final vector
length is n. The floating-point number f in line 6 or its successor f + 1 is the
anticipated result of the nearest rounding of the final vector p to be generated
with relative distance e to the switching point f + 0.5. The initial vector p as
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Fig. 15 Vector p ∈ Fn with relative distance ε of ‖p‖ to a switching point

1 function [p,f] = GenVec(n,e)

2 K = ceil(2-log2(abs(e))/53); % number of segments

3 m = floor(n/K); % size of each segment

4 p = 2^26*rand(1,n-m*K)/sqrt(n); % initial vector

5 [p1,p2] = TwoSquare(p); % ||p||^2 = p1 + p2

6 f = pow2(52)*(1.1+0.8*rand); % ufp(f) = 2^52

7 [F1,F2] = TwoSquare(f); % f^2 = F1 + F2

8 [ef1,ef2] = TwoProduct(e,f); % e*f = ef1 + ef2

9 S = [F1 F2 f 1/4 ef1 ef2 -p1 -p2]; % sum(S) = (f+0.5)^2 + e*f - ||p||^2

10 [tau1,tau2,q] = Transform(S);

11 sumS = tau1 + ( tau2 + sum(q) ); % faithful rounding of sum(S)

12 phi = sqrt( 1 - (abs(e)/f^2)^(1/K) ); % decay factor

13 for k=1:K

14 ps = randn(1,m);

15 ps = phi*sqrt(sumS)*ps/norm(ps); % next segment

16 p = [ p ps ];

17 [ps1,ps2] = TwoSquare(ps); % ps^2 = ps1 + ps2

18 S = [ S -ps1 -ps2 ]; % sum(S) = (f+0.5)^2 + e*f - ||p||^2

19 [tau1,tau2,q] = Transform(S);

20 sumS = tau1 + ( tau2 + sum(q) ); % faithful rounding of sum(S)

21 end

22 p = p(randperm(length(p))); % random perturbation

23 if e>0

24 f = f+1; % f is nearest rounding of ||p||

25 end

in line 4 satisfies ‖p‖2 = p1+p2 and f−‖p‖ > 0. Lines 7−8 yield f2 = F1+F2

and e · f = ef1 + ef2, so that∑
Si = f2 + f +

1

4
+ e · f − ‖p‖2 = (f +

1

2
)2 + e · f − ‖p‖2 =: T

for the S in line 9. Here
∑
Si denotes the mathematical sum of all elements

of S. Furthermore, lines 10− 11 and Lemma 10 imply that sumS is a faithful
rounding of

∑
Si. The ϕ in line 15 satisfies ϕ ≤ 1− 4u reasonable values of n

and e, so that ps in line 14 satisfies

ps = float(ϕ
√
sumS) ≤ (1 +

u

1 + u
)2(1− 4u)

√
sumS < (1− 2u)

√
sumS . (33)

In the for-loop the element ps is appended to the vector p and −ps2 = −ps1−
ps2 to the vector S, so that the sum T =

∑
Si changes into T − ps2. Since

sumS is a faithful rounding of
∑
Si, (33) implies that T − ps2 > 0.

At the end of every loop, sumS is always a faithful rounding of the sum∑
Si by lines 19 − 20, and the construction implies that sumS decreases into

(1− ϕ2)sumS in each step. The starting value of sumS is about f2, and ϕ and
K are chosen such that sumS ≤ |e| after finishing the loop.

After finishing the for-loop, sumS is a faithful rounding of (f + 1
2 )2 + e · f −∑

p2i . Since f ≥ 252 we conclude that ‖p‖2 is very close to (f + 1
2 )2 + e · f ,

hence

‖p‖ ≈
√

(f +
1

2
)2 + e · f ≈ f +

1

2
+
e

2
. (34)
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In the above setting δ = 1
2 and δ′ = 1+e

2 , so that the relative distance of ‖p‖
is δ′−δ

δ = e. The “approximations” in (34) are very accurate.

Finally, if e < 0, then ‖p‖ is left of the switching point f + 1
2 and f is

the nearest rounding, otherwise, as computed in line 24, the nearest rounding
is f + 1. The random perturbation in line 22 may be useful for testing the
generality of algorithms.

It is clear from the code that the elements of one segment are close together,
and the segments decay with the factor ϕ. If the number of segments K is
increased, then a better distrubution of the vector elements of p is obtained,
however, at the cost of increasing computing time.

7 Computational results

The following computational results are all performed using MATLAB Version
2020b on some core i7 Laptop. In all of the following examples the number of
test cases is generally 1 million, but for large dimensions chosen such that the
computing time stays below 1 hour.

We start with some timing comparisons of variants of MATLAB imple-
mentations. For example, an alternative to Algorithm Split in Figure 2 is the
following.

Fig. 16 Alternative splitting

1 function [P,p] = Split1(Aa)

2 [f,e] = log2(Aa);

3 P = pow2(fix(2^27*f),e-27);

4 p = Aa - P;

The following Table 1 shows the computing time of Algorithm Split1 divided
by that for Algorithm Split1. We also compare sqr(a) vs. a.*a, TwoProduct
vs. TwoSquare as in Figure 3 and VecSum vs. FastVecSum as in Figure 7.

Table 1 Time comparisons for different vector lengths.

Comparison 10 100 1000 104 105 106

Split1 / Split 1.24 1.25 2.38 1.79 1.67 1.65

sqr(a) / a.*a 0.97 0.94 0.98 0.99 1.01 0.95

TwoProduct / TwoSquare 1.46 1.50 1.52 1.52 1.66 1.69

VecSum / FastVecSum 0.37 2.41 9.19 9.91 8.89 2.91

The original Algorithm Split is significantly faster than the simulation by
log2 and round, so we use Algorithm Split. Similarly, Algorithm TwoSquare



Fast and accurate computation of the Euclidean norm of a vector 23

in Figure 3 is some 50% faster than Algorithm TwoProduct, and the loop-
free variant Algorithm FastVecSum in Figure 7 is much faster than Algorithm
VecSum in [25]. We use a.*a because the time seems the same as for sqr(a).

Before we come to timing comparisons, we give information about the
accuracy of our algorithms and competitors. We start with possibilities to ap-
proximate ‖x‖ by the built-in MATLAB routines, where the obvious candidate
is norm(x). We generate random testcases and display triples of numbers: The
first and second is the percentage of nearest and faithful roundings, respec-
tively, and the third the percentage where the result is not faithful.

Table 2 Percentage of rounding is nearest/faithful/none.

103 104 105 106

for-loop 14.6/26.7/58.7 4.0/7.6/88.5 1.7/3.6/94.7 0.4/0.8/98.8

sqrt(sum(x.*x)) 44.4/46.1/9.5 15.5/27.7/56.8 74.2/25.8/0.0 60.2/38.9/0.9

norm(x) 100/0/0 76.6/15.8/7.6 88.2/10.3/1.5 88.1/9.4/2.4

As can be seen in the third row of Table 2, the built-in function norm(x) is
surprisingly accurate, more accurate than theory predicts [7–9].

We therefore perform tests on the same data using sqrt(sum(x.*x)) and
an ordinary for-loop. Still sqrt(sum(x.*x)) is more accurate than expected,
only the for-loop shows the anticipated behavior.

Details on the actual implementation of norm and sum are confidential,
but the data in Table 2 suggests that some higher precision or compensating
algorithms are used.

The essential difference between Algorithms normG [6] and normL [20] is
the use of AccSqrt of [17] for the square root approximation in the last line of
normL. To see the advantage, we use Algorithm normGacc which is identical
to Algorithm normG except that

the last line res = sqrt(S); is changed into res = AccSqrt(S, s);

The following Table 3 shows the percentage of nearest rounding random test
cases with different dimensions.

Table 3 Percentage of nearest rounding of normG vs. normGacc

Algorithm 10 100 1000 104 105 106 107

normG 86.3 91.6 87.1 83.8 90.1 89.0 98.1

normGacc 100 100 100 100 100 100 83.2

There was no case with not faithful rounding, as proved in [6], and for the
improved Algorithm normGacc we found only for n = 107 cases where the
rounding was not to nearest, in fact, some 17%.
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Up to now we used random vectors produced by randn(n,1) for which it
is not too difficult to calculate a nearest rounding of ‖x‖. That changes when
the true result is close to the midpoint between two adjacent floating-point
numbers, i.e., close to a “switching point” 2.

To that end we use Algorithm GenVec to generate vectors x of different
dimensions with relative distance ε of ‖x‖ to a switching point. For each pair
of dimension n and relative distance ε, we display the percentage of nearest
roundings in Table 4.

In all test cases and for all algorithms we did not encounter an example
with not faithful rounding. As already seen in Table 3, generally Algorithm
normGacc outperforms the original normG in terms of accuracy. Algorithm
normG is targeted to a faithfully rounded result S, not minimizing the error of
S+s versus ‖x‖2. Thus about half the results of Algorithm normG are nearest,
the other half faithful but not nearest.

Algorithm normDD uses a general purpose double-double arithmetic, and
Algorithm normCpair our pair arithmetic with computable error bounds. As
Algorithms normGacc and normL are tailored methods but use the same prin-
ciple, we expect similarly accurate results. Indeed, that can be seen in Table
4 for all test examples including very small distance to a switching point. For
a relative distance ε downto about 10−14 the rounding is nearest. Similarly,
as Algorithms normSum2 and normSum3 are based on similar principles, they
show the same accuracy, with normSum3 being a little bit better.

Table 4 Percentage of nearest rounding for relative distance ε of ‖x‖ to switching point.

n ε DD Cpair G Gacc L Sum2 Sum3 Extract Extract2 Nearest

100 10−2 100 100 51.6 100 100 100 100 100 100 100

10−6 100 100 50.4 100 100 100 100 100 100 100

10−10 100 100 49.4 100 100 100 100 49.9 100 100

10−14 100 100 50.4 100 100 100 100 50.9 100 100

10−16 74.2 75.9 50.2 74.1 73.8 74.1 74.4 50.0 77.0 100

10−18 41.2 42.2 50.1 43.0 41.3 40.6 44.0 50.5 54.2 100

10−20 40.8 41.6 49.9 42.6 41.0 40.4 43.4 50.0 53.9 100

104 10−2 100 100 51.9 100 100 100 100 100 100 100

10−6 100 100 49.2 100 100 100 100 99.7 100 100

10−10 100 100 49.2 100 100 100 100 55.8 100 100

10−14 100 100 47.1 100 100 100 100 53.7 100 100

10−16 98.7 97.9 51.2 98.7 98.5 98.1 100 53.8 64.6 100

10−18 42.0 43.5 49.4 44.4 43.0 42.4 42.8 53.6 48.5 100

10−20 40.3 41.9 49.6 41.9 41.4 40.8 44.5 49.3 51.7 100

106 10−2 100 100 56.0 100 100 100 100 100 100 100

10−6 100 100 49.0 100 100 100 100 100 100 100

10−10 100 100 43.0 100 100 100 100 75.0 100 100

10−14 100 100 54.0 100 100 100 100 77.0 100 100

10−16 98.2 98.4 53.4 98.4 99.2 99.2 100 26.3 78.8 100

10−18 40.4 38.2 48.6 42.5 41.3 40.7 42.2 27.1 49.7 100

10−20 41.5 44.7 56.1 43.9 40.7 38.2 43.1 27.6 59.3 100

Algorithms normExtract and normExtract2 are based on a different prin-
ciple, namely on an absolute splitting. As mentioned this avoids the costly

2 called rounding boundary in [4]
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application of Algorithm AccSquare. For moderate distance ε the rounding
is nearest, including large vector lengths, for distance 10−10 and below the
accuracy is similar to normG with roughly a 50-50 chance of nearest result. As
we will see next, the little less number of nearest roundings is compensated by
a much better performance.

The number of nearest cases improves a little bit with normExtract2, and
the result of Algorithm normNearest is, of course, always rounded to nearest.

Next we present timing results for our algorithms and competitors for ran-
dom vectors and for dimension up to n = 107. It is appropriate to use random
vectors because the computing time of all algorithms except normNearest do
not depend on the difficulty of the problem, only on the length of the input
vector; times for normNearest for different ε are displayed separately.

It turns out that our new Algorithm normExtract is always the fastest.
Therefore the following Table 5 shows the time ratio against normExtract. The
timing for Algorithms normDD and normCpair is dominated by MATLAB’s
interpretation overhead and in particular by the use of operator overloading.
Therefore comparing the computing times hardly gives information on the
performance of the algorithms and is omitted.

Table 5 Timing relative to normExtract for random vectors of length n.

n normG normL normSum2 normSum3 normExtract2 normNearest

102 14.7 7.2 3.2 5.7 2.0 6.8

103 46.7 20.3 2.6 5.1 2.0 6.0

104 27.2 12.2 1.3 2.9 2.1 4.6

105 63.4 26.4 2.0 16.7 2.1 17.4

106 14.0 6.5 2.3 5.5 2.0 6.1

107 14.0 6.5 2.4 5.5 2.0 6.8

From the operation count it may surprise that normExtract is so much faster
than normG and normL. Now normExtract is based on AccSum in [28], and it
was analyzed by Langlois [19] that it enjoys a better instruction-level paral-
lelism than other algorithms. The same applies to normSum2 and may explain
its relatively good performance, and also to normSum3 where we see twice the
computing time of normSum2, as expected. That is still faster than normG and
normL. There is an exception to all algorithms, namely n = 105. We think this
is due to unfortunate cache management, similarly for normNearest.

Algorithm Nearest is about as fast as normL, for medium size dimension
much faster, although it guarantees a nearest rounding of ‖x‖.

The time in seconds for 5000 calls in dimension up to 1 million of all algo-
rithms is shown in Figure 17. The legend on the left is ordered by performance,
from the slowest normG downto the fastest normExtract. All algorithms except
Algorithm normNearest execute the same code independent of the difficulty
of the problem, hence the computing time depends almost linearly on the di-
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Fig. 17 Timing for 5000 calls for random vectors of dimension up to 1 million

mension. For normNearest we see small zig-zags depending on the number of
transformations.

Finally we investigate whether the guarantee of nearest rounding causes a
time penalty for Algorithm normNearest if ‖x‖ is very close to a switching
point. As before we generate examples with relative distance ε to a switching

Table 6 Timing of normNearest/normExtract, relative distance ε of ‖x‖ to switching point.

n \ ε 10−2 10−10 10−14 10−16 10−18 10−30 10−50 10−100

102 7.9 8.1 8.2 8.4 8.4 8.8 9.3 10.5

104 5.8 6.1 6.2 5.9 6.0 6.4 6.7 8.5

106 7.3 7.7 7.9 7.5 7.7 8.5 9.2 10.5

point. The ratio of computing time of Algorithm normNearest to normExtract

are displayed in Table 6; the time for the other algorithms does not change
because they are independent of the condition of the problem.

There is not much performance impact on the computing time of Algorithm
normNearest in our examples despite the guarantee of nearest rounding of ‖x‖,
even for a tiny relative distance ε = 10−100 to a switching point.
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8 Summary

We may use a general purpose pair arithmetic such as double-double [2] or
[17] to calculate an accurate approximation of the Euclidean norm ‖x‖ of a
vector. To that end we presented Algorithms normDD and normCpair in Figure
6. Specialized algorithms based on a pair arithmetic have been presented in
[6,20] and are displayed as Algorithms normG and normL in Figure 5.

In this note we developed Algorithms Sum2 and Sum3 in Section 3 based
on relative splitting as algorithm in [25]. The performance is significantly im-
proved by a vectorized version FastVecSum of VecSum in [25]. In addition,
Algorithms Extract and Extract2 based absolute splittings as in [28,29] are
presented in Section 4.

All algorithms mentioned so far compute a faithfully rounded result of ‖x‖,
in many cases the nearest result. A first algorithm to provably compute the
rounded to nearest result is presented as Algorithm normNearest.

The computing times of our new algorithms compare favorably to the com-
petitors, where Algorithm normExtract is significantly faster than all others.
Algorithm normNearest is also fast despite the guaranteed nearest rounding.
That includes difficult cases where the true Euclidean norm ‖x‖ has a relative
distance as small as ε = 10−100 to a switching point.
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