1

16
17
18

19
20

10

42
43
14

15

VERIFIED ERROR BOUNDS FOR ALL EIGENVALUES AND
EIGENVECTORS OF A MATRIX

SIEGFRIED M. RUMP*

Abstract. A verification method is presented to compute error bounds for all eigenvectors and
eigenvalues including clustered and/or multiple ones of a general, real or complex matrix. In case
of a narrow cluster error bounds for an invariant subspace are computed because computation of a
single eigenvector may be ill-posed.

Computer algebra and verification methods have in common that the computed results are correct
with mathematical certainty. Unlike a computer algebra method, a verification method may fail in the
sense that only partial or no inclusions at all are computed. That may happen for very ill-conditioned
problems being too sensitive for the arithmetical precision in use. That cannot happen for computer
algebra methods which are “never-failing” because potentially infinite precision is used. In turn,
however, that may slow down computer algebra methods significantly and may impose limitations
on the problem size. In contrast, verification methods solely use floating-point operations so that
their computing time and treatable problem size is of the order of that of purely numerical algorithms.

For our problem it is proved that the union of the eigenvalue bounds contains the whole spectrum
of the matrix, and bounds for corresponding invariant subspaces are computed. The computational
complexity to compute inclusions of all eigenpairs of an n x n-matrix is O(n?).

Key words. Verification method, eigenvalue clusters, eigenvector, invariant subspace, all eigen-
pairs, INTLAB

AMS subject classifications. 65F05, 65G20, 65G50

1. Introduction. This note presents a verification method to compute error
bounds for all eigenvectors and eigenvalues of a general, real or complex matrix. In
case of clustered and/or multiple eigenvalues an inclusion of a basis of the corre-
sponding invariant subspace is computed. This means that the computed bounds do
contain the true result with mathematical certainty. In particular, it is proved that
the computed bounds cover all eigenpairs of the matrix.

Verification methods [17, 22, 18] are completely rigorous, including all procedural
and/or rounding errors, however, they are restricted to well-posed problems. For
example, it is possible to prove that a small circle in the complex plane contains
two eigenvalues of a matrix, but verification methods do not allow to prove that it
contains a double eigenvalue because that problem is ill-posed: an arbitrarily small
perturbation of the input matrix may have two simple eigenvalues. Similarly, it is
not possible to prove reasonably sharp bounds for an eigenvector of an eigenvalue of
algebraic multiplicity 2, regardless of the geometric multiplicity. That is even true for
a symmetric input matrix where, in contrast, very sharp bounds of eigenvalues follow
directly by perturbation bounds.

Verification methods should not be confused with computer algebra methods.
The latter provide never-failing algorithms. This is true independent of the condition
number because computer algebra methods potentially work in infinite precision. Both
approaches have in common that the computed results are always mathematically
correct. Verification methods intentionally use floating-point arithmetic for speed
with the drawback that failures occur, meaning, that no inclusion can be computed.
In a good verification method that happens only if the problem is too hard, i.e.,
ill-conditioned for the floating-point accuracy available.

*Institute for Reliable Computing, Hamburg University of Technology, Am Schwarzenberg-
Campus 3, 21073 Hamburg, Germany, and Visiting Professor at Waseda University, Faculty of Science
and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan (rump@tuhh.de).

1

This manuscript is for review purposes only.

mailto:rump@tuhh.de

16

[S2 NG BTSN SN
= O © 00

w N

ot Ov Ot Ot Ut Ut ¢
N O © =

ot
oo

59
60
61
62
63
64
65
66
67

68

~J ~J (@)
— o ©

U o W N

[«

-

I N 9 9

=
©

2

Z

91
92

93
94

2 SIEGFRIED M. RUMP

The first verification method for the algebraic eigenproblem is Krawczyk’s paper
[12] which applies his method for nonlinear problems [12] to Az — Az = 0 with some
normalization of x. Krawczyk’s method, however, is a refinement of given bounds.
Moore proposed to use Brouwer’s fixed point theorem [16] and proof of nonsingularity
of some matrix to derive an existence test. Krawczyk’s operator and Moore’s ansatz
are already contained in [10, p. 12f].

In [19] this method was improved in three ways: An interval iteration with so-
called epsilon-inflation computes an inclusion if the problem is not too ill-conditioned,
the proof of nonsingularity is omitted by requiring a self-mapping into the interior
in Brouwer’s fixed point theorem, and an inclusion for the error with respect to an
approximation is computed rather than an inclusion of the solution itself. Those three
techniques are today’s standard for verification methods from the solution of linear
systems to partial differential equations. For an overview see [22, 18].

Based on that, in [19] a verification method for one eigenvalue/eigenvector pair of
a real or complex n x n matrix is introduced with complexity O(n?). One might apply
that method n times, but besides the complexity O(n?*) that fails for multiple eigen-
values and cannot guarantee that all eigenvalues are covered. Several publications
concentrate on verified error bounds on one eigenpair, for example [28, 4, 5, 9, 26, 25];
in [2] a method is introduced for double eigenvalues.

Historically, the next step are verification methods for multiple eigenvalues and
corresponding invariant subspaces introduced in [21]. Bounds are computed regard-
less of the Jordan structure, but for only one cluster. Verification methods for all
eigenpairs of a symmetric positive definite matrix are given in [15].

In this note we are interested in bounds for all eigenpairs of a general real or
complex matrix. The first and seemingly only paper to that is Miyajima’s [14], which
is based on nonlinear matrix equations derived from the eigenproblem with special
emphasis on multiple eigenvalues including the defective case. The nonlinear system
and Newton correction are similar to [21]. His paper gives two methods. The first
method uses numerical spectral decomposition and computes eigenvalue inclusions
based on Gershgorin circles of the preconditioned matrix. Then A — AI is singular
for A in an eigenvalue inclusion, so that an eigenvector inclusion follows by solving a
linear system with one row and column of A — Al deleted. The linear system is solved
using a transformation of variables. For clusters, a basis of an invariant subspace is
enclosed by solving the nonlinear matrix equation. The second method uses numerical
block diagonalization analogous to [3], in which a numerical Jordan decomposition of
A is included. The decomposition is known to be ill-posed, occasionally leading to
computational problems. The method encloses all eigenvalues and eigenvectors (bases
of invariant subspaces in the cluster case) by solving the nonlinear matrix equation.
Miyajima’s methods are also suitable for the generalized algebraic eigenproblem. That
is also true for our method, but for simplicity we refrain from presenting that.

The approach presented in this note is based on [21]. As for Miyajima’s approach,
inclusions for some or all eigenspaces may be computed. In contrast, we do not rely on
a numerical Jordan decomposition. In the next section the method will be presented,
and in the final section on computational results we show the new method to be faster
and more stable than Miyajima’s.

2. Main result. Denote by K € {R,C} the field of real or complex numbers,
and by K" and K™ the set of n-vectors and n x k matrices over K, respectively. We
also use the short notation M,, ; to denote a (real or complex) n x k matrix, and M,
if £k =n.

This manuscript is for review purposes only.

95
96
97
98
99
100
101
102
103

126
127
128
129
130
131

132
133
134
135
136

VERIFIED ERROR BOUNDS FOR ALL EIGENPAIRS 3

Denote by I a set of real or complex intervals, then similarly we write I™ for
interval n-vectors and I"™* for n x k interval matrices. We will use boldface letters for
interval quantities, and denote by int(-) the topological interior. The n x n identity
matrix is denoted by I,,, where the subindex is omitted if clear from the context, and
its j-th column by e;. Entrywise matrix multiplication (the Hadamard product) is
denoted by o.

The principles of verification methods and interval arithmetic can be found in
[17, 22, 18]. However, we only use that interval operations op € {+,—,-,/} are
defined such that for compatible interval quantities A, B the inclusion property

(2.1) VAe AVB e B: AopBe AopB

is satisfied. Intervals may be represented by infimum-supremum or midpoint-radius,
where the former is often used for real and the latter for complex intervals. The
representation may influence the quality of the bounds, however, the only important
property for the mathematical correctness is (2.1).

Concerning notation, we write mig(A) := min{|a|: a € A} and mag(A) :=
max{|a|: @ € A} for a scalar interval A, and the definition extends to interval vectors
and matrices entrywise. Properties like, for example, being non-singular extend to an
interval matrix A by requesting that all A € A are non-singular.

We will use Matlab notation [13] and INTLAB [20], the Matlab-Octave toolbox for
reliable computing. In INTLAB, real interval quantities are represented by infimum-
supremum, complex interval quantities by midpoint-radius, but the following applies,
mutatis mutandis, to other representations as well.

In [21, Theorem 3.2] we proved the following.

THEOREM 2.1. Let A,R € M, X € My, ks A €K and X € I™F be given. Define

[n] :={1,...,n}, and for non-empty p C [n] with k := |u| denote a partition of the
n X n identity matrixz I by

(2.2) Vi=1(,p) € Myy and U =1I(;,[n]\1) € My n_p.

It follows that UUT + VVT = I. Define

(2.3) f(X):=—R(AX - AX) +{I - R((A-ANUUT — (X +UUT - X)VT)}. X
Suppose

(2.4) F(X) C int(X).

Then there exists M € M;, with M € S\Ik +VTX such that the Jordan canonical form
of M is identical to a k X k principal submatriz of the Jordan canonical form of A,
and there exists Y € M, 1. with YeX + UUTX such that Y spans the corresponding

imvariant subspace of A, i.e., AY =Y M.

The k x k submatrix of X with rows in p is the inclusion of a Jordan block of A
shifted by 5\ where for the invariant subspace that k X k submatrix is replaced by the
correspondmg submatrix of X for normalization.

Theorem 2.1 gives a sufficient criterion for X € I™* to_contain M and V with
the described properties. The better the approximations A, X for the eigenspace, the
preconditioner R and the choice of X, the more likely condition (2.4) is satisfied. If
(2.3) is not satisfied for the initial X, then an interval iteration with epsilon-inflation

This manuscript is for review purposes only.

137
138
139
140

142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184

4 SIEGFRIED M. RUMP

starting with X := f(X) is applied, see [21]. The matrix R is an approximate inverse
of the Jacobian of the underlying Newton iteration for X. Note that the assertions
are true regardless of the quality of X\, X and R. The computational effort is O(n?).

The quality of the inclusions depend on the Jordan structure of the matrix. There
is a huge literature on the sensitivity of eigendecompositions, among them [23, 24, 1,
7, 11]. As a rule of thumb the sensitivity of an eigenvalue A is of the order ul/® for u
denoting the relative rounding error unit and k the size its largest Jordan block [27,
Section 2.23]. As a consequence, this is the minimum width of an inclusion of A when
using a floating-point arithmetic with relative rounding error unit u.

Let B € M, In order to derive an O(n3) method for computing inclusions of
some or all eigenpairs, the purpose of this note, we compute an approximate eigende-
composition [V,D]=eig(B) of B. Suppose V is nonsingular and apply Theorem 2.1
to V!BV, then inclusions of the spectrum and Jordan structure of B are obtained.

If B is not defective and V its exact eigenbasis, then V!BV is diagonal. But
even if B has multiple eigenvalues of geometric multiplicity 1, we may expect that
computationally V!BV is almost diagonal because of the following. For a k x k
Jordan block to an eigenvalue A, a numerical algorithm like Matlab’s eig tends to
compute a basis of the corresponding invariant subspace with all columns close to
a multiple of the corresponding eigenvector. The sensitivity of A and the condition
number of the corresponding columns of V is about u/*. A numerically singular
eigenapproximation matrix V' may occur, but to our experience only in special cases
or when searching for it. For numerical evidence see the beginning of Section 3.

Therefore a reasonable approximation to the eigenvectors of V!BV is the iden-
tity matrix. For each eigenvalue or cluster of eigenvalues, the corresponding matrix
R in Theorem 2.1 is close to diagonal. Therefore we can combine the application
of Theorem 2.1 to a set of eigenvalues or clusters into one matrix to achieve a total
computing time of O(n?).

The matrix V~!BV is usually not representable in floating-point, so that we have
to work with an inclusion A of it. In verification methods it is a standard procedure
to replace A in Theorem 2.1 by an interval matrix A and to conclude that, due to the
inclusion property (2.1), all assertions are true for all A € A, in particular for V-1 BV.
The eigenvalues and Jordan structure of B and V!BV coincide, and the eigenvector
inclusions transform by V. An inclusion A of V1BV is computed by standard
verification methods [22] including the proof that V' is nonsingular. A corresponding
INTLAB command is A = verifylss(V,intval(A)*V). Here verifylss(A,b) is a
verified inclusion of the linear system Axz = b, where the type cast intval (A) assures
that the right hand side intval(A)*V is an inclusion of AV. For details see [20, 22].

Before we can state our main result, we need some notation. For simplicity we
state our theorem for the computation of inclusions of all eigenvalues and correspond-
ing invariant subspaces. If only partially successful, i.e., for some eigenvalues the
verification failed, it will be clear how to state and apply the theorem only to these
remaining eigenvalues. We refrain to state the result for such a partial set because
the notation would be even more involved.

As before denote [n] := {1,...,n}. For 1 <m < n,let yy U...U py, = [n] be a
partition of [n], i.e., p1; N p; = O for ¢ # j. Then, for given i € [m| and k := |y, the
splitting of I into columns within and outside p; is denoted by V; := I(:, p;) € My i
and U; = I(:, [n]\1;) € My, n—r. Multiplying a matrix from the left by V.I'V; sets all
rows outside 1; to zero, from the right the columns outside p;. Furthermore, V,'V; is

This manuscript is for review purposes only.

185
186
187
188
189

190
191

192

VERIFIED ERROR BOUNDS FOR ALL EIGENPAIRS 5

the zero matrix for i # j and
(2.5) UUI+Vvivil =1, and V;VV; =V, and U!V;=0 for i € [m].

For a matrix C € M,, we define Cp € M, to be the block diagonal matrix composed
of the u;-blocks of C, ie., Cp := Z?ll ViViTCViViT. The subindex “D” serves as
an operator on C' and applies to interval matrices as well; it means to extract the
elements in the diagonal p;-blocks. Similarly we define Cp := C — Cp to be the
matrix of complement indices of C. Then (2.5) and Y-, V;V;I = I,, yield

(2.6) Co = UUFCVV/].

i=1
Again, the subindex O serves as an operator to C' and applies also to interval matrices.
~ THEOREM 2.2. We use the notation just given. Let A € M, let mutually distinct
Ai € K for i € [m] be given, and let D € M, be a diagonal matriz with D;; = \; for
all i € [m] and for all j € p;. Then Dj; # \; for all j & p; and

(2.7) DV; =N,V fori € [m)].
Furthermore, let diagonal R; € M,, be such that
(2.8) Ri(D—-XNIU; =U; and R;)V;=-V,; fori € [m).

Note that R; is well defined because the ;\Z are mutually distinct. Let Re M,, be such
that

(2.9) Vie[m]: jew = Re;=diag(R;).

Let X € I™" be given, define E := A — D and set Y := XopXp — E — EXp, where
Xo and Xp are the matrices extracted from X according to the index sets ;.
Then for each i € [m] the following is true. If

(2.10) Z;:= (RoY)V; C int(XV;) for some i€ [m],

then there exists a Jordan block]\//E e NI+ VIZ; with corresponding invariant sub-
space 172 eV, + UiUiTZlv of A, i.e., AE/}Z- = }A/;]\Z

Denote the set of i € [m] satisfying (2.10) by @, define J = J{ui: i € @}
and k == 3,4 il = |J|. Denote by Z € I"* the matriz collected of rows and
columns i € J of Ro Y, and suppose max{o(Z): Z € Z} < 1. Then for each
i € ® the matriz]/\4\1 corresponds to an individual Jordan block of A. If k = n, then
U{spec(M;): i € @} = spec(A), where spec(A) denotes the spectrum of the matriz A.

Remark 2.3. The main point is that the Z; in (2.10) are computed in one matrix
Z := RoY and Z C int(X) is checked. That requires O(n?) operations, only the
transformation V!BV at the beginning costs O(n?) operations. The eigenvalue and
eigenvector inclusions correspond to the columns p; in Z, where |p;| > 1 for a cluster
or multiple eigenvalue. Inclusions for a subset of k£ eigenvalues or clusters are obtained
by computing only the corresponding columns of RoY in O(nk) operations.

Remark 2.4. The assumption max{o(Z): Z € Z} < 1 may be certified by Perron-
Frobenius theory and g(mag(Z)) < 1, or by max{||Z||~, || Z]|1} < 1. Fortunately, that
test needs only O(n?) operations.

This manuscript is for review purposes only.

223
224
225
226
227

228

238

239
240

241

43
244
245
246
247
248
249

DO

NN

O
S BNV

[\

6 SIEGFRIED M. RUMP

Rema/r’lc 2.5. T/Qe first part of Theorem 2.2 assures that for i1,i5 € ® there are
matrices M;, and M;, corresponding to a Jordan block of the matrix A, respectively,
and the last assertion certifies that these are different Jordan blocks. We think that
this is always true, also without the additional condition max{o(Z): Z € Z} < 1, but
could not prove it.

Proof. Let i € [m] be fixed but arbitrary. Then (2.9) implies for every T € M,
(2.11) (RoT)V; = R;TV.

Let X € X be fixed but arbitrary, and abbreviate X; := XV;. Then (2.5) and the
definition of Xp and X imply

(2.12) XpVi = ViVl X, and XoV; =X, - V;V'X, = U,U! X.
Moreover,

(2.13) XoXpVi = XoViVI X, = U,UF X, VI X,.

Using (2.7) and A = D + E give

(2.14) Ri(A—MNI)Vi = Ri(D — 1)V, + R,EV; = R,EV;

so that (2.8) and (2.5) imply
{1 = Ri((A= ANDUUL = (Vi + UUTX)VIIXG - =
X; — Ri((D — MDUUT + EU,UT = VT —UUT X,V X =
X; — (U;UF + R,EU;UT + V;VT — RU,UF X; V') X;
~R;(EU,UF —U,Ur X,V X; .
Setting ¥ := XpoXp — F — EXp € Y and using (2.11), (2.13), (2.12), (2.14) and
(2.15) proves
(RoY)V; = Ri(XoXp — E — EXo)V; = R;(U; U X,V X; — EV; — EU;UT X;)
= —Ri(A = NDVi +{I = Ry((A - NDUUL — (Vi + U;UT X;) VD)L X
Since this is true for every X € X, it follows that the assumptions of Theorem 2.1
with X := V; and X replaced by XV, are satisfied. This proves the first part of the
theorem.

Denote by Y ¢ M,, i, the matrix collected of block columns }71 for i € ®. For
V € M, denoting the matrix of corresponding columns of the identity matrix, it

follows Y = V + Z for some Z € Z, so that o(Z) < 1 implies that Y has full rank.
Therefore, Y is a basis of an invariant subspace of A, and all assertions follow. a

(2.15)

The interval matrix Z contains inclusions of the error of the approximate eigen-
values and -vectors. Thus, the intervals can be expected to be narrow, one of the three
main principles of verification methods mentioned in the introduction. Therefore it
is most likely that the final condition max{p(Z): Z € Z} < 1 is satisfied.

Following we give some implementation details. Let a matrix B € M, be given,
then Theorem 2.2 is applied to a similarity transformation of B as follows.

function [A, W] = transform(B)
.%] = eig(®);
X = X + W\prodK(B, W, —W, X);
[Res, E] = prodK(B, W, —W, X);
A =X+ W\nidrad(Res, E);

This manuscript is for review purposes only.

286

287

VERIFIED ERROR BOUNDS FOR ALL EIGENPAIRS 7

The approximate eigenvalue matrix X is improved by one Newton iteration. Here
prodK in line 2 with one output parameter computes an accurate approximation of
the residual BW — W X using error-free transformations, and in line 3 with two output
parameters an inclusion with midpoint Res and radius E, wherefore midrad(Res,E)
is an inclusion of BW — W X.

As always in numerical analysis the residual should be calculated accurately. In
Algorithm transform we use error-free transformations which are accurate but costly.
Although using BLAS3 routines, as always in INTLAB, that takes about a third of the
total computing time of the inclusion Algorithm verifyeigall to be presented. In the
final line W\midrad(Res,E) computes an inclusion of {W~!R: R € midrad(Res,E)},
so that A is an inclusion of X + W=Y{(BW — WX) = W~!BW =: A. Hence, the
spectra of B and A are identical, and the invariant subspaces transform by W.

Note that the input matrix B in the function transform may be an interval
matrix B as well with assertions being true for all B € B. In that case use [W,X]
= eig(B.mid) . But not much cancellation is expected in the computation of the
residuals, so that prodK (B,W,-W,X) can be replaced by B¥W-W+X. Multiple eigenvalues
with small geometric multiplicity become sensitive to perturbations, and even narrow
interval components of B may widen the computed inclusions of eigenvalues and
eigenvectors significantly.

We then apply Theorem 2.2 to the interval matrix A. By the inclusion principle
(2.1) it follows that the assertions are true for all matrices within A, in particular
for A = W-'BW. Hence (2.10) for some i € [m] implies that BY; = Y;M; for
J\//.Ti e NI+ VIZ; and }72 € (Vi + U;UL'Z;)W. By Perron-Frobenius theory, o(M) <
o(| M) for every matrix M. Thus, the eigenvalues of M; are included in Ni+o(|[VIZ,)),
where the spectral radius is bounded as in [21] by a few power iterations and Collatz’s
inclusion [8].

Based on that our algorithm is as follows, partly using Matlab and INTLAB
notation.

function [L,X,mu] = verifyeigall(B)
1) Calculate A and W by Algorithm transform
2) normA = norm(A.mid,inf); d = diag(A);
dist = (mig(d — d.") <= le — 14 x normA);
[mu, binsizes| = conncomp(graph(dist),'OutputForm','cell');
J = find(binsizes > 1);
3) D=dmid;
E = A—diag(D);
4) RR=1./(D-D.");
RR(1:n+1:n%) =—1;
for j = J, RR(mu{j},mu{j}) = —1; end
5) Y= —RR.*E; cols = 0;
6) repeat
cols_old = cols;
Compute an epsilon-inflation X of Y
Compute Xp and Xp according to Theorem 2.2
cols = # of columns satisfying (2.10)
If cols=n then [L,X] = final(D,Y,W), return
If cols < cols_old, then apply verifyeigall recursively

In step 1) the input matrix B is transformed as described before. Step 2) computes

This manuscript is for review purposes only.

8 SIEGFRIED M. RUMP

connected components of the graph of the matrix of distances of diagonal elements
of A which is a guess of the Jordan structure. In step 3) the interval matrix A is
splitted into D + E with D € M,, and E € I"™". Thus for A € A there exists £ € E
with A = D + E. Note that the diagonal elements of E are, in general, nonzero.

Step 4) computes the matrix R as in Theorem 2.2. The main loop is in step 6).
The loop stops with success if (2.10) is satisfied for all columns, where Algorithm
final computes bounds for the eigenvalues of Z\/l\l and transforms the invariant sub-
spaces using W. If the number of successful columns does not increase, the function
verifyeigall is applied recursively to the columns with no inclusion. The algorithm
terminates if that recursion does not increase the number of successful columns.

The output mu identifies the clusters, i.e., L; for j € pu; and X(:,p;) form an
inclusion of an eigenvalue and corresponding invariant subspace. If the union of the
indices in mu is equal to {1,...,n}, then inclusions for all eigenvalues and invariant
subspaces have been computed.

3. Numerical results. All computational results are produced using Matlab
and INTLAB and double precision (binary64) with a relative rounding error unit
u = 275 ~ 10716 on a standard laptop. The relative error of an interval is the
maximum relative distance between two members of the interval, so that a value of
order 10~'® means that an inclusion is almost maximally accurate.

We start with some general remarks on the construction of test examples. Con-
sider the set D,, C M,, of matrices with double eigenvalue, which is of measure zero
within M,,. The set of diagonalizable matrices within D,, is again of measure zero. As
a consequence, we may expect that if there are non-trivial Jordan blocks, they belong
to mutually different eigenvalues.

Let J = diag(randn(n,1)) and replace a k x k block with all diagonal elements
equal to one random number A and 1’s on the superdiagonal. Let V be a nonsingular
matrix, then V~1JV has a k x k Jordan block to the eigenvalue \.

When computing V~!JV in floating-point arithmetic, likely the resulting matrix
A has a cluster of eigenvalues with center not far from A. In fact, it needs some
effort to construct a matrix within F,, with multiple eigenvalues, see Subsection 3.2.
The radius of the cluster is usually close to the sensitivity of the multiple eigenvalue,
which is u!/¥. For example, this attempt to construct a matrix with 3-fold eigenvalue
generates a matrix with a cluster of radius 107°.

We therefore split this section of computational results into a first part with
matrices the eigenvalues of which are generated as described above, and a second
part using special methods to generate matrices with truly multiple eigenvalues and
specified Jordan blocks. In the last subsection we compare our new algorithm with
Miyajima’s methods in [14].

3.1. Numerical results for eigenvalue clusters. Suppose the input matrix B
has multiple eigenvalues. Then [W,D] = eig(A) produces W with almost linearly de-
pendent columns for each Jordan block, and one may expect W to be ill-conditioned.
However, those columns are only linear dependent up to the sensitivity of the clusters:
a k x k Jordan block produces eigenvector approximations becoming linearly depen-
dent for a perturbation of order u/*. In that sense floating-point arithmetic has a
regularizing effect, the condition number of the eigenvector approximation matrix is
of the order u='/*,

We first compare the accuracy of the eigenvalue inclusions by verifyeigall with
those of Gershgorin circles. The latter provide verified inclusions of the eigenvalues,
but not of eigenvectors. In that respect the comparison is not fair. However, as an

This manuscript is for review purposes only.

348
349
350
35

w
[

w
v Ot Ot gt ot Ot Ot ¢
(>

e

w W

Y U R W N

W w
J

co

w W

360
361
362
363
364
365
366
367
368
369

370

VERIFIED ERROR BOUNDS FOR ALL EIGENPAIRS 9

advantage, the Gershgorin approach cannot fail.

The computational results displayed in Table 1 are as follows. For different dimen-
sions n, we generate a random matrix being diagonal except one Jordan block of size
k (which is just a random matrix for k¥ = 1), and perform a similarity transformation
by some random matrix. That is one test matrix B. Then inclusions of all eigen-
values are first computed by Gershgorin circles applied to transform(B), and second
by verifyeigall(B). The results displayed in Table 1 are the mean of all means,
the median of all medians and the maximum of all maxima of the relative errors of
the inclusions, calculated over 100 samples. In this test set verifyeigall could not
compute inclusions of all eigenvalues in 1 out of the 100 test cases for n = 1000 and
k=3.

relerr Gershgorin relerr new

n k mean median max mean median max
101 74-10713 1.8-107™ 9.6-10"'1 23-10"6 2.3.10716 3.3-10"16
2 75-1007 3.0-107 19.107* 6.4-10"% 3.0-10716 7.1.10°¢
3 39.-107° 39-100™ 1.0-10% 15-107° 3.6-107'6 1.1-10°3
100 1 25-1071° 19.10*2 52.1077 2.1-10716 2.1.10716 3.3.10°16
2 86-1077 22-1072 15-10=% 15-107% 3.0-10716 1.8-10°°
3 29.107* 2.7-107'2 23.100' 6.5-10°% 3.2.10716 24.10°°
1000 1 2.0-107 7.3-10°' 43-.107% 19.1071'6 1.9.10"16 3.3.10°16
2 33-107% 73.107" 88.1072 83-107? 3.1-107'6 2.0-107*
3 24-107%* 79.1071 1.3-10° 1.2-107% 3.1-10716 55.103

TABLE 1
Eigenvalue bounds by Gershgorin circles and the new method verifyeigall

As can be seen, the accuracy of eigenvalue inclusions of both methods decrease
with dimension and size of cluster, and the new method is generally more accurate
than inclusions by Gershgorin circles. The medians of the medians is better than the
mean because the size of the cluster is small compared to the dimension. For n = 1000
and k = 3 some inclusions by Gershgorin circles are very wide.

Next we test the performance of verifyeigall, first for real and complex clusters
of size k, respectively. Again, for £ = 1 this is just a random matrix. For one test
matrix we compute the mean and the median of the relative error of all eigenvalue
and of all eigenvector inclusions. Then, for different dimensions and 100 test cases
each, the median of those numbers is displayed in columns 3 to 6 in Tables 2 and 3.
The number of test cases where inclusions could not be computed for all eigenpairs is
listed in column ’fail’.

The mean of the ratio of computing times between verifyeigall and Matlab’s
eig is displayed in the last column. That compares apples and oranges because
verifyeigall computes verified inclusions of all results, whereas Matlab’s eig cal-
culates approximations without error bound. For random matrices the error bounds
computed by verifyeigall are pretty accurate; for a cluster of size 3 the mean
relative error of the approximations by Matlab’s eig against a multiple precision cal-
culation is about 1078 and the maximum about 107°. In any case, the comparison
gives an impression on the necessary effort for verified inclusions.

The accuracy of the inclusions corresponds to the sensitivity of the cluster u™
That is true for the eigenvalues and for the invariant subspaces. The ratio of comput-
ing time increases with the cluster size because likely a recursive call of verifyeigall

1/k.

This manuscript is for review purposes only.

10

SIEGFRIED M. RUMP

n k relerr L relerr X fail thew/teig
100 1 3.2-107'% 32.10716 12.107% 1.1-1071% - 6.8
200 1 32-107'6 32.107%% 1.7-1071% 1.9.107% - 5.0
50 1 33-107!6 3.3.-1076 26-1071° 2.6-1071°% - 9.2
1000 1 3.1-107'6 3.1-107' 34.10715 3.8-1071® - 10.9
100 2 6.0-107% 4.0-107"% 18-10"' 3.0-10712 - 12.1
200 2 3.1-107° 45-100% 4.7-107' 6.9-10712 - 8.3
500 2 1.0-107° 47-107% 14.1071° 19.1071 - 9.2
1000 2 7.5-1071° 51-107% 3.4-1071° 3.9-1071 - 19.6

TABLE 2
Random matriz with real cluster of size k

n k relerr L relerr X fail thew/teig
100 1 3.1-107'6 3.1-107% 1.0.-107%5 1.1-107% - 3.7
200 1 33-107'6 33.1076 14.107% 14.-1071% - 3.2
500 1 3.2-10716 3.1-107% 2.1-1071% 2.1-1071 - 4.5
1000 1 3.3-107%6 3.3-107' 3.0-10"15 3.7-1071° - 5.0
100 2 74-107° 43-107% 1.7-107' 3.0-10712 - 17.1
200 2 5.1-107°2 45-100% 44.107! 6.7-10712 - 11.7
500 2 36-1079 49-107" 14-1071° 19.10"1 - 18.9
1000 2 19-107% 5.2-107'% 3.3-1071° 4.0-10711 - 20.6

TABLE 3

Random matriz with complex cluster of size k

371
372

is necessary. The ratio is a little better for complex clusters, seemingly because eig
slows down. There is no failure, i.e., verified inclusions have been computed for all

373 eigenpairs in all test cases.

n k relerr L relerr X fail thew/teig
100 3 1.4-107% 4.1-107'* 18.1071'1 3.0-10712 - 19.7
200 3 72-1077 44-107% 4.7.107Y 6.7-10712 - 12.6
50 3 3.8-1077 4.7-107%* 15-107'° 1.9.-1071% - 22.1
1000 3 29-1077 52-107'* 3.7-10710 41.1071 2 26.0
100 5 1.9-107% 42-107* 58.10711 3.2.10712 - 23.4
200 5 1.1-107* 4.8-10 9.0-107" 6.9-10"12 4 15.5
50 5 3.3-107°5 49-100" 9.1-.-107° 1.9-107' 13 26.8
1000 5 2.1-107° 54-107* 23.107° 43-1071 34 33.3
100 10 9.0-107* 4.3-107% 29.1077 3.2-107'2 66 45.0
200 10 6.1-1075 6.2-10~ 78.107% 9.1-107'2 72 28.8
500 10 9.5-1077 8.2-10~"* 7.0-107% 3.4.10"' 78 42.3
1000 10 3.2-1077 1.0-107'3 93.10°% 81.-107" 65 41.9

TABLE 4

Random matriz with real cluster of size k

Results for clusters of size up to 10 are displayed in Table 4. Now we observe
failures. That means, that not for all eigenpairs inclusions could be computed, usually

This manuscript is for review purposes only.

390
391
392
393
394
395
396

397

VERIFIED ERROR BOUNDS FOR ALL EIGENPAIRS 11
for those close to the cluster. Again the relative accuracy corresponds to the sensitivity
of the clusters.

For separated eigenvalues usually one repeat-loop in step 6) of verifyeigall
suffices. For clustered eigenvalues it may be executed a number of times in order

380 to identify and separate the clusters. Therefore, for larger clusters we observe a
381 significant increase of computing time relative to Matlab’s eig. That is mainly due
382 to Matlab’s interpretation overhead and in particular the use of the operator concept.
383 That can be improved significantly by using function calls and/or calculating left and
384 right bounds individually using directed rounding as Florian Biinger did for the Taylor
385 model and AWA toolbox in INTLAB [6]. We refrained from doing this for the sake
of better readability of the code.
n k relerr L relerr X fail thew/teig

100 2 94-107° 4.1-107'% 24-107" 3.0-10712 - 18.9

200 2 6.1-107° 45-107* 7.1-107" 7.0-10712 - 12.2

500 2 2.1-107° 4.8-107% 1.8-107'° 1.9.1071* - 20.2

1000 2 2.0-107°2 52-107'% 4.0-107'° 4.1-1071 - 22.1

100 5 52-107* 4.9-107** 5.0-1077 3.3-107'2 5 29.1

200 5 34-107* 51-107"%* 5.7-1077 7.7-107'% 12 18.3

500 5 7.1-107° 5.2-107 25-1077 2.1-107' 34 30.5

1000 5 5.6-107° 8.9-107* 3.9-107% 7.1-107'* 65 37.7
TABLE 5
Random matriz with two real clusters of size k to different eigenvalues

386
387 In Table 5 results for two clusters of size k to different eigenvalues are reported. Again,
388 for clusters of size 5 sometimes inclusions could not be computed for all eigenpairs,
389 otherwise the results correspond to the previous ones.

n k relerr L relerr X fail thew/teig
100 1 52-10716 31-107% 15.10716 1.4.10°16 - 5.2
200 1 1.1-107'% 3.1-107'6 28.107'6 2.6-10716 - 5.1
500 1 1.5-10713 42.107" 1.2-1071° 1.7.10°%% - 74
1000 1 19.10713 48.107" 3.1.-1071° 38.107% - 7.6
100 2 14-107% 43-107% 18.-107' 3.0-10712 2 19.2
200 2 9.6-1079 45-107% 4.7-107' 6.8-10712 4 13.5
500 2 4.0-107°2 48-107" 1.5-1071° 19-.1071 1 19.8
1000 2 3.5-107% 5.2-107'% 39-.1010 4.1.1071% - 24.8

TABLE 6

Random matriz with two real clusters of size k to the same eigenvalue

Finally we generate matrices with two clusters of size k to the same eigenvalue.
The sensitivity is about u='/* for k denoting the largest Jordan block. So again the
accuracy corresponds to the sensitivity, for cluster size 2 not always inclusions for all
eigenpairs could be computed, and the computing time increases due to a recursive
call of verifyeigall. The results are shown in Table 6.

3.2. Numerical results for truly multiple eigenvalues. Next we perform
similar tests but knowing the true Jordan structure of the test matrices. The con-
struction of the test matrices is as follows. First a diagonal matrix is generated with

This manuscript is for review purposes only.

398
399
400
401
402
103
104
405

112
113
414
415
116
117
418
419

12 SIEGFRIED M. RUMP

small integer entries divided by a small power of 2, and with a k& x k block with equal
diagonal entries and superdiagonal set to 1. Call that matrix J. Next sparse lower
and upper unit triangular matrices L and U with integer entries are generated, so
that their inverses have integer entries. Finally it is tested that A = U 'L~'JLU is
computed without rounding errors.

The results displayed in Table 7 are structured as those in the previous section.
Here k is the size of the Jordan block, where 1/1 refers to a double eigenvalue of
(algebraic and) geometric multiplicity 2.

n k relerrLL relerrX fail thew/teig
100 1/1 3.2- 1016 3.0-10716 2.7.1079 44.10710 - 15.2
200 1/1 1.3-107' 321076 59.107° 1.1-107° - 13.9

500 1/1 5.0-107'°3.6-10716 1.2.-107% 4.2-107° 20.2
1000 1/1 1.9-10744.1-107¢ 3.6-107% 1.4-107% 3 20.7

—_

100 2 1.2-1071111.107%2 92.1072 7.7-107% - 33.2
200 2 29-107'122-107'2 93.1072 3.8-1072% - 31.0
500 2 5.5-1071155.107'2 9.8-1072 84-107° - 49.3
1000 2 84-107'191.107*2 1.0-107! 2.8-107° 2 48.5
100 3 1.7-107''16-107*2 96-1072 1.8-1073 - 41.0
2000 3 22-107127-107'2 96-1072 86-107* 1 33.4
500 3 5.0-107154.107'2 99-.1072 33-107* - 50.1
1000 3 82-1071194.1072 10-107! 27-107Y 4 49.0
100 5 24-107'119.1072 93-1072 1.8-1073% 11 42.2
200 5 20-107'26-10712 9.7.-1072 3.2-107% 22 26.9
500 5 4.2-107'%51-107'2 1.0-107' 2.7-107% 29 51.1
1000 5 82-107175.107*2 1.0-107! 6.4-107* 31 49.9

TABLE 7
Random matriz with true Jordan blocks of size k

For larger block size, the eigenvalue inclusions are more accurate, where the eigen-
vector inclusions are less accurate than expected. As before the number of cases where
not all eigenpairs are included increases with the the block size and dimension, and
the computing time as well. For larger block size and larger dimension the relative
accuracy of some eigenvector and/or invariant subspace inclusions is poor, sometimes
only one digit can be verified.

3.3. Comparison to Miyajima’s methods. Finally we compare our algo-
rithm verifyeigall with the, to our knowledge, only competitor published in [14].
Miyajima presents two algorithms VAE NSD and VAE_NJD. The source code of both
algorithms was kindly provided by the author. He also uses error-free transforma-
tions to improve the accuracy of the inclusions, and he uses NAClab [29], a publically
available Matlab toolbox which, in particular, offers algorithms to compute the Jor-
dan canonical form of a matrix. That is an ill-posed problem, thus the true Jordan
structure may not be determined correctly in floating-point arithmetic.

We mention that there are also block versions of the algorithms in [14], however,
the results shown in [14] are similar to the unblocked version so we refrain from
comparisons to save space.

We encountered hard Matlab errors or infinite loops when testing VAE_NSD and

This manuscript is for review purposes only.

124
425
426

427
428
129
430
431
432
433
134
135
436
437
438
439
140
441
442
443
444
145
446
447
448
449
150
151
452
453

iy

>
S Gt

~
oo

ol Ot Ot Ot Ot
3 C

N

9
460
161
462
463
464
465
166

167

VERIFIED ERROR BOUNDS FOR ALL EIGENPAIRS 13

VAE_NJD, and were advised by Miyajima to use the older 2013 version of NAClab
rather than the newer 2018 version. That improved the situation, but still infinite
loops occur and sometimes the routines stopped with a Matlab error. Moreover, the
routines VAE_NSD and VAE_NJD are time consuming. We therefore had to reduce the

dimension n 50 100 200 500 1000
test cases 100 100 50 15 10

TABLE 8
Number of test cases for Tables 9, 10 and 11

number of test cases according to Table 8, and for larger sizes of clusters the dimension
had to be reduced.

We generate several test matrices, both with eigenvalue clusters and true Jordan
blocks as described in Subsections 3.1 and 3.2, respectively. For one test matrix
we compute the mean of the relative errors of all eigenvalue and of all eigenvector
inclusions, and for different dimensions the median of those numbers is displayed in the
blocks “relerr L” for the eigenvalues and in the blocks “relerr X” for the eigenvectors
or invariant subspaces. As before, the case £k = 1 is added in which case the test
matrix is just a random matrix.

The number of test cases where no inclusion could be computed for one eigenpair
is listed in the column “failure”. More precisely, if, as before, only for one eigenpair
no inclusion could be computed it is considered as failure. If an algorithm fails for all
test cases, the relative errors for I and X are noted as NaN.

For some test cases three numbers are displayed for VAE_NSD and VAE_NJD in the
block “failure”. In that case the first number is the total number of failures as just
described, the second the number of cases where the algorithm runs into an infinite
loop, and the third where Matlab stops with an error. For example, for n = 200 and
k =5, VAE_NSD failed in 17 of 50 cases, no infinite loop was encountered and 1 Matlab
error. Similarly, again for n = 200 and & = 5, VAE_.NJD failed in 12 out of 50 test
cases, in 11 cases the algorithm ran into an infinite loop, and 1 test case ended with
a Matlab error.

Finally, in the last two columns, the mean time ratio of VAE_NSD and VAE_NJD to
our new routine is displayed. For example, for n = 500 and k& = 3, VAE_NSD required
on the average 10.2 times the computing time of verifyeigall, and VAE_NJD was on
the average 29.3 times slower.

The results are shown in Table 9, where the numbers above the horizontal line
refer to clusters of eigenvalues as in Subsection 3.1, and below to true Jordan blocks
as in Subsection 3.2. For increasing dimension and size of clusters or Jordan blocks,
the number of failures of all algorithms increase, more moderately for verifyeigall.
Algorithm VAE_NSD failed for cluster size 10 completely, where VAE_NJD failed for all
true Jordan blocks with no inclusion, infinite loop and/or Matlab error. If successful,
the quality of the eigenvalue inclusions of VAE_NJD and verifyeigall are comparable,
those of VAENSD are a little weaker. The quality of the eigenvector inclusions of
both VAE_NSD and VAE_NJD are weaker than those of verifyeigall in our test cases.
Algorithm VAE_NSD is generally slower than verifyeigall, whereas VAE_NJD is much
slower in our test cases.

In the previous tables we computed the mean of the relative errors of all inclusion
components and took the median over all test cases. We think that gives a general
impression of the performance of the methods. Since the size of the clusters or Jordan
blocks is relatively small compared to the dimension, those numbers favor the majority

This manuscript is for review purposes only.

relerr L relerr X failure time/t_new

n k VAE NSD VAE NJD new VAE NSD VAE NJD new VAENSD VAENJD new VAENSD VAE NJD

50 1 1.7-107% 2.2.107% 3.2.1071% 75.107 7.6-1071* 1.0-1071° - - - 5.4 11.4

100 1 29-10713 27-107* 3.2-107¢ 1.7-107* 1.8-1071 1.1.10715 - - - 7.9 21.9

200 1 5.4-10713 3.6-1071% 3.2-1071¢ 4.3.10713 43-1071% 1.9.-10°% - - - 6.8 22.5

500 1 1.6-107'2 4.7-107% 3.3-10716 1.3.107'2 1.3-10712 2.6-107% - - - 19.3 59.8

1000 1 3.6-107'2 55-107* 3.1-10716 33-.107'2 3.3-10712 3.8-1071° - 4/-/4 - 29.5 90.3

50 2 1.0-107¢ 2.2.107% 35-107% 6.3-107% 8.4-10713 2.3.10716 - 3/2/1 - 3.0 5.3

100 2 42-107% 1.7-107% 2.8-107% 1.3-1077 9.5-107'2 1.5.10716 - - - 5.0 12.1

200 2 75-1077 33-107° 52-107° 1.6-107 1.9-107'! 2.0.-1071¢ - - - 6.3 17.8

500 2 22-107% 46-107° 94-107° 3.7-1077 1.6-1071° 2.6-1071¢ - - - 14.6 36.8
1000 2 45-107° 1.9-107° 6.2-107% 24-1077 3.6-10710 2.7.10°1¢ 1 1/-/1 - 29.2 55.8

50 3 26-107* 1.0-107° 14-1075 1.8-107° 1.2-107'2 2.7-10716 - 2/2/- - 2.0 3.7

100 3 75-107° 1.3-107% 25.107% 24.107% 6.6-10712 2.7-1071¢ 1 2/2/- - 3.4 21.1

& 200 3 26-107%* 1.2-107% 3.6-107% 1.8-107° 3.3-1071! 2.7.10716 2 1/1/- - 3.3 27.9
2 500 3 1.2-107% 49-1077 74-1077 1.8-107° 83-107%! 2.7.10°16 9 1/1/- - 10.2 29.3
< 50 5 5.8-107% 59-107* 1.2-107% 9.0-107* 1.5-107'2 34.10716 28 11/11/- - 1.7 19.3
a 100 5 63-1073% 2.7-107* 63-107* 6.9-107* 9.2-107!2 3.8.10716 37 10/8/2 - 2.6 43.7
m 200 5 43-107% 6.1-107° 25-100%* 6.5-107% 4.5.-1071 46-107¢ 17/-/1 12/11/1 2 3.3 174.6
N 500 5 NaN 35-107¢ 1.9-107* NaN 1.6-107' 4.2.107'¢ 15/-/4 14/14/- 1 8.0 356.5
= 50 10 NaN 81-107% 2.0-1072 NaN 54-107'2 2.9.107% 100/-/1 74/74/- 30 1.4 84.0
100 10 NaN 5.3-107% 9.3-1073 NaN 1.4-107' 50-107% 50/-/2 46/0/46 36 1.7 130.9

200 10 NaN 1.0-107% 6.8-107* NaN 3.8-107 1.2.10°% 20/-/1 18/18/- 13 2.3 255.5

500 10 NaN NaN 23-107* NaN NaN 4.5-1071 15 15/15/- 9 7.0 351.6

50 1/1 1.2-1077 NaN 5.1-1076 4.2.107 NaN 1.4-1071° - 100/13/87 - 7.2 99.5

100 1/1 25-1006 NaN 1.4-107% 1.4.-107° NaN 4.3.1071° - 50/24/26 - 8.8 454.2

50 2 15-1072 NaN 26-107% 72-107 NaN 1.9.1071° 7 100/23/77 - 2.9 55.3

100 2 1.6-100% NaN 1.9-107¢ 43.107° NaN 4.8.1071 2 50/34/16 - 4.1 266.3

50 3 33-10® NaN 16-107% 28-1071® NaN 3.1-1071° 7 100/20/80 - 2.1 34.6

100 3 28-100% NaN 56-107° 3.8-107° NaN 6.5-1071° 14 50/35/15 - 3.2 229.9

- 50 5 4.6-1072 NaN 39-107% 3.4-10°8 NaN 5.4-10710 66 100/48/52 2 1.8 78.1
— 100 5 NaN NaN 1.7-1073 NaN NaN 1.2-107° 50 50/40/10 4 2.7 240.2

TABLE 9

Comparison with VAENSD and VAE_NSD for clusters and true Jordan blocks with number of test cases according to Table 8

This manuscript is for review purposes only.

468
469
470
171
472
473
474
475
476
477
478
479
480

481

482
483
184
485
486
487
488
189
190

VERIFIED ERROR BOUNDS FOR ALL EIGENPAIRS 15

relerr LL relerr X
n k VAENSD VAE_NJD new VAE_NSD VAE_NJD new

501 5.0-107" 1.9-107% 44-1071% 1.2.107° 84-.107102.0-10715
1001 7.9-107'124.10713 44-10716 2.7.107® 1.8-1078 2.2.1071
2001 3.8-107" 7.7-107' 4.4-10716 3.1.-107% 2.3-1078 2.7-1071°
5001 6.1-1071°9.0-107'3 44-1071% 16-1077 2.8-1077 5.2.-10715
10001 6.9-10"1035-10713 44-10"% 83.107% 84-1076 7.7.-10"1°

502 2.3-107* 51-107% 1.2.107° 2.7-10! 1.7-107* 3.0-10°©
1002 3.6-1072 9.8-107° 2.0-107* 4.2-107! 3.1-107* 3.3-107"
2002 1.3-1072 5.1-107% 5.8-10% 95.107' 1