
VERIFIED ERROR BOUNDS FOR ALL EIGENVALUES AND1

EIGENVECTORS OF A MATRIX2

SIEGFRIED M. RUMP∗3

Abstract. A verification method is presented to compute error bounds for all eigenvectors and4
eigenvalues including clustered and/or multiple ones of a general, real or complex matrix. In case5
of a narrow cluster error bounds for an invariant subspace are computed because computation of a6
single eigenvector may be ill-posed.7

Computer algebra and verification methods have in common that the computed results are correct8
with mathematical certainty. Unlike a computer algebra method, a verification method may fail in the9
sense that only partial or no inclusions at all are computed. That may happen for very ill-conditioned10
problems being too sensitive for the arithmetical precision in use. That cannot happen for computer11
algebra methods which are “never-failing” because potentially infinite precision is used. In turn,12
however, that may slow down computer algebra methods significantly and may impose limitations13
on the problem size. In contrast, verification methods solely use floating-point operations so that14
their computing time and treatable problem size is of the order of that of purely numerical algorithms.15

For our problem it is proved that the union of the eigenvalue bounds contains the whole spectrum16
of the matrix, and bounds for corresponding invariant subspaces are computed. The computational17
complexity to compute inclusions of all eigenpairs of an n× n-matrix is O(n3).18
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1. Introduction. This note presents a verification method to compute error22

bounds for all eigenvectors and eigenvalues of a general, real or complex matrix. In23

case of clustered and/or multiple eigenvalues an inclusion of a basis of the corre-24

sponding invariant subspace is computed. This means that the computed bounds do25

contain the true result with mathematical certainty. In particular, it is proved that26

the computed bounds cover all eigenpairs of the matrix.27

Verification methods [17, 22, 18] are completely rigorous, including all procedural28

and/or rounding errors, however, they are restricted to well-posed problems. For29

example, it is possible to prove that a small circle in the complex plane contains30

two eigenvalues of a matrix, but verification methods do not allow to prove that it31

contains a double eigenvalue because that problem is ill-posed: an arbitrarily small32

perturbation of the input matrix may have two simple eigenvalues. Similarly, it is33

not possible to prove reasonably sharp bounds for an eigenvector of an eigenvalue of34

algebraic multiplicity 2, regardless of the geometric multiplicity. That is even true for35

a symmetric input matrix where, in contrast, very sharp bounds of eigenvalues follow36

directly by perturbation bounds.37

Verification methods should not be confused with computer algebra methods.38

The latter provide never-failing algorithms. This is true independent of the condition39

number because computer algebra methods potentially work in infinite precision. Both40

approaches have in common that the computed results are always mathematically41

correct. Verification methods intentionally use floating-point arithmetic for speed42

with the drawback that failures occur, meaning, that no inclusion can be computed.43

In a good verification method that happens only if the problem is too hard, i.e.,44

ill-conditioned for the floating-point accuracy available.45
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2 SIEGFRIED M. RUMP

The first verification method for the algebraic eigenproblem is Krawczyk’s paper46

[12] which applies his method for nonlinear problems [12] to Ax− λx = 0 with some47

normalization of x. Krawczyk’s method, however, is a refinement of given bounds.48

Moore proposed to use Brouwer’s fixed point theorem [16] and proof of nonsingularity49

of some matrix to derive an existence test. Krawczyk’s operator and Moore’s ansatz50

are already contained in [10, p. 12f].51

In [19] this method was improved in three ways: An interval iteration with so-52

called epsilon-inflation computes an inclusion if the problem is not too ill-conditioned,53

the proof of nonsingularity is omitted by requiring a self-mapping into the interior54

in Brouwer’s fixed point theorem, and an inclusion for the error with respect to an55

approximation is computed rather than an inclusion of the solution itself. Those three56

techniques are today’s standard for verification methods from the solution of linear57

systems to partial differential equations. For an overview see [22, 18].58

Based on that, in [19] a verification method for one eigenvalue/eigenvector pair of59

a real or complex n×n matrix is introduced with complexity O(n3). One might apply60

that method n times, but besides the complexity O(n4) that fails for multiple eigen-61

values and cannot guarantee that all eigenvalues are covered. Several publications62

concentrate on verified error bounds on one eigenpair, for example [28, 4, 5, 9, 26, 25];63

in [2] a method is introduced for double eigenvalues.64

Historically, the next step are verification methods for multiple eigenvalues and65

corresponding invariant subspaces introduced in [21]. Bounds are computed regard-66

less of the Jordan structure, but for only one cluster. Verification methods for all67

eigenpairs of a symmetric positive definite matrix are given in [15].68

In this note we are interested in bounds for all eigenpairs of a general real or69

complex matrix. The first and seemingly only paper to that is Miyajima’s [14], which70

is based on nonlinear matrix equations derived from the eigenproblem with special71

emphasis on multiple eigenvalues including the defective case. The nonlinear system72

and Newton correction are similar to [21]. His paper gives two methods. The first73

method uses numerical spectral decomposition and computes eigenvalue inclusions74

based on Gershgorin circles of the preconditioned matrix. Then A − λI is singular75

for λ in an eigenvalue inclusion, so that an eigenvector inclusion follows by solving a76

linear system with one row and column of A−λI deleted. The linear system is solved77

using a transformation of variables. For clusters, a basis of an invariant subspace is78

enclosed by solving the nonlinear matrix equation. The second method uses numerical79

block diagonalization analogous to [3], in which a numerical Jordan decomposition of80

A is included. The decomposition is known to be ill-posed, occasionally leading to81

computational problems. The method encloses all eigenvalues and eigenvectors (bases82

of invariant subspaces in the cluster case) by solving the nonlinear matrix equation.83

Miyajima’s methods are also suitable for the generalized algebraic eigenproblem. That84

is also true for our method, but for simplicity we refrain from presenting that.85

The approach presented in this note is based on [21]. As for Miyajima’s approach,86

inclusions for some or all eigenspaces may be computed. In contrast, we do not rely on87

a numerical Jordan decomposition. In the next section the method will be presented,88

and in the final section on computational results we show the new method to be faster89

and more stable than Miyajima’s.90

2. Main result. Denote by K ∈ {R,C} the field of real or complex numbers,91

and by Kn and Kn,k the set of n-vectors and n× k matrices over K, respectively. We92

also use the short notation Mn,k to denote a (real or complex) n× k matrix, and Mn93

if k = n.94
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Denote by I a set of real or complex intervals, then similarly we write In for95

interval n-vectors and In,k for n×k interval matrices. We will use boldface letters for96

interval quantities, and denote by int(·) the topological interior. The n × n identity97

matrix is denoted by In, where the subindex is omitted if clear from the context, and98

its j-th column by ej . Entrywise matrix multiplication (the Hadamard product) is99

denoted by ◦.100

The principles of verification methods and interval arithmetic can be found in101

[17, 22, 18]. However, we only use that interval operations op ∈ {+,−, ·, /} are102

defined such that for compatible interval quantities A,B the inclusion property103

(2.1) ∀A ∈ A ∀B ∈ B : A op B ∈ A op B104

is satisfied. Intervals may be represented by infimum-supremum or midpoint-radius,105

where the former is often used for real and the latter for complex intervals. The106

representation may influence the quality of the bounds, however, the only important107

property for the mathematical correctness is (2.1).108

Concerning notation, we write mig(A) := min{|a| : a ∈ A} and mag(A) :=109

max{|a| : a ∈ A} for a scalar interval A, and the definition extends to interval vectors110

and matrices entrywise. Properties like, for example, being non-singular extend to an111

interval matrix A by requesting that all A ∈ A are non-singular.112

We will use Matlab notation [13] and INTLAB [20], the Matlab-Octave toolbox for113

reliable computing. In INTLAB, real interval quantities are represented by infimum-114

supremum, complex interval quantities by midpoint-radius, but the following applies,115

mutatis mutandis, to other representations as well.116

In [21, Theorem 3.2] we proved the following.117

Theorem 2.1. Let A,R ∈ Mn, X̃ ∈ Mn,k, λ̃ ∈ K and X ∈ In,k be given. Define118

[n] := {1, . . . , n}, and for non-empty µ ⊆ [n] with k := |µ| denote a partition of the119

n× n identity matrix I by120

(2.2) V := I(:, µ) ∈Mn,k and U = I(:, [n]\µ) ∈Mn,n−k.121

It follows that UUT + V V T = I. Define122

(2.3) f(X) := −R(AX̃ − λ̃X̃) + {I −R
(
(A− λ̃I)UUT − (X̃ + UUT ·X)V T

)
} ·X.123

Suppose124

(2.4) f(X) ⊆ int(X).125

Then there exists M̂ ∈Mk with M̂ ∈ λ̃Ik +V TX such that the Jordan canonical form126

of M̂ is identical to a k × k principal submatrix of the Jordan canonical form of A,127

and there exists Ŷ ∈Mn,k with Ŷ ∈ X̃ +UUTX such that Ŷ spans the corresponding128

invariant subspace of A, i.e., AŶ = Ŷ M̂.129

The k × k submatrix of X with rows in µ is the inclusion of a Jordan block of A130

shifted by λ̃, where for the invariant subspace that k×k submatrix is replaced by the131

corresponding submatrix of X̃ for normalization.132

Theorem 2.1 gives a sufficient criterion for X ∈ In,k to contain M̂ and Ŷ with133

the described properties. The better the approximations λ̃, X̃ for the eigenspace, the134

preconditioner R and the choice of X, the more likely condition (2.4) is satisfied. If135

(2.3) is not satisfied for the initial X, then an interval iteration with epsilon-inflation136
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starting with X := f(X) is applied, see [21]. The matrix R is an approximate inverse137

of the Jacobian of the underlying Newton iteration for X. Note that the assertions138

are true regardless of the quality of λ̃, X̃ and R. The computational effort is O(n3).139

The quality of the inclusions depend on the Jordan structure of the matrix. There140

is a huge literature on the sensitivity of eigendecompositions, among them [23, 24, 1,141

7, 11]. As a rule of thumb the sensitivity of an eigenvalue λ is of the order u1/k for u142

denoting the relative rounding error unit and k the size its largest Jordan block [27,143

Section 2.23]. As a consequence, this is the minimum width of an inclusion of λ when144

using a floating-point arithmetic with relative rounding error unit u.145

Let B ∈ Mn. In order to derive an O(n3) method for computing inclusions of146

some or all eigenpairs, the purpose of this note, we compute an approximate eigende-147

composition [V,D]=eig(B) of B. Suppose V is nonsingular and apply Theorem 2.1148

to V −1BV , then inclusions of the spectrum and Jordan structure of B are obtained.149

If B is not defective and V its exact eigenbasis, then V −1BV is diagonal. But150

even if B has multiple eigenvalues of geometric multiplicity 1, we may expect that151

computationally V −1BV is almost diagonal because of the following. For a k × k152

Jordan block to an eigenvalue λ, a numerical algorithm like Matlab’s eig tends to153

compute a basis of the corresponding invariant subspace with all columns close to154

a multiple of the corresponding eigenvector. The sensitivity of λ and the condition155

number of the corresponding columns of V is about u1/k. A numerically singular156

eigenapproximation matrix V may occur, but to our experience only in special cases157

or when searching for it. For numerical evidence see the beginning of Section 3.158

Therefore a reasonable approximation to the eigenvectors of V −1BV is the iden-159

tity matrix. For each eigenvalue or cluster of eigenvalues, the corresponding matrix160

R in Theorem 2.1 is close to diagonal. Therefore we can combine the application161

of Theorem 2.1 to a set of eigenvalues or clusters into one matrix to achieve a total162

computing time of O(n3).163

The matrix V −1BV is usually not representable in floating-point, so that we have164

to work with an inclusion A of it. In verification methods it is a standard procedure165

to replace A in Theorem 2.1 by an interval matrix A and to conclude that, due to the166

inclusion property (2.1), all assertions are true for all A ∈ A, in particular for V −1BV .167

The eigenvalues and Jordan structure of B and V −1BV coincide, and the eigenvector168

inclusions transform by V . An inclusion A of V −1BV is computed by standard169

verification methods [22] including the proof that V is nonsingular. A corresponding170

INTLAB command is A = verifylss(V,intval(A)*V). Here verifylss(A,b) is a171

verified inclusion of the linear system Ax = b, where the type cast intval(A) assures172

that the right hand side intval(A)*V is an inclusion of AV . For details see [20, 22].173

Before we can state our main result, we need some notation. For simplicity we174

state our theorem for the computation of inclusions of all eigenvalues and correspond-175

ing invariant subspaces. If only partially successful, i.e., for some eigenvalues the176

verification failed, it will be clear how to state and apply the theorem only to these177

remaining eigenvalues. We refrain to state the result for such a partial set because178

the notation would be even more involved.179

As before denote [n] := {1, . . . , n}. For 1 ≤ m ≤ n, let µ1 ∪ . . . ∪ µm = [n] be a180

partition of [n], i.e., µi ∩ µj = ∅ for i 6= j. Then, for given i ∈ [m] and k := |µi|, the181

splitting of I into columns within and outside µi is denoted by Vi := I(:, µi) ∈ Mn,k182

and Ui = I(:, [n]\µi) ∈ Mn,n−k. Multiplying a matrix from the left by V T
i Vi sets all183

rows outside µi to zero, from the right the columns outside µi. Furthermore, V T
i Vj is184
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the zero matrix for i 6= j and185

(2.5) UiU
T
i + ViV

T
i = In and ViV

T
i Vi = Vi and UT

i Vi = 0 for i ∈ [m].186

For a matrix C ∈Mn we define CD ∈Mn to be the block diagonal matrix composed187

of the µi-blocks of C, i.e., CD :=
∑m

i=1 ViV
T
i CViV

T
i . The subindex “D” serves as188

an operator on C and applies to interval matrices as well; it means to extract the189

elements in the diagonal µi-blocks. Similarly we define CO := C − CD to be the190

matrix of complement indices of C. Then (2.5) and
∑m

i=1 ViV
T
i = In yield191

(2.6) CO :=

m∑
i=1

UiU
T
i CViV

T
i .192

Again, the subindex O serves as an operator to C and applies also to interval matrices.193

Theorem 2.2. We use the notation just given. Let A ∈Mn, let mutually distinct194

λ̃i ∈ K for i ∈ [m] be given, and let D ∈ Mn be a diagonal matrix with Djj = λ̃i for195

all i ∈ [m] and for all j ∈ µi. Then Djj 6= λ̃i for all j /∈ µi and196

(2.7) DVi = λ̃iVi for i ∈ [m].197

Furthermore, let diagonal Ri ∈Mn be such that198

(2.8) Ri(D − λ̃iI)Ui = Ui and RiVi = −Vi for i ∈ [m].199

Note that Ri is well defined because the λ̃i are mutually distinct. Let R̃ ∈Mn be such200

that201

(2.9) ∀i ∈ [m] : j ∈ µi ⇒ R̃ej = diag(Ri).202

Let X ∈ In,n be given, define E := A −D and set Y := XOXD − E − EXO, where203

XO and XD are the matrices extracted from X according to the index sets µi.204

Then for each i ∈ [m] the following is true. If205

(2.10) Zi := (R̃ ◦Y)Vi ⊆ int(XVi) for some i ∈ [m],206

then there exists a Jordan block M̂i ∈ λ̃iI + V T
i Zi with corresponding invariant sub-207

space Ŷi ∈ Vi + UiU
T
i Zi of A, i.e., AŶi = ŶiM̂i.208

Denote the set of i ∈ [m] satisfying (2.10) by Φ, define J :=
⋃
{µi : i ∈ Φ}209

and k :=
∑

i∈Φ |µi| = |J |. Denote by Z ∈ Ik,k the matrix collected of rows and210

columns i ∈ J of R̃ ◦ Y, and suppose max{%(Z) : Z ∈ Z} < 1. Then for each211

i ∈ Φ the matrix M̂i corresponds to an individual Jordan block of A. If k = n, then212 ⋃
{spec(M̂i) : i ∈ Φ} = spec(A), where spec(A) denotes the spectrum of the matrix A.213

Remark 2.3. The main point is that the Zi in (2.10) are computed in one matrix214

Z := R̃ ◦ Y and Z ⊆ int(X) is checked. That requires O(n2) operations, only the215

transformation V −1BV at the beginning costs O(n3) operations. The eigenvalue and216

eigenvector inclusions correspond to the columns µi in Z, where |µi| > 1 for a cluster217

or multiple eigenvalue. Inclusions for a subset of k eigenvalues or clusters are obtained218

by computing only the corresponding columns of R̃ ◦Y in O(nk) operations.219

Remark 2.4. The assumption max{%(Z) : Z ∈ Z} < 1 may be certified by Perron-220

Frobenius theory and %(mag(Z)) < 1, or by max{‖Z‖∞, ‖Z‖1} < 1. Fortunately, that221

test needs only O(n2) operations.222
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6 SIEGFRIED M. RUMP

Remark 2.5. The first part of Theorem 2.2 assures that for i1, i2 ∈ Φ there are223

matrices M̂i1 and M̂i2 corresponding to a Jordan block of the matrix A, respectively,224

and the last assertion certifies that these are different Jordan blocks. We think that225

this is always true, also without the additional condition max{%(Z) : Z ∈ Z} < 1, but226

could not prove it.227

Proof. Let i ∈ [m] be fixed but arbitrary. Then (2.9) implies for every T ∈Mn228

(2.11) (R̃ ◦ T )Vi = RiTVi.229

Let X ∈ X be fixed but arbitrary, and abbreviate Xi := XVi. Then (2.5) and the230

definition of XD and XO imply231

(2.12) XDVi = ViV
T
i Xi and XOVi = Xi − ViV T

i Xi = UiU
T
i Xi.232

Moreover,233

(2.13) XOXDVi = XOViV
T
i Xi = UiU

T
i XiV

T
i Xi.234

Using (2.7) and A = D + E give235

(2.14) Ri(A− λ̃iI)Vi = Ri(D − λ̃iI)Vi +RiEVi = RiEVi ,236

so that (2.8) and (2.5) imply237

(2.15)

{I −Ri((A− λ̃iI)UiU
T
i − (Vi + UiU

T
i Xi)V

T
i )}Xi =

Xi −Ri((D − λ̃iI)UiU
T
i + EUiU

T
i − ViV T

i − UiU
T
i XiV

T
i )Xi =

Xi − (UiU
T
i +RiEUiU

T
i + ViV

T
i −RiUiU

T
i XiV

T
i )Xi =

−Ri(EUiU
T
i − UiU

T
i XiV

T
i )Xi .

238

Setting Y := XOXD − E − EXO ∈ Y and using (2.11), (2.13), (2.12), (2.14) and239

(2.15) proves240

(R̃ ◦ Y )Vi = Ri(XOXD − E − EXO)Vi = Ri(UiU
T
i XiV

T
i Xi − EVi − EUiU

T
i Xi)241

= −Ri(A− λ̃iI)Vi + {I −Ri((A− λ̃iI)UiU
T
i − (Vi + UiU

T
i Xi)V

T
i )}Xi.242243

Since this is true for every X ∈ X, it follows that the assumptions of Theorem 2.1244

with X̃ := Vi and X replaced by XVi are satisfied. This proves the first part of the245

theorem.246

Denote by Ŷ ∈ Mn,k the matrix collected of block columns Ŷi for i ∈ Φ. For247

V ∈ Mn,k denoting the matrix of corresponding columns of the identity matrix, it248

follows Ŷ = V + Z for some Z ∈ Z, so that %(Z) < 1 implies that Ŷ has full rank.249

Therefore, Ŷ is a basis of an invariant subspace of A, and all assertions follow.250

The interval matrix Z contains inclusions of the error of the approximate eigen-251

values and -vectors. Thus, the intervals can be expected to be narrow, one of the three252

main principles of verification methods mentioned in the introduction. Therefore it253

is most likely that the final condition max{%(Z) : Z ∈ Z} < 1 is satisfied.254

Following we give some implementation details. Let a matrix B ∈ Mn be given,255

then Theorem 2.2 is applied to a similarity transformation of B as follows.256

function [A, W] = transform(B)

[W, X] = eig(B);

X = X + W\prodK(B, W,−W, X);

[Res, E] = prodK(B, W,−W, X);

A = X + W\midrad(Res, E);

257
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The approximate eigenvalue matrix X is improved by one Newton iteration. Here258

prodK in line 2 with one output parameter computes an accurate approximation of259

the residual BW−WX using error-free transformations, and in line 3 with two output260

parameters an inclusion with midpoint Res and radius E, wherefore midrad(Res,E)261

is an inclusion of BW −WX.262

As always in numerical analysis the residual should be calculated accurately. In263

Algorithm transform we use error-free transformations which are accurate but costly.264

Although using BLAS3 routines, as always in INTLAB, that takes about a third of the265

total computing time of the inclusion Algorithm verifyeigall to be presented. In the266

final line W\midrad(Res,E) computes an inclusion of {W−1R : R ∈ midrad(Res, E)},267

so that A is an inclusion of X + W−1(BW −WX) = W−1BW =: A. Hence, the268

spectra of B and A are identical, and the invariant subspaces transform by W .269

Note that the input matrix B in the function transform may be an interval270

matrix B as well with assertions being true for all B ∈ B. In that case use [W,X]271

= eig(B.mid) . But not much cancellation is expected in the computation of the272

residuals, so that prodK(B,W,-W,X) can be replaced by B*W-W*X. Multiple eigenvalues273

with small geometric multiplicity become sensitive to perturbations, and even narrow274

interval components of B may widen the computed inclusions of eigenvalues and275

eigenvectors significantly.276

We then apply Theorem 2.2 to the interval matrix A. By the inclusion principle277

(2.1) it follows that the assertions are true for all matrices within A, in particular278

for A = W−1BW . Hence (2.10) for some i ∈ [m] implies that BŶi = ŶiM̂i for279

M̂i ∈ λ̃iI + V T
i Zi and Ŷi ∈ (Vi + UiU

T
i Zi)W . By Perron-Frobenius theory, %(M) ≤280

%(|M |) for every matrix M . Thus, the eigenvalues of M̂i are included in λ̃i±%(|V T
i Zi|),281

where the spectral radius is bounded as in [21] by a few power iterations and Collatz’s282

inclusion [8].283

Based on that our algorithm is as follows, partly using Matlab and INTLAB284

notation.285

function [L,X,mu] = verifyeigall(B)
1) Calculate A and W by Algorithm transform

2) normA = norm(A.mid, inf); d = diag(A);
dist = (mig(d− d.') <= 1e− 14 ∗ normA);
[mu, binsizes] = conncomp(graph(dist),'OutputForm','cell');
J = find(binsizes > 1);

3) D = d.mid;
E = A− diag(D);

4) RR = 1./(D− D.');
RR(1 : n + 1 : n2) = −1;
for j = J, RR(mu{j}, mu{j}) = −1; end

5) Y = −RR. ∗ E; cols = 0;
6) repeat

cols old = cols;
Compute an epsilon-inflation X of Y
Compute XD and XO according to Theorem 2.2
cols = # of columns satisfying (2.10)
If cols=n then [L,X] = final(D,Y,W), return
If cols < cols old, then apply verifyeigall recursively

286

In step 1) the input matrix B is transformed as described before. Step 2) computes287
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8 SIEGFRIED M. RUMP

connected components of the graph of the matrix of distances of diagonal elements288

of A which is a guess of the Jordan structure. In step 3) the interval matrix A is289

splitted into D + E with D ∈ Mn and E ∈ In,n. Thus for A ∈ A there exists E ∈ E290

with A = D + E. Note that the diagonal elements of E are, in general, nonzero.291

Step 4) computes the matrix R̃ as in Theorem 2.2. The main loop is in step 6).292

The loop stops with success if (2.10) is satisfied for all columns, where Algorithm293

final computes bounds for the eigenvalues of M̂i and transforms the invariant sub-294

spaces using W . If the number of successful columns does not increase, the function295

verifyeigall is applied recursively to the columns with no inclusion. The algorithm296

terminates if that recursion does not increase the number of successful columns.297

The output mu identifies the clusters, i.e., Lj for j ∈ µi and X(:, µi) form an298

inclusion of an eigenvalue and corresponding invariant subspace. If the union of the299

indices in mu is equal to {1, . . . , n}, then inclusions for all eigenvalues and invariant300

subspaces have been computed.301

3. Numerical results. All computational results are produced using Matlab302

and INTLAB and double precision (binary64) with a relative rounding error unit303

u = 2−53 ≈ 10−16 on a standard laptop. The relative error of an interval is the304

maximum relative distance between two members of the interval, so that a value of305

order 10−16 means that an inclusion is almost maximally accurate.306

We start with some general remarks on the construction of test examples. Con-307

sider the set Dn ⊆ Mn of matrices with double eigenvalue, which is of measure zero308

within Mn. The set of diagonalizable matrices within Dn is again of measure zero. As309

a consequence, we may expect that if there are non-trivial Jordan blocks, they belong310

to mutually different eigenvalues.311

Let J = diag(randn(n,1)) and replace a k× k block with all diagonal elements312

equal to one random number λ and 1’s on the superdiagonal. Let V be a nonsingular313

matrix, then V −1JV has a k × k Jordan block to the eigenvalue λ.314

When computing V −1JV in floating-point arithmetic, likely the resulting matrix315

A has a cluster of eigenvalues with center not far from λ. In fact, it needs some316

effort to construct a matrix within Fn with multiple eigenvalues, see Subsection 3.2.317

The radius of the cluster is usually close to the sensitivity of the multiple eigenvalue,318

which is u1/k. For example, this attempt to construct a matrix with 3-fold eigenvalue319

generates a matrix with a cluster of radius 10−5.320

We therefore split this section of computational results into a first part with321

matrices the eigenvalues of which are generated as described above, and a second322

part using special methods to generate matrices with truly multiple eigenvalues and323

specified Jordan blocks. In the last subsection we compare our new algorithm with324

Miyajima’s methods in [14].325

3.1. Numerical results for eigenvalue clusters. Suppose the input matrix B326

has multiple eigenvalues. Then [W,D] = eig(A) produces W with almost linearly de-327

pendent columns for each Jordan block, and one may expect W to be ill-conditioned.328

However, those columns are only linear dependent up to the sensitivity of the clusters:329

a k × k Jordan block produces eigenvector approximations becoming linearly depen-330

dent for a perturbation of order u1/k. In that sense floating-point arithmetic has a331

regularizing effect, the condition number of the eigenvector approximation matrix is332

of the order u−1/k.333

We first compare the accuracy of the eigenvalue inclusions by verifyeigall with334

those of Gershgorin circles. The latter provide verified inclusions of the eigenvalues,335

but not of eigenvectors. In that respect the comparison is not fair. However, as an336
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advantage, the Gershgorin approach cannot fail.337

The computational results displayed in Table 1 are as follows. For different dimen-338

sions n, we generate a random matrix being diagonal except one Jordan block of size339

k (which is just a random matrix for k = 1), and perform a similarity transformation340

by some random matrix. That is one test matrix B. Then inclusions of all eigen-341

values are first computed by Gershgorin circles applied to transform(B), and second342

by verifyeigall(B). The results displayed in Table 1 are the mean of all means,343

the median of all medians and the maximum of all maxima of the relative errors of344

the inclusions, calculated over 100 samples. In this test set verifyeigall could not345

compute inclusions of all eigenvalues in 1 out of the 100 test cases for n = 1000 and346

k = 3.347

relerr Gershgorin relerr new
n k mean median max mean median max

10 1 7.4 · 10−13 1.8 · 10−14 9.6 · 10−11 2.3 · 10−16 2.3 · 10−16 3.3 · 10−16

2 7.5 · 10−7 3.0 · 10−14 1.9 · 10−4 6.4 · 10−8 3.0 · 10−16 7.1 · 10−6

3 3.9 · 10−5 3.9 · 10−14 1.0 · 10−3 1.5 · 10−5 3.6 · 10−16 1.1 · 10−3

100 1 2.5 · 10−10 1.9 · 10−12 5.2 · 10−7 2.1 · 10−16 2.1 · 10−16 3.3 · 10−16

2 8.6 · 10−7 2.2 · 10−12 1.5 · 10−3 1.5 · 10−8 3.0 · 10−16 1.8 · 10−5

3 2.9 · 10−4 2.7 · 10−12 2.3 · 10−1 6.5 · 10−6 3.2 · 10−16 2.4 · 10−3

1000 1 2.0 · 10−7 7.3 · 10−11 4.3 · 10−3 1.9 · 10−16 1.9 · 10−16 3.3 · 10−16

2 3.3 · 10−6 7.3 · 10−11 8.8 · 10−2 8.3 · 10−9 3.1 · 10−16 2.0 · 10−4

3 2.4 · 10−4 7.9 · 10−11 1.3 · 100 1.2 · 10−6 3.1 · 10−16 5.5 · 10−3

Table 1
Eigenvalue bounds by Gershgorin circles and the new method verifyeigall

As can be seen, the accuracy of eigenvalue inclusions of both methods decrease348

with dimension and size of cluster, and the new method is generally more accurate349

than inclusions by Gershgorin circles. The medians of the medians is better than the350

mean because the size of the cluster is small compared to the dimension. For n = 1000351

and k = 3 some inclusions by Gershgorin circles are very wide.352

Next we test the performance of verifyeigall, first for real and complex clusters353

of size k, respectively. Again, for k = 1 this is just a random matrix. For one test354

matrix we compute the mean and the median of the relative error of all eigenvalue355

and of all eigenvector inclusions. Then, for different dimensions and 100 test cases356

each, the median of those numbers is displayed in columns 3 to 6 in Tables 2 and 3.357

The number of test cases where inclusions could not be computed for all eigenpairs is358

listed in column ’fail’.359

The mean of the ratio of computing times between verifyeigall and Matlab’s360

eig is displayed in the last column. That compares apples and oranges because361

verifyeigall computes verified inclusions of all results, whereas Matlab’s eig cal-362

culates approximations without error bound. For random matrices the error bounds363

computed by verifyeigall are pretty accurate; for a cluster of size 3 the mean364

relative error of the approximations by Matlab’s eig against a multiple precision cal-365

culation is about 10−8 and the maximum about 10−6. In any case, the comparison366

gives an impression on the necessary effort for verified inclusions.367

The accuracy of the inclusions corresponds to the sensitivity of the cluster u−1/k.368

That is true for the eigenvalues and for the invariant subspaces. The ratio of comput-369

ing time increases with the cluster size because likely a recursive call of verifyeigall370
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n k relerr L relerr X fail tnew/teig

100 1 3.2 · 10−16 3.2 · 10−16 1.2 · 10−15 1.1 · 10−15 - 6.8
200 1 3.2 · 10−16 3.2 · 10−16 1.7 · 10−15 1.9 · 10−15 - 5.0
500 1 3.3 · 10−16 3.3 · 10−16 2.6 · 10−15 2.6 · 10−15 - 9.2

1000 1 3.1 · 10−16 3.1 · 10−16 3.4 · 10−15 3.8 · 10−15 - 10.9

100 2 6.0 · 10−9 4.0 · 10−14 1.8 · 10−11 3.0 · 10−12 - 12.1
200 2 3.1 · 10−9 4.5 · 10−14 4.7 · 10−11 6.9 · 10−12 - 8.3
500 2 1.0 · 10−9 4.7 · 10−14 1.4 · 10−10 1.9 · 10−11 - 9.2

1000 2 7.5 · 10−10 5.1 · 10−14 3.4 · 10−10 3.9 · 10−11 - 19.6
Table 2

Random matrix with real cluster of size k

n k relerr L relerr X fail tnew/teig

100 1 3.1 · 10−16 3.1 · 10−16 1.0 · 10−15 1.1 · 10−15 - 3.7
200 1 3.3 · 10−16 3.3 · 10−16 1.4 · 10−15 1.4 · 10−15 - 3.2
500 1 3.2 · 10−16 3.1 · 10−16 2.1 · 10−15 2.1 · 10−15 - 4.5

1000 1 3.3 · 10−16 3.3 · 10−16 3.0 · 10−15 3.7 · 10−15 - 5.0

100 2 7.4 · 10−9 4.3 · 10−14 1.7 · 10−11 3.0 · 10−12 - 17.1
200 2 5.1 · 10−9 4.5 · 10−14 4.4 · 10−11 6.7 · 10−12 - 11.7
500 2 3.6 · 10−9 4.9 · 10−14 1.4 · 10−10 1.9 · 10−11 - 18.9

1000 2 1.9 · 10−9 5.2 · 10−14 3.3 · 10−10 4.0 · 10−11 - 20.6
Table 3

Random matrix with complex cluster of size k

is necessary. The ratio is a little better for complex clusters, seemingly because eig371

slows down. There is no failure, i.e., verified inclusions have been computed for all372

eigenpairs in all test cases.373

n k relerr L relerr X fail tnew/teig

100 3 1.4 · 10−6 4.1 · 10−14 1.8 · 10−11 3.0 · 10−12 - 19.7
200 3 7.2 · 10−7 4.4 · 10−14 4.7 · 10−11 6.7 · 10−12 - 12.6
500 3 3.8 · 10−7 4.7 · 10−14 1.5 · 10−10 1.9 · 10−11 - 22.1

1000 3 2.9 · 10−7 5.2 · 10−14 3.7 · 10−10 4.1 · 10−11 2 26.0

100 5 1.9 · 10−4 4.2 · 10−14 5.8 · 10−11 3.2 · 10−12 - 23.4
200 5 1.1 · 10−4 4.8 · 10−14 9.0 · 10−11 6.9 · 10−12 4 15.5
500 5 3.3 · 10−5 4.9 · 10−14 9.1 · 10−10 1.9 · 10−11 13 26.8

1000 5 2.1 · 10−5 5.4 · 10−14 2.3 · 10−9 4.3 · 10−11 34 33.3

100 10 9.0 · 10−4 4.3 · 10−14 2.9 · 10−7 3.2 · 10−12 66 45.0
200 10 6.1 · 10−5 6.2 · 10−14 7.8 · 10−6 9.1 · 10−12 72 28.8
500 10 9.5 · 10−7 8.2 · 10−14 7.0 · 10−6 3.4 · 10−11 78 42.3

1000 10 3.2 · 10−7 1.0 · 10−13 9.3 · 10−6 8.1 · 10−11 65 41.9
Table 4

Random matrix with real cluster of size k

Results for clusters of size up to 10 are displayed in Table 4. Now we observe374

failures. That means, that not for all eigenpairs inclusions could be computed, usually375

This manuscript is for review purposes only.



VERIFIED ERROR BOUNDS FOR ALL EIGENPAIRS 11

for those close to the cluster. Again the relative accuracy corresponds to the sensitivity376

of the clusters.377

For separated eigenvalues usually one repeat-loop in step 6) of verifyeigall378

suffices. For clustered eigenvalues it may be executed a number of times in order379

to identify and separate the clusters. Therefore, for larger clusters we observe a380

significant increase of computing time relative to Matlab’s eig. That is mainly due381

to Matlab’s interpretation overhead and in particular the use of the operator concept.382

That can be improved significantly by using function calls and/or calculating left and383

right bounds individually using directed rounding as Florian Bünger did for the Taylor384

model and AWA toolbox in INTLAB [6]. We refrained from doing this for the sake385

of better readability of the code.

n k relerr L relerr X fail tnew/teig

100 2 9.4 · 10−9 4.1 · 10−14 2.4 · 10−11 3.0 · 10−12 - 18.9
200 2 6.1 · 10−9 4.5 · 10−14 7.1 · 10−11 7.0 · 10−12 - 12.2
500 2 2.1 · 10−9 4.8 · 10−14 1.8 · 10−10 1.9 · 10−11 - 20.2

1000 2 2.0 · 10−9 5.2 · 10−14 4.0 · 10−10 4.1 · 10−11 - 22.1

100 5 5.2 · 10−4 4.9 · 10−14 5.0 · 10−7 3.3 · 10−12 5 29.1
200 5 3.4 · 10−4 5.1 · 10−14 5.7 · 10−7 7.7 · 10−12 12 18.3
500 5 7.1 · 10−5 5.2 · 10−14 2.5 · 10−7 2.1 · 10−11 34 30.5

1000 5 5.6 · 10−5 8.9 · 10−14 3.9 · 10−6 7.1 · 10−11 65 37.7
Table 5

Random matrix with two real clusters of size k to different eigenvalues

386

In Table 5 results for two clusters of size k to different eigenvalues are reported. Again,387

for clusters of size 5 sometimes inclusions could not be computed for all eigenpairs,388

otherwise the results correspond to the previous ones.389

n k relerr L relerr X fail tnew/teig

100 1 5.2 · 10−16 3.1 · 10−16 1.5 · 10−16 1.4 · 10−16 - 5.2
200 1 1.1 · 10−15 3.1 · 10−16 2.8 · 10−16 2.6 · 10−16 - 5.1
500 1 1.5 · 10−13 4.2 · 10−14 1.2 · 10−10 1.7 · 10−11 - 7.4

1000 1 1.9 · 10−13 4.8 · 10−14 3.1 · 10−10 3.8 · 10−11 - 7.6

100 2 1.4 · 10−8 4.3 · 10−14 1.8 · 10−11 3.0 · 10−12 2 19.2
200 2 9.6 · 10−9 4.5 · 10−14 4.7 · 10−11 6.8 · 10−12 4 13.5
500 2 4.0 · 10−9 4.8 · 10−14 1.5 · 10−10 1.9 · 10−11 1 19.8

1000 2 3.5 · 10−9 5.2 · 10−14 3.9 · 10−10 4.1 · 10−11 - 24.8
Table 6

Random matrix with two real clusters of size k to the same eigenvalue

Finally we generate matrices with two clusters of size k to the same eigenvalue.390

The sensitivity is about u−1/k for k denoting the largest Jordan block. So again the391

accuracy corresponds to the sensitivity, for cluster size 2 not always inclusions for all392

eigenpairs could be computed, and the computing time increases due to a recursive393

call of verifyeigall. The results are shown in Table 6.394

3.2. Numerical results for truly multiple eigenvalues. Next we perform395

similar tests but knowing the true Jordan structure of the test matrices. The con-396

struction of the test matrices is as follows. First a diagonal matrix is generated with397
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small integer entries divided by a small power of 2, and with a k× k block with equal398

diagonal entries and superdiagonal set to 1. Call that matrix J . Next sparse lower399

and upper unit triangular matrices L and U with integer entries are generated, so400

that their inverses have integer entries. Finally it is tested that A = U−1L−1JLU is401

computed without rounding errors.402

The results displayed in Table 7 are structured as those in the previous section.403

Here k is the size of the Jordan block, where 1/1 refers to a double eigenvalue of404

(algebraic and) geometric multiplicity 2.405

n k relerrL relerrX fail tnew/teig

100 1/1 3.2 · 10−16 3.0 · 10−16 2.7 · 10−9 4.4 · 10−10 - 15.2
200 1/1 1.3 · 10−15 3.2 · 10−16 5.9 · 10−9 1.1 · 10−9 - 13.9
500 1/1 5.0 · 10−15 3.6 · 10−16 1.2 · 10−8 4.2 · 10−9 1 20.2

1000 1/1 1.9 · 10−14 4.1 · 10−16 3.6 · 10−8 1.4 · 10−8 3 20.7

100 2 1.2 · 10−11 1.1 · 10−12 9.2 · 10−2 7.7 · 10−3 - 33.2
200 2 2.9 · 10−11 2.2 · 10−12 9.3 · 10−2 3.8 · 10−3 - 31.0
500 2 5.5 · 10−11 5.5 · 10−12 9.8 · 10−2 8.4 · 10−9 - 49.3

1000 2 8.4 · 10−11 9.1 · 10−12 1.0 · 10−1 2.8 · 10−9 2 48.5

100 3 1.7 · 10−11 1.6 · 10−12 9.6 · 10−2 1.8 · 10−3 - 41.0
200 3 2.2 · 10−11 2.7 · 10−12 9.6 · 10−2 8.6 · 10−4 1 33.4
500 3 5.0 · 10−11 5.4 · 10−12 9.9 · 10−2 3.3 · 10−4 - 50.1

1000 3 8.2 · 10−11 9.4 · 10−12 1.0 · 10−1 2.7 · 10−9 4 49.0

100 5 2.4 · 10−11 1.9 · 10−12 9.3 · 10−2 1.8 · 10−3 11 42.2
200 5 2.0 · 10−11 2.6 · 10−12 9.7 · 10−2 3.2 · 10−3 22 26.9
500 5 4.2 · 10−11 5.1 · 10−12 1.0 · 10−1 2.7 · 10−3 29 51.1

1000 5 8.2 · 10−11 7.5 · 10−12 1.0 · 10−1 6.4 · 10−4 31 49.9
Table 7

Random matrix with true Jordan blocks of size k

For larger block size, the eigenvalue inclusions are more accurate, where the eigen-406

vector inclusions are less accurate than expected. As before the number of cases where407

not all eigenpairs are included increases with the the block size and dimension, and408

the computing time as well. For larger block size and larger dimension the relative409

accuracy of some eigenvector and/or invariant subspace inclusions is poor, sometimes410

only one digit can be verified.411

3.3. Comparison to Miyajima’s methods. Finally we compare our algo-412

rithm verifyeigall with the, to our knowledge, only competitor published in [14].413

Miyajima presents two algorithms VAE NSD and VAE NJD. The source code of both414

algorithms was kindly provided by the author. He also uses error-free transforma-415

tions to improve the accuracy of the inclusions, and he uses NAClab [29], a publically416

available Matlab toolbox which, in particular, offers algorithms to compute the Jor-417

dan canonical form of a matrix. That is an ill-posed problem, thus the true Jordan418

structure may not be determined correctly in floating-point arithmetic.419

We mention that there are also block versions of the algorithms in [14], however,420

the results shown in [14] are similar to the unblocked version so we refrain from421

comparisons to save space.422

We encountered hard Matlab errors or infinite loops when testing VAE NSD and423
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VAE NJD, and were advised by Miyajima to use the older 2013 version of NAClab424

rather than the newer 2018 version. That improved the situation, but still infinite425

loops occur and sometimes the routines stopped with a Matlab error. Moreover, the426

routines VAE NSD and VAE NJD are time consuming. We therefore had to reduce the

dimension n 50 100 200 500 1000
# test cases 100 100 50 15 10

Table 8
Number of test cases for Tables 9, 10 and 11

427

number of test cases according to Table 8, and for larger sizes of clusters the dimension428

had to be reduced.429

We generate several test matrices, both with eigenvalue clusters and true Jordan430

blocks as described in Subsections 3.1 and 3.2, respectively. For one test matrix431

we compute the mean of the relative errors of all eigenvalue and of all eigenvector432

inclusions, and for different dimensions the median of those numbers is displayed in the433

blocks “relerr L” for the eigenvalues and in the blocks “relerr X” for the eigenvectors434

or invariant subspaces. As before, the case k = 1 is added in which case the test435

matrix is just a random matrix.436

The number of test cases where no inclusion could be computed for one eigenpair437

is listed in the column “failure”. More precisely, if, as before, only for one eigenpair438

no inclusion could be computed it is considered as failure. If an algorithm fails for all439

test cases, the relative errors for L and X are noted as NaN.440

For some test cases three numbers are displayed for VAE NSD and VAE NJD in the441

block “failure”. In that case the first number is the total number of failures as just442

described, the second the number of cases where the algorithm runs into an infinite443

loop, and the third where Matlab stops with an error. For example, for n = 200 and444

k = 5, VAE NSD failed in 17 of 50 cases, no infinite loop was encountered and 1 Matlab445

error. Similarly, again for n = 200 and k = 5, VAE NJD failed in 12 out of 50 test446

cases, in 11 cases the algorithm ran into an infinite loop, and 1 test case ended with447

a Matlab error.448

Finally, in the last two columns, the mean time ratio of VAE NSD and VAE NJD to449

our new routine is displayed. For example, for n = 500 and k = 3, VAE NSD required450

on the average 10.2 times the computing time of verifyeigall, and VAE NJD was on451

the average 29.3 times slower.452

The results are shown in Table 9, where the numbers above the horizontal line453

refer to clusters of eigenvalues as in Subsection 3.1, and below to true Jordan blocks454

as in Subsection 3.2. For increasing dimension and size of clusters or Jordan blocks,455

the number of failures of all algorithms increase, more moderately for verifyeigall.456

Algorithm VAE NSD failed for cluster size 10 completely, where VAE NJD failed for all457

true Jordan blocks with no inclusion, infinite loop and/or Matlab error. If successful,458

the quality of the eigenvalue inclusions of VAE NJD and verifyeigall are comparable,459

those of VAE NSD are a little weaker. The quality of the eigenvector inclusions of460

both VAE NSD and VAE NJD are weaker than those of verifyeigall in our test cases.461

Algorithm VAE NSD is generally slower than verifyeigall, whereas VAE NJD is much462

slower in our test cases.463

In the previous tables we computed the mean of the relative errors of all inclusion464

components and took the median over all test cases. We think that gives a general465

impression of the performance of the methods. Since the size of the clusters or Jordan466

blocks is relatively small compared to the dimension, those numbers favor the majority467
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relerr L relerr X
n k VAE NSD VAE NJD new VAE NSD VAE NJD new

50 1 5.0 · 10−11 1.9 · 10−13 4.4 · 10−16 1.2 · 10−9 8.4 · 10−10 2.0 · 10−15

100 1 7.9 · 10−11 2.4 · 10−13 4.4 · 10−16 2.7 · 10−8 1.8 · 10−8 2.2 · 10−15

200 1 3.8 · 10−11 7.7 · 10−14 4.4 · 10−16 3.1 · 10−8 2.3 · 10−8 2.7 · 10−15

500 1 6.1 · 10−10 9.0 · 10−13 4.4 · 10−16 1.6 · 10−7 2.8 · 10−7 5.2 · 10−15

1000 1 6.9 · 10−10 3.5 · 10−13 4.4 · 10−16 8.3 · 10−6 8.4 · 10−6 7.7 · 10−15

50 2 2.3 · 10−4 5.1 · 10−6 1.2 · 10−5 2.7 · 10−1 1.7 · 10−4 3.0 · 10−6

100 2 3.6 · 10−3 9.8 · 10−5 2.0 · 10−4 4.2 · 10−1 3.1 · 10−4 3.3 · 10−7

200 2 1.3 · 10−3 5.1 · 10−6 5.8 · 10−6 9.5 · 10−1 1.5 · 10−1 4.4 · 10−7

500 2 9.7 · 10−4 1.2 · 10−6 3.0 · 10−6 6.7 · 10−1 1.1 · 10−2 3.4 · 10−6

1000 2 6.6 · 10−3 8.3 · 10−6 2.6 · 10−5 9.3 · 10−1 4.8 · 10−2 1.9 · 10−7

50 3 4.2 · 10−2 1.4 · 10−3 1.7 · 10−3 1.0 · 100 7.9 · 10−2 6.8 · 10−9

100 3 3.0 · 10−2 3.1 · 10−4 6.7 · 10−4 9.5 · 10−1 2.4 · 10−2 3.6 · 10−9

200 3 2.5 · 10−2 1.4 · 10−4 2.8 · 10−4 9.8 · 10−1 7.4 · 10−3 2.0 · 10−8

500 3 3.5 · 10−1 5.7 · 10−4 2.2 · 10−3 1.0 · 100 9.5 · 10−1 1.1 · 10−7

1000 3 2.9 · 10−1 2.7 · 10−5 1.6 · 10−3 1.0 · 100 6.7 · 10−1 1.1 · 10−7

50 5 7.3 · 10−1 9.0 · 10−2 2.2 · 10−1 1.2 · 100 7.8 · 10−1 1.3 · 10−1

100 5 7.2 · 10−1 5.1 · 10−2 9.8 · 10−2 1.0 · 100 7.2 · 10−1 3.6 · 10−1

200 5 8.0 · 10−1 6.9 · 10−3 5.0 · 10−2 6.3 · 100 8.6 · 10−1 9.2 · 10−1

500 5 2.1 · 100 3.5 · 10−4 1.2 · 10−1 2.1 · 100 3.8 · 10−6 9.9 · 10−1

Table 10
Extract of Table 9 taking the maximum relative error over all samples

of eigenpairs which belong to simple eigenvalues. However, if in 51 out of 100 test cases468

narrow intervals are computed but not in the remaining, that may remain undetected469

by taking the median.470

For completeness we display therefore part of the results of Table 9, again but471

now taking the maximum relative error of all inclusions of one test case and then472

the maximum of that number over all test cases. That means, the displayed relative473

errors in Table 10 are the maximum over all inclusions and over all test cases.474

Again we can see a correspondence between the sensitivity of the clusters to the475

accuracy of the inclusions. For the eigenvalue inclusions, verifyeigall is a little bet-476

ter than both VAE NSD and VAE NJD, the eigenvector inclusions are significantly better477

than both VAE NSD and VAE NJD for clusters up to size 3. For size 5 the inclusions of478

all methods are poor in the worst case.479

For the same test cases as in Table 10 we calculate the time ratios480

tVAE NSD/tverifyeigall and tVAE NJD/tverifyeigall481

and display the minimum, mean, median and maximum over all test cases in Table482

11. As before, verifyeigall is on the average significantly faster than VAE NSD and483

VAE NJD, in the best case the ratio is close to 1.484

Next we show numerical evidence that an approximated eigenmatrix approxima-485

tion is hardly ill-conditioned. The first candidate is an integer matrix with 3 Jordan486

blocks to eigenvalues 1, 2 and 3, respectively, each of size 10, and no other eigenval-487

ues. An integer similarity transformation is applied to produce a matrix without zero488

entries retaining the anticipated Jordan structure. For this matrix there are only 3489

linear independent eigenvectors, the remaining 27 are corresponding principal vectors.490
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tVAE NSD/tverifyeigall tVAE NSD/tverifyeigall
n k min mean median max min mean median max

50 1 4.4 5.3 5.4 6.1 9.2 11.4 11.6 12.6
100 1 7.1 7.9 7.8 8.5 19.9 21.8 21.7 23.0
200 1 6.0 6.8 6.8 7.4 19.5 22.4 22.5 24.3
500 1 15.2 19.5 19.4 23.5 48.6 60.4 60.7 69.5

1000 1 27.2 29.4 29.5 31.1 83.8 90.2 91.2 94.1

50 2 1.2 3.7 3.8 7.8 2.2 6.3 6.3 12.3
100 2 3.6 5.4 5.5 7.8 8.7 13.2 12.9 18.7
200 2 3.5 7.7 8.4 13.2 10.7 22.5 24.4 36.3
500 2 8.0 18.0 13.4 31.5 19.8 47.6 35.2 88.5

1000 2 14.8 36.3 40.8 57.6 36.9 94.3 103.2 147.9

50 3 1.5 2.6 2.7 3.7 3.3 4.7 4.7 16.5
100 3 2.3 3.6 3.6 4.7 6.0 9.6 9.5 21.9
200 3 3.2 4.2 4.3 4.9 10.6 57.9 14.0 458.8
500 3 7.2 9.9 9.6 12.5 25.0 105.4 28.5 680.3

1000 3 12.6 14.7 13.5 18.1 34.8 40.6 37.1 50.0

50 5 1.1 1.7 1.7 3.4 2.1 16.7 3.4 231.1
100 5 1.4 2.8 2.7 4.7 4.5 40.0 7.3 265.7
200 5 2.1 3.3 3.2 5.0 8.9 176.8 128.7 517.1
500 5 5.0 8.4 8.4 11.1 28.9 380.6 392.9 572.6

Table 11
Extract of Table 9: detailed timing

The eigenvalue approximations computed by Matlab’s eig are displayed in Figure 1.

Fig. 1. Approximate eigenvalues ’o’ of the matrix “Jordan” with 3 Jordan blocks with 10-fold
eigenvalues 1, 2 and 3 depicited in red ’*’.

491
Recall that there should be only the 3 dots at 1, 2 and 3 depicted in red. Given these492

approximations verified inclusions can hardly be computed - and they are not.493

Since the Matlab function eig can only approximate eigenvectors, not principal494

vectors, we may expect that [W,D] = eig(A) produces a matrix W of numerical495

rank 3. However, as displayed in the first line of Table 12, cond(W ) ≈ 3.5 · 109.496

That is because of the smoothening effect of floating-point arithmetic, some kind of497

regularization. We remark that in that specific case of an integer matrix a computer498
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algebra system such as the symbolic toolbox in Matlab computed easily the correct499

eigenvalues together with the Jordan structure.500

In Table 12 the maximal errors of the inclusions of the eigenvalues and of the501

eigenvectors are displayed, each for Algorithms VAE NSD and VAE NJD in 3.2, and for502

the new algorithm, followed by the time in seconds. An entry “-” means that not for503

all eigenpairs inclusions could be computed.504

Next we try some test matrices from the Matlab gallery which may cause prob-505

lems. In a number of cases no inclusion could be computed, in some cases the506

inclusions are very wide. For example, the eigenvalue inclusions for the matrix507

gallery/lesp of VAE NSD and the new algorithm are of reasonable quality, where508

VAE NJD fails. However, the eigenvector inclusions are poor with a relative error close509

to 1.510

For the “frank 0” and “frank 1” matrices we observe ill-conditioned W . However,511

these are integer Hessenberg matrices for which, because of the zeros below the first512

subdiagonal, the smoothing of floating-point arithmetic is not as effective.513

The timing is self-explaining; in three cases, the “Jordan” matrix with 3 Jor-514

dan blocks of size 10, “frank 0” and “frank 1” matrices of dimension 30 Algorithm515

VAE NJD was caught in an infinite loop, for the “lesp” matrix of dimension 30 Algo-516

rithm VAE NJD caused a Matlab error.517
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