Entrywise lower and upper bounds for the Perron vector
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Abstract

Let an irreducible nonnegative matrix A and a positive vector x be given.
Assume axr < Ax < fz for some 0 < a < § € R. Then, by Perron-Frobenius
theory, a and [ are lower and upper bounds for the Perron root of A. As for
the Perron vector #*, only bounds for the ratio v := max; ; x} /x} are known,
but no error bounds against some given vector z. In this note we close this
gap. For a given positive vector x and provided that « and [ as above are
not too far apart, we prove entrywise lower and upper bounds of the relative
error of x to the Perron vector of A.
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1. Main result

Let A = [A;;] € R™™™ be an irreducible nonnegative matrix. Then Perron-
Frobenius Theory [5, Theorem 8.4.4] implies that the spectral radius o(A)
of A is an algebraically simple eigenvalue, the Perron root, and there is a
corresponding positive eigenvector. Often [5, Chapter 8.4] the positive vector
x* with the normalization ||z*||; = 1 is called “the” Perron vector; here we
call a positive multiple of x* “a” Perron vector.

Collatz’ result [1] implies bounds for the Perron root, namely, for any
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positive vector x € R"”

Ax),
min (Az), < 0(A) < max
1<i<n @ 1<i<n

(1)

with equalities if x is a Perron vector.
For x* denoting a Perron vector with some normalization, several bounds
[11, 12, 8, 7] are known for the ratio v := max; ; ¥7 /. For example,

maxi,j A”

(2)

<
= mini,j Aij

is shown in [12] for positive A = [A4;;]. In [3] the bound

n <||A||o;(;)u<A>)”‘l | 3)

for nonnegative irreducible A is given using the measure of irreducibility

v(A):= min  max A;.
MCA{1,...,n} i€M,j¢M

If some positive x with narrow left and right bounds in (1) is given, it is de-
sirable to use this information for eigenvector bounds. Moreover, individual
bounds for the entries of a Perron vector are preferable. In this note, inspired
by [9], we close this gap. For a given positive vector x we develop entrywise
lower and upper bounds for the relative error of x to a Perron vector of A.

We denote the set of real or complex m x n matrices by M,,,, and use
M, if m =n. For C € M,, and p C {1,...,n} denote by C[u| € M, the
matrix consisting of the rows and columns of C'in y, and by C[:, u] € M, |,
the matrix with columns in g. The identity matrix of dimension k is denoted
by Ij, where the index is omitted if clear from the context. The matrix |C|
is the matrix of absolute values, and comparison of vectors or matrices is
always entrywise.

We use the following. Let a Z-matrix C' and positive vectors v, s be given,
and suppose that a vector u satisfies Cv > v > 0. Then C' is an M-matrix
2, Theorem 5.1], [6, Theorem 2.5.3.12], and (see [10, Theorem 3.7.7])

N B S S
Cls<C™!' max = - u < max = - . (4)



Theorem 1. Let A be an irreducible nonnegative n X n matriz. Suppose that
x=[z;] € R", x >0 and |z|| = 1. Suppose that ax < Ax < Pz, in which
0<a<p, andsetd:=p —«. Let k € {1,...,n} be fixed but arbitrary, let
we={1,...,n}\{k}, and let z* = [x]] be the unique positive eigenvector of
A such that z}, = x). Assume 6 < xp A, for all i € p, then

5551'
|z* — x| <e- -z with ¢ := max —— .
(S xk:Azk: — 51‘1

(5)
As a consequence, if k satisfies i, = ||zl and 0 < min;e, Ajx, then

)
" — x| <e- -z with = max s (6)
Proof. Denote P := I[:,u] and by ey := I[:,k] the k-th column of the
identity matrix. It follows that PPT 4 e(k)e{k) = I, PTP = I,_; and
PTeqy = 0. Moreover, A[u] = PTAP € M, and z[u] = PTz e R"*.

Using r := p(A) for the spectral radius of A, Collatz’s famous result
(1) implies o < r < . We define B := rl,_y — Alu| € M,,—1 and b :=
zpPTAeyy € R"1. The entrywise monotonicity [14, Theorem 2.1] of the
spectral radius of a nonnegative irreducible matrix implies o(A[u]) < 7, so
that B is nonsingular.

It is known (see, e.g., [4, p. 3]) that By = b implies that z = Py + zpe)
is a Perron vector of A with the normalization z; = z;. To confirm that
write ry = PTA(Py + zye(y) or rPTz = PTAz. Since rI — A is singular,
there is a nontrivial vector ¢ € R"™ with ¢7(rI — A) = 0. If ¢ = 0, then
qg= PP"q and

0= qTPPT(rI — AP = qTP(TIn—l - PTAP) = qp ]TB

implies that B is singular, a contradiction. Hence PT(rI — A)z = 0 gives
¢ (PPT + e(k)e(k))(rf A)z=0=qe k,)(rf A)z

and ey, (r] — A)z = 0, and again using P"(r — A)z = 0 yields (r/ — A)z = 0.
Next

b— Bxlu] = wx,PTAey) — (rPTP — PTAP)PTx
= pT (xkAe(k) —rPPTz+ A(I — e(k)ea))x>
= PT (Ax —r(l — e(k)e@))x)
= PT(Az —rz)

(7)



and therefore
|b — Bx[u]| < PTéx. (8)

Define B := al, 1 — A[p]. Then B is a Z-matrix, and

Bzlp] = (al,.y — PTAP)PTx = PT (am — A(I — e(k)ea))x>

9)
> PT (zpdew — o) =: .

Now |[|z]|sc = 1 implies that u; = (mkAe(k) — 5:13)1. > xp Ay — 0 > 0 for all

i € p, so that B is an M-matrix [6, Theorem 2.5.3.12]. Therefore B < B
implies 0 < B~' < B~! [6, Theorem 2.5.4], and (8) gives

jy—alul = 1B~ (b~ Balu)| < B PTox.

Finally, using y = PTz* and applying (4) with C := B, s = dx, v := z[y]
and u as in (9) yields
5[[’,‘

T % — o < T
[P7" =)l = ly = wlpll < max - - - zly]

and proves (5), from which (6) is obvious. O

Theorem 1 is applicable if all off-diagonal entries of at least one column
(or row) is strictly less than the gap 6 =  — « of the bounds for the Perron
root. Hence Theorem 1 is always applicable for positive A and small enough
0, for a cyclic shift permutation matrix or tridiagonal matrix with n > 4 it
is not applicable. Some power iterations may be used to improve 6. More
precisely [14, p. 34], (") := A"z implies

040§061SOézS--‘SQ(A)S.--Sﬁzﬁﬁlﬁﬁo

(2
x; x;

We close this note with two examples. Consider

.%'(T—H) $(T+1)
for any positive (), where «, := min % and [, := max [ — ok

1 24 4 68

A= 32 4 21 29

0o 3 11
with eigenvalues (1, 3, 1) and Perron vector z* = (1, 15, 5)*. The estimate
(6) is not applicable because = = ||z*||oc but As; = 0. However, (5) is
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applicable for sufficiently small §. Starting with #(®) := (1,1, 1)” we calculate
™ a,, B, as above for r € {3,5,7,9}. Then, for k = 2 and for k = 3, we
(5:12'1'
JﬁkAlk — (51‘1
(5) for # := 2™ and 6 := 3, — a,. The results are displayed in Table 1.

compute the entrywise relative error ¢, 1= max;e, according to

Table 1: Entrywise relative error according to (5) of a Perron vector against x := z("),

r 0 Eor €3,r
3 0.023 0.48 0.21
5 0.0064 0.098 0.052
7 0.0021 0.030 0.017
9 0.00057 0.0079 0.0044

As can be seen, with increasing r the gap d between the lower and upper
bound of the Perron root becomes smaller, and the entrywise relative bounds
for a Perron vector become better, as expected. The bounds €3, are superior
because of the small entry Ass. The bound (2) on the maximum ratio v =
max; ; 7; / is not applicable because A is not positive, and (3) yields v(A) =
3% and v < 1089.

Finally we generate A by the Matlab command A = rand(1000), so that
the entries of the 1000 x 1000 matrix are uniformly distributed in [0, 1]. We
show in Table 2 the results of (5) and (6), both for the k£ with 25, = ||7]| .

Table 2: Entrywise relative error according to (5) of a Perron vector against  := x(").

r ) e by (5) e by (6)

3 4.3-107* - -

5 1.2-1077 3.1-107* 3.3-107*

7 3.7-10711 9.1-107" 9.6-1077

9 9.6-10°1 2.4-107° 2.5-107°
The “-”7 for r = 3 means that, although ¢ is small, the condition § <
min,e, A, is not satisfied for the k with z; = ||2||. Otherwise ¢ decreases

more rapidly than for the first example, and practical experience suggests



that this is not untypical. Note that the bound for € computed by (6) is
slightly weaker than that by (5).

After 9 power iterations, i.e., some 18n? floating-point operations, the

bounds for all entries of a Perron vector are accurate to about 9 decimal
figures. Using the Matlab/Octave toolbox INTLAB [13] for reliable comput-
ing it is straightforward to compute mathematically correct lower and upper
bounds for the Perron root and for a Perron vector.
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