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Abstract

Let an irreducible nonnegative matrix A and a positive vector x be given.
Assume αx ≤ Ax ≤ βx for some 0 < α ≤ β ∈ R. Then, by Perron-Frobenius
theory, α and β are lower and upper bounds for the Perron root of A. As for
the Perron vector x∗, only bounds for the ratio γ := maxi,j x

∗
i /x

∗
j are known,

but no error bounds against some given vector x. In this note we close this
gap. For a given positive vector x and provided that α and β as above are
not too far apart, we prove entrywise lower and upper bounds of the relative
error of x to the Perron vector of A.
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1. Main result

Let A = [Aij] ∈ Rn×n be an irreducible nonnegative matrix. Then Perron-
Frobenius Theory [5, Theorem 8.4.4] implies that the spectral radius %(A)
of A is an algebraically simple eigenvalue, the Perron root, and there is a
corresponding positive eigenvector. Often [5, Chapter 8.4] the positive vector
x∗ with the normalization ‖x∗‖1 = 1 is called “the” Perron vector; here we
call a positive multiple of x∗ “a” Perron vector.

Collatz’ result [1] implies bounds for the Perron root, namely, for any
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positive vector x ∈ Rn

min
1≤i≤n

(Ax)i
xi
≤ %(A) ≤ max

1≤i≤n

(Ax)i
xi

(1)

with equalities if x is a Perron vector.
For x∗ denoting a Perron vector with some normalization, several bounds

[11, 12, 8, 7] are known for the ratio γ := maxi,j x
∗
i /x

∗
j . For example,

γ ≤ maxi,j Aij
mini,j Aij

(2)

is shown in [12] for positive A = [Aij]. In [3] the bound

γ ≤
(
‖A‖∞ + ν(A)

ν(A)

)n−1
. (3)

for nonnegative irreducible A is given using the measure of irreducibility

ν(A) := min
M⊆{1,...,n}

max
i∈M,j /∈M

Aij .

If some positive x with narrow left and right bounds in (1) is given, it is de-
sirable to use this information for eigenvector bounds. Moreover, individual
bounds for the entries of a Perron vector are preferable. In this note, inspired
by [9], we close this gap. For a given positive vector x we develop entrywise
lower and upper bounds for the relative error of x to a Perron vector of A.

We denote the set of real or complex m × n matrices by Mm,n, and use
Mn if m = n. For C ∈ Mn and µ ⊆ {1, . . . , n} denote by C[µ] ∈ M|µ| the
matrix consisting of the rows and columns of C in µ, and by C[:, µ] ∈Mn,|µ|
the matrix with columns in µ. The identity matrix of dimension k is denoted
by Ik, where the index is omitted if clear from the context. The matrix |C|
is the matrix of absolute values, and comparison of vectors or matrices is
always entrywise.

We use the following. Let a Z-matrix C and positive vectors v, s be given,
and suppose that a vector u satisfies Cv ≥ u > 0. Then C is an M -matrix
[2, Theorem 5.1], [6, Theorem 2.5.3.12], and (see [10, Theorem 3.7.7])

C−1s ≤ C−1 ·max
i

si
ui
· u ≤ max

i

si
ui
· v. (4)
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Theorem 1. Let A be an irreducible nonnegative n×n matrix. Suppose that
x = [xi] ∈ Rn, x > 0 and ‖x‖∞ = 1. Suppose that αx ≤ Ax ≤ βx, in which
0 < α ≤ β, and set δ := β − α. Let k ∈ {1, . . . , n} be fixed but arbitrary, let
µ := {1, . . . , n}\{k}, and let x∗ = [x∗i ] be the unique positive eigenvector of
A such that x∗k = xk. Assume δ < xkAik for all i ∈ µ, then

|x∗ − x| ≤ ε · x with ε := max
i∈µ

δxi
xkAik − δxi

. (5)

As a consequence, if k satisfies xk = ‖x‖∞ and δ < mini∈µAik, then

|x∗ − x| ≤ ε · x with ε := max
i∈µ

δ

Aik − δ
. (6)

Proof. Denote P := I[:, µ] and by e(k) := I[:, k] the k-th column of the
identity matrix. It follows that PP T + e(k)e

T
(k) = In, P TP = In−1 and

P T e(k) = 0. Moreover, A[µ] = P TAP ∈Mn−1 and x[µ] = P Tx ∈ Rn−1.
Using r := %(A) for the spectral radius of A, Collatz’s famous result

(1) implies α ≤ r ≤ β. We define B := rIn−1 − A[µ] ∈ Mn−1 and b :=
xkP

TAe(k) ∈ Rn−1. The entrywise monotonicity [14, Theorem 2.1] of the
spectral radius of a nonnegative irreducible matrix implies %(A[µ]) < r, so
that B is nonsingular.

It is known (see, e.g., [4, p. 3]) that By = b implies that z = Py + xke(k)
is a Perron vector of A with the normalization zk = xk. To confirm that
write ry = P TA(Py + xke(k)) or rP T z = P TAz. Since rI − A is singular,
there is a nontrivial vector q ∈ Rn with qT (rI − A) = 0. If qk = 0, then
q = PP T q and

0 = qTPP T (rI − A)P = qTP (rIn−1 − P TAP ) = q[µ]TB

implies that B is singular, a contradiction. Hence P T (rI − A)z = 0 gives

qT (PP T + e(k)e
T
(k))(rI − A)z = 0 = qke

T
(k)(rI − A)z

and eT(k)(rI−A)z = 0, and again using P T (rI−A)z = 0 yields (rI−A)z = 0.
Next

b−Bx[µ] = xkP
TAe(k) − (rP TP − P TAP )P Tx

= P T
(
xkAe(k) − rPP Tx+ A(I − e(k)eT(k))x

)
= P T

(
Ax− r(I − e(k)eT(k))x

)
= P T (Ax− rx)

(7)
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and therefore
|b−Bx[µ]| ≤ P T δx. (8)

Define B := αIn−1 − A[µ]. Then B is a Z-matrix, and

Bx[µ] = (αIn−1 − P TAP )P Tx = P T
(
αx− A(I − e(k)eT(k))x

)
≥ P T

(
xkAe(k) − δx

)
=: u.

(9)

Now ‖x‖∞ = 1 implies that ui =
(
xkAe(k) − δx

)
i
≥ xkAik − δ > 0 for all

i ∈ µ, so that B is an M -matrix [6, Theorem 2.5.3.12]. Therefore B ≤ B
implies 0 ≤ B−1 ≤ B−1 [6, Theorem 2.5.4], and (8) gives

|y − x[µ]| = |B−1(b−Bx[µ])| ≤ B−1P T δx.

Finally, using y = P Tx∗ and applying (4) with C := B, s = δx, v := x[µ]
and u as in (9) yields

|P T (x∗ − x)| = |y − x[µ]| ≤ max
i∈µ

δxi
xkAik − δxi

· x[µ]

and proves (5), from which (6) is obvious.

Theorem 1 is applicable if all off-diagonal entries of at least one column
(or row) is strictly less than the gap δ = β − α of the bounds for the Perron
root. Hence Theorem 1 is always applicable for positive A and small enough
δ, for a cyclic shift permutation matrix or tridiagonal matrix with n ≥ 4 it
is not applicable. Some power iterations may be used to improve δ. More
precisely [14, p. 34], x(r) := Arx(0) implies

α0 ≤ α1 ≤ α2 ≤ . . . ≤ %(A) ≤ . . . ≤ β2 ≤ β1 ≤ β0

for any positive x(0), where αr := min
i

(
x
(r+1)
i

x
(r)
i

)
and βr := max

i

(
x
(r+1)
i

x
(r)
i

)
.

We close this note with two examples. Consider

A =
1

32

 24 4 68
4 21 29
0 3 11


with eigenvalues (1, 1

2
, 1
4
) and Perron vector x∗ = (1, 7

12
, 1
12

)T . The estimate
(6) is not applicable because x∗1 = ‖x∗‖∞ but A31 = 0. However, (5) is

4



applicable for sufficiently small δ. Starting with x(0) := (1, 1, 1)T we calculate
x(r), αr, βr as above for r ∈ {3, 5, 7, 9}. Then, for k = 2 and for k = 3, we

compute the entrywise relative error εk,r := maxi∈µ
δxi

xkAik − δxi
according to

(5) for x := x(r) and δ := βr − αr. The results are displayed in Table 1.

Table 1: Entrywise relative error according to (5) of a Perron vector against x := x(r).

r δ ε2,r ε3,r
3 0.023 0.48 0.21
5 0.0064 0.098 0.052
7 0.0021 0.030 0.017
9 0.00057 0.0079 0.0044

As can be seen, with increasing r the gap δ between the lower and upper
bound of the Perron root becomes smaller, and the entrywise relative bounds
for a Perron vector become better, as expected. The bounds ε3,r are superior
because of the small entry A32. The bound (2) on the maximum ratio γ =
maxi,j x

∗
i /x

∗
j is not applicable because A is not positive, and (3) yields ν(A) =

3
32

and γ ≤ 1089.
Finally we generate A by the Matlab command A = rand(1000), so that

the entries of the 1000× 1000 matrix are uniformly distributed in [0, 1]. We
show in Table 2 the results of (5) and (6), both for the k with xk = ‖x‖∞.

Table 2: Entrywise relative error according to (5) of a Perron vector against x := x(r).

r δ ε by (5) ε by (6)
3 4.3 · 10−4 - -
5 1.2 · 10−7 3.1 · 10−4 3.3 · 10−4

7 3.7 · 10−11 9.1 · 10−7 9.6 · 10−7

9 9.6 · 10−13 2.4 · 10−9 2.5 · 10−9

The “-” for r = 3 means that, although δ is small, the condition δ <
mini∈µAik is not satisfied for the k with xk = ‖x‖∞. Otherwise δ decreases
more rapidly than for the first example, and practical experience suggests
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that this is not untypical. Note that the bound for ε computed by (6) is
slightly weaker than that by (5).

After 9 power iterations, i.e., some 18n2 floating-point operations, the
bounds for all entries of a Perron vector are accurate to about 9 decimal
figures. Using the Matlab/Octave toolbox INTLAB [13] for reliable comput-
ing it is straightforward to compute mathematically correct lower and upper
bounds for the Perron root and for a Perron vector.

Acknowledgment

The author wishes to thank the anonymous referees for their thorough read-
ing and valuable comments which helped to improve readability of this note.

References

[1] L. Collatz. Einschließungssatz für die charakteristischen Zahlen von
Matrizen. Math. Z., 48:221–226, 1942.

[2] M. Fiedler. Special matrices and their applications in numerical mathe-
matics. Martinus Nijhoff Publishers, Dordrecht, 1986.

[3] D. J. Hartfiel. Bounds for eigenvalues and eigenvectors of a nonnegative
matrix which involve a measure of irreducibility. SIAM J. Appl. Math.,
24(1):6–8, 1973.

[4] D. Hartman, M. Hlad́ık, and D. Ř́ıha. Computing the spectral decom-
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