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Abstract

We discuss several methods to compute a verified inclusion of the determinant of a real or complex, point or interval
matrix. For point matrices, large condition number 1015, and large dimension (n = 1000) still highly accurate inclu-
sions are computed. For real interval matrices we show that any vertex may be a unique extreme point. For wide radii
we show that preconditioning may widen an inclusion significantly, and Hadamard’s bound may be much better.

Key words: determinant; classical adjoint; verification methods; sharp bounds; extremely ill-conditioned matrices;
NP-hard.
2010 MSC: 65G20, 15A15

1. Introduction

We discuss methods to calculate an inclusion of the determinant of a real or complex, point or interval matrix. In
case of an interval matrix, an inclusion of the set of all determinants of matrices within the bounds is computed.

For the following, not much knowledge of interval arithmetic is necessary. Basically, it suffices to know that
given two interval quantities A,B and an operation ◦, the result C of the induced interval operation A ◦ B satisfies
a ◦ b ∈ C for all a ∈ A and all b ∈ B. For more details, see [15, 12, 27, 19]. Interval quantities are in bold-face, and
an expression containing an interval quantity is assumed to be evaluated using interval arithmetic.

Let A ∈ IKn×n for K ∈ {R,C} be given. To our knowledge the first method to compute bounds for det(A) :=
{det(A) : A ∈ A} is due to Hansen and Smith [8, Section 6]. They use a version of an LU-decomposition with partial
pivoting on the midpoint matrix Ǎ of A producing LǍ ≈ U. For simplicity, they assume that the rows of Ǎ were
initially permuted so that L can be obtained by a numerically stable Gaussian elimination without interchanges. Then
they compute B := L · A using interval arithmetic and perform interval Gaussian elimination on B. That results in an
upper triangular interval matrix T with det(A) ⊆

∏
Tii.

Today we know that interval Gaussian elimination (IGA) is prone to premature failure by a pivoting element
containing zero, see the analysis in [27, Section 10.1]. Moreover, it is slow because scalar rather than matrix interval
operations are involved. Indeed, Table 1 shows a comparison in accuracy and computing time of the Hansen/Smith
and newer methods such as in [4, 27, 17]. The table shows the median of the results for 100 random orthogonal test
matrices in each dimension using INTLAB [26], the Matlab/Octave toolbox for Reliable Computing. For n = 100,
only some 2 correct digits can be expected, from dimension n = 120 the method fails. It is more than an order of
magnitude slower than the methods to be discussed later. Note that all matrices have condition number 1, so failure is
solely due to interval dependencies.

In the following sections we introduce several methods to compute an inclusion of the determinant of point and
interval matrices. We display only results for real matrices because those for complex matrices are similar, only the
accuracy of the bounds is weaker by an order of magnitude.
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Table 1: Results for Hansen and Smith’s method for orthogonal matrices

Hansen/Smith newer method
n failure [%] relerr time ratio failure [%] relerr

50 0 8.0 · 10−9 38.6 0 3.9 · 10−15

100 0 5.0 · 10−2 46.5 0 8.0 · 10−15

110 46 8.4 · 10−1 47.8 0 8.8 · 10−15

120 100 – 46.9 0 9.4 · 10−15

2. The determinant of a point matrix

The method of choice for computing an inclusion of det(A) seems to be preconditioning of A by one or more
factors each with easily computable determinant, resulting in a matrix numerically close to the identity matrix. If the
determinant of the factors is known, that reduces the problem to calculate an inclusion of det(I + E) with small ‖E‖.
Besides that standard approach, we will also introduce other methods.

For larger dimensions, several steps are necessary. First, we discuss scaling because for little larger dimensions
the determinant is likely to cause over- or underflow. Next we present an accurate method to compute the determinant
of a triangular matrix, followed by a new method to compute the determinant of a perturbed identity matrix. Finally,
we discuss possible preconditioners eventually aiming on a highly accurate inclusion.

2.1. Scaling

For little larger dimensions the determinant may cause over- or underflow. For example, for A = randn(n) in
Matlab notation, that is most likely the case from n ≥ 305. More precisely, out of one million sample matrices of
dimension 310, all determinants were in the over- or underflow range.

Since we are interested in larger dimensions, we henceforth assume matrices to be suitably scaled. We use the
scaling factor

f = round(sum(log2(abs(diag(lu(mid(A)))))))

so that likely f ≈ log2(| det(A)|). Then, for q = round(f/n) and r = f - q*n, we multiply A by 2q, and then,
depending on the sign of r, multiply or divide |r| columns of A by 2. Mathematically, without the presence of rounding
errors, the absolute value of the determinant of the resulting matrix is in the interval [ 1

√
2
,
√

2]. The main source of
numerical errors is the approximate LU-decomposition, so that for not extremely ill-conditioned cases we can expect
the scaled matrix to have determinant close to 1 in absolute value.

With respect to the value of the determinant the scaling is error-free provided that scaling itself does not cause
over- or underflow. That seems rather unlikely because scaling the matrix by a factor 2 scales the determinant by 2n,
so that q and r can be expected to be small.

2.2. The determinant of a triangular matrix

For a given triangular T ∈ Kn×n it seems trivial to compute an inclusion of the determinant det(T ) =
∏

Tii. Indeed,
the error remains small when computed in floating-point arithmetic. However, interval operations compute a worst
case error estimate, and the relative accuracy gradually decreases with the dimension. Table 2 displays in the first
two columns the relative error of the computed versus true product when using floating-point and interval arithmetic,
respectively.

Since the computational effort is merelyO(n) operations, some extra effort to increase the accuracy seems justified.
Graillat [7] presented a corresponding method based on the error-free transformation TwoProduct [13].

In [14] we presented a general method to evaluate arbitrary arithmetic expressions such that under precisely
specified conditions the result is faithfully rounded. Based on that general scheme we use the following algorithm to
calculate an inclusion of

∏
xi for x ∈ Fn with n ≥ 2.
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Table 2: Relative error of an n-fold product

n floating-point interval arithmetic new pair arithmetic

50 2.2e-16 3.9e-15 8.0e-17
100 3.3e-16 8.0e-15 7.6e-17
200 4.4e-16 1.6e-14 7.9e-17
500 5.6e-16 4.0e-14 7.6e-17

1000 6.7e-16 8.0e-14 8.2e-17

function P = ProdAcc(x)

n = length(x)

[c,g] = TwoProduct(x(1),x(2));

for i=3:n

[c,t] = TwoProduct(c,x(i));

g = t + x(i)*g;

end

G = g + midrad(0,subrealmin);

P = c + G;

It has been proved in [14] that for n ≤ 67, 108, 863 in IEEE binary64 the floating-point sum c + g is a faithfully
rounded result. Note that c and g are computed in floating-point rounding to nearest, and the second last statement
computes an interval G with left and right endpoint being the predecessor and successor of g. Hence, the computed P
in the algorithm above is an inclusion of the product.

In an actual implementation extra care is taken of over- and underflow. In particular, when applying that algorithm
to compute

∏
Uii for a scaled matrix according to Subsection 2.1 for larger dimension and condition number, then it

is likely that
∏

Uii is close to 1 but prod(diag(U)) causes intermediate over- or underflow. That suggests to devise
a function [m,e] = logdet(A) such that 0.5 ≤ |m| < 1 and det(A) = m · 2e. The base 2 is chosen to avoid rounding
errors, whereas s · elogD = det(A) for the similar function [logD,s] = logdet(A) in Matlab.

The last column in Table 2 displays the relative error of the inclusion of the product computed by our compensated
algorithm ProdAcc. As expected, the result is always of maximum accuracy.

2.3. The determinant of a perturbation of the identity matrix

Next we need to compute an inclusion of det(I + E) for a matrix E ∈ Kn×n with ‖E‖ not too large. A method of
choice might be the product of the Gershgorin circles, and that argument has been used in a number of publications.
However, a justification is necessary. If the Gershgorin circles Gk(A) are disjoint, then clearly det(A) ∈

∏
Gk; but for

overlapping circles an individual Gershgorin circle need not contain an eigenvalue of A, and additional arguments are
necessary. Indeed det(A) ∈

∏
Gk(A) is always true as has been shown in [25] for real, and in [5] for complex A.

But the bound by the product of Gershgorin circles can be improved. There are numerous papers on bounds of the
determinant of a perturbed identity matrix, cf. [20, 21, 22, 23, 6, 11, 1, 3]. Recently we established a new bound for
det(I + E) with high relative accuracy [28].

Theorem 1. Let E be a real or complex n × n matrix and denote ε := ‖E‖F = [tr(EH E)]1/2. Suppose the spectral
radius of E satisfies ρ(E) < (1 + ε2/3)−1. Then∣∣∣∣∣∣ det(I + E)

exp
(
tr(E) − tr(E2)/2

) − 1

∣∣∣∣∣∣ ≤ ε2ρ(E)
3(1 − ρ(E)) − ε2ρ(E)

≤
ε3

3(1 − ε) − ε3 .

The accuracy of that bound is of order O(ε3) and, because only the diagonal of E2 is needed, it is computable in O(n2)

operations. The spectral radius of E can be estimated by ρ(E) ≤ ρ(|E|) ≤ maxk
(|E|x)k

xk
by Perron-Frobenius Theory
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and every positive x ∈ Rn. Few power set iterations usually yield an accurate upper bound for ρ(|E|), which in turn is
a reasonable upper bound for ρ(E).

The progress of Theorem 1 is the relative lower and upper bound of order O(ε3), where the size of the perturbation
E is limited by 1 −O(ε2). For ill-conditioned input matrix the perturbation E may become too large. In that case only
an upper bound of β := | det(I + E)| can be computed. Candidates are ρ(|E|)n, using Gershgorin circles, or Hadamard’s
bound

β ≤

n∏
i=1

‖Ai∗‖2. (1)

Numerical evidence suggests that the latter is (by far) the best bound.

2.4. Preconditioners
For general A ∈ Kn×n the standard candidate is LU-decomposition as used in [4, 27, 17]. Consider the code:

[L,U,p] = lu(mid(A),’vector’);

XL = inv(L);

XU = inv(U);

Denote Ap := A(p, :). Then Ap ≈ LU, det(XL) = 1, and det(XU) =
∏

(XU)ii. By the method of computation, XL and XU

are left inverses of L and U, respectively, see Section 14 in [9] and the picture on the cover of the book. However, as
pointed out by one of the referees, it may happen that Matlab’s computed approximate inverse of a triangular matrix
is not triangular. An example, given by the referee, is

L = [1 0 0;3 2 0;2 3 1], XL = inv(L)

L =

1 0 0

3 2 0

2 3 1

XL =

1.0000e+00 9.2519e-17 -4.4409e-17

-1.5000e+00 5.0000e-01 2.7756e-17

2.5000e+00 -1.5000e+00 1.0000e+00

This does no harm, but subsequent matrix multiplications might be more efficient if the approximate inverse is truly
triangular. One remedy is to use XL = tril(inv(L)); XU = triu(inv(U)). However, the referee’s suggestion

I = speye(size(A)); XL = I / L; XU = I / U;

seems superior. The accuracy of the residual is, sometimes, slightly worse, but the method is up to a factor 2 faster, at
least in the current Matlab release 2019b. We use the sparse identity matrix which is a little faster than eye(n).

Now there are several possibilities for preconditioning A. Using interval products denotes the result of any of

(XU XL)Ap XU(XLAp) (XLAp)XU XL(ApXU) (ApXU)XL Ap(XU XL) (2)

by B. Then det(Ap) ∈ det(B)/
∏

(XU)ii. The first and third methods are used in [16], in [27] we used the fourth
method. For smaller dimensions and not large condition number, there is not too much difference; however, for larger
dimension n = 1000 and mildly ill-conditioned matrices of condition number 1010, only the first two approaches
succeed to compute a reasonably accurate inclusion, and of those the first one (XU XL)Ap in (2) is the winner. In
Table 3 the median relative error of the determinant inclusion for 100 samples and n = 1000 is shown. Matrices
are randomly generated using Matlab’s command gallery(’randsvd’,n,cond) generating an n × n-matrix with
pre-assigned singular values. This defines the first algorithm detlu as follows, where detId is based on Theorem 1.

function d = detlu(A)

[L,U,p] = lu(mid(A),’vector’);

I = speye(size(A));
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Table 3: Median relative error for the preconditioning schemes in (2) for n = 1000

cond(A) (XU XL)Ap XU(XLAp) (XLAp)XU XL(ApXU) (ApXU)XL Ap(XU XL)

10 6.8 · 10−11 1.2 · 10−10 1.1 · 10−10 1.1 · 10−10 1.2 · 10−10 6.8 · 10−11

100 1.9 · 10−10 3.7 · 10−10 3.6 · 10−10 4.3 · 10−10 4.4 · 10−10 1.9 · 10−10

105 3.3 · 10−8 7.7 · 10−8 7.7 · 10−8 1.2 · 10−7 1.2 · 10−7 3.3 · 10−8

1010 7.0 · 10−4 2.0 · 10−3 2.2 · 1087 2.2 · 1087 1.2 · 10296 1.1 · 10296

XL = I / L;

XU = I / U;

B = ( XU * intval(XL) ) * A(p,:);

d = parity(p)*detId(B-eye(n))/ProdAcc(diag(XU));

A simple and fast method in Matlab to compute the parity of the permutation vector p is det(I(:,p)).
One might consider an eigenvalue decomposition AX = XD. For Y ≈ X−1 it follows det(A) ∈ det(M)/ det(YX),

where M := YAX. One may argue that this approach works only for diagonalizable A, however, numerically, also in
the presence of non-trivial Jordan blocks, M can be expected to be almost diagonal at the price of ill-conditioned X.
That is because numerically eigenvectors are approximated rather than principle vectors. In turn, inclusions become
wide, which is not due to the difficulty to compute the determinant but due to the method. Therefore we did not pursue
this approach further.

Other preconditioning methods are the QR- and singular value decomposition. An extra difficulty is that an inclu-
sion of the determinant of a numerically orthogonal matrix is needed. We did this using detlu. Both decompositions
are very stable. For A ≈ QR we use XR ≈ R−1, and for A ≈ UΣV∗ we use XΣ ≈ Σ−1. Here M∗ denotes the Hermitian
of a matrix M. Results are shown in Table 4.

Table 4: Median relative error for other preconditioning schemes and n = 1000

cond(A) (XU XL)Ap (Q∗A)XR Q∗(AXR) AXR XΣ(AV∗) (XΣA)V∗ XΣ(U∗A) (XΣU∗)A

10 6.8 · 10−11 6.6 · 10−11 6.6 · 10−11 5.8 · 10−11 2.6 · 10−10 2.6 · 10−10 1.3 · 10−20 1.3 · 10−10

100 1.9 · 10−10 7.5 · 10−11 7.6 · 10−11 6.9 · 10−11 6.3 · 10−10 6.4 · 10−10 1.3 · 10−10 1.4 · 10−10

105 3.2 · 10−8 4.1 · 10−9 4.6 · 10−9 4.6 · 10−9 7.8 · 10−8 7.9 · 10−8 4.4 · 10−9 4.9 · 10−9

1010 7.2 · 10−4 1.6 · 10−4 1.8 · 10−4 1.8 · 10−4 1.8 · 10−3 1.8 · 10−3 1.4 · 10−4 1.6 · 10−4

1011 5.6 · 10−3 1.4 · 10−3 1.6 · 10−3 1.6 · 10−3 1.6 · 10−2 1.6 · 10−2 1.2 · 10−3 1.3 · 10−3

Up to now, LU-decomposition with (XU XL)Ap and the different versions of QR-decomposition seem interesting.
The last two methods seem interesting as well, however, we do not pursue them further because the computational ef-
fort for the singular value decomposition is considerably larger than for LU or QR. We mention that for an orthogonal
n × n matrix Q, no method is known to decide the sign of det(Q) in O(n2) operations.

Another factorization is an approximate polar decomposition A ≈ QP with unitary Q and Hermitian positive
definite P. Since that is usually computed via a singular value decomposition, we did not pursue that further as well.

2.5. Bounds for the determinant without preconditioning

The quality of the new bounds for the perturbed identity matrix suggests new methods to compute bounds for the
determinant without preconditioning. Let [L,U,p] = lu(A,’vector’) and abbreviate Ap := A(p, :). Then it is
well known from numerical analysis that F := LU − Ap can be expected to be of the size of relative rounding error
unit, regardless of the condition number of A. Thus LU = Ap + F = Ap(I + A−1

p F) and

det(A) = parity(p) ·
∏

Uii/ det(I + E) where E := A−1
p F. (3)
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Similarly, for F = QR − A it follows

det(A) =
∏

Rkk det(Q)/ det(I + E) where E := A−1F. (4)

In both cases we compute an inclusion of E using INTLAB’s verifylss, and det(Q) is included using detlu. The
results for n = 1000 and condition number up to 1012 are shown in Table 5. For comparison, we also show the
“AXR”-method as in Table 4. The latter, preconditioning with XR ≈ R−1 seems simple and attractive.

Table 5: Median relative error without preconditioning schemes

n = 200 n = 1000
cond(A) LU (3) QR (4) AXR LU (3) QR (4) AXR

10 3.4 · 10−12 5.4 · 10−12 5.1 · 10−12 3.7 · 10−11 5.8 · 10−11 5.8 · 10−11

100 1.2 · 10−11 1.3 · 10−11 9.7 · 10−12 1.4 · 10−10 7.0 · 10−11 6.8 · 10−11

105 3.2 · 10−9 4.3 · 10−9 1.7 · 10−9 2.6 · 10−8 5.7 · 10−9 4.7 · 10−9

1010 1.6 · 10−4 2.3 · 10−4 6.7 · 10−5 6.0 · 10−4 2.3 · 10−4 1.8 · 10−4

1011 1.5 · 10−3 2.2 · 10−3 5.9 · 10−4 4.7 · 10−3 2.0 · 10−3 1.5 · 10−3

1012 1.4 · 10−2 2.1 · 10−2 5.5 · 10−3 4.2 · 10−2 1.9 · 10−2 1.4 · 10−2

2.6. Bounds for the determinant with high accuracy and for ill-conditioned matrices
The bounds achieved so far give, as expected, results with accuracy depending on the condition number of the

matrix. Next we use accurate dot products as in algorithm Dot2 in [18] to produce bounds of high accuracy; the more
accurate algorithm AccSum in [29] can be used as well. Those will also work for extremely high condition numbers
beyond 1016. The first method to bound the determinant is based on an LU-decomposition:

function d = detLU(A)

[L,U,p] = lu(A,’vector’);

I = speye(size(A));

XL = I / L;

XU = I / U;

B = Dot2(XU,XL) * A(p,:);

d = parity(p)*detId(B-eye(n))/ProdAcc(diag(XU));

Here detId(E) calculates det(I + E) using the method described in Subsection 2.3, and ProdAcc is as in Subsec-
tion 2.2. The second method using accurate dot products is based on a QR-decomposition:

function d = detQR(A)

XR = speye(size(A)) / triu(qr(A));

B = Dot2(A,XR);

d = detLU(B)/ProdAcc(diag(XR));

Internally, the routine Dot2 computes an approximate term C and an interval error term E, resulting in the final inclu-
sion C + E. The final improvement is to use both terms separately and use Dot2 again on those. Here Dot2(A,B,C)
uses the accurate dot product to compute an inclusion of AB − C. Note that this approach is applicable to detQR

because the main operation is A*XR; it is not applicable to detLU because of the triple product XU*XL*A(p,:).

function d = detQRimpr(A)

I = speye(size(A));

XR = I / triu(qr(A));

[B,E] = Dot2(A,XR); % two-fold product

[L,U,p] = lu(B,’vector’);

XL = I / L;
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XU = I / U;

[YX,F] = Dot2(XU,XL);

C = Dot2(YX,B(p,:),I) + F*B(p,:);

d = parity(p)*detId( C + (YX+F)*E(p,:) ) / ProdAcc([diag(XR);diag(XU)]);

The following Table 6 shows the median relative error for 100 sample matrices of sizes n = 200 and n = 1000 for
different condition numbers for the three improved methods using an accurate dot product. If a relative error of the
inclusion is larger than 1, then the number of such cases is printed in parenthesis in each column. In such a case still
an inclusion is computed, however, it is very wide.

For condition numbers beyond 1014 the method based on LU-decomposition fails, while the QR-decomposition
based methods succeed even for condition number 1016. Up to about condition number 1013, detQRimpr yields
almost maximally accurate results.

Table 6: Median relative error using accurate dot products

n = 200 n = 1000
cond(A) detLU detQR detQRimpr detLU detQR detQRimpr

102 2.0 · 10−12 4.1 · 10−12 2.4 · 10−16 8.2 · 10−12 5.1 · 10−11 2.3 · 10−16

105 4.3 · 10−10 4.1 · 10−12 2.4 · 10−16 5.7 · 10−10 4.3 · 10−11 2.4 · 10−16

1010 2.3 · 10−5 4.1 · 10−12 2.3 · 10−16 2.5 · 10−5 4.0 · 10−11 2.5 · 10−16

1012 2.0 · 10−3 4.1 · 10−12 2.4 · 10−16 1.9 · 10−3 3.9 · 10−11 2.6 · 10−16

1013 1.9 · 10−2 4.1 · 10−12 2.6 · 10−16 1.9 · 10−2 3.9 · 10−11 3.9 · 10−16

1014 2.1 · 10−1 4.1 · 10−12 4.0 · 10−16 5.9 · 10−1(39) 2.7 · 10−10 1.7 · 10−15

1015 − (100) 4.1 · 10−12 1.8 · 10−15 − (100) 1.1 · 10−7 1.3 · 10−14

1016 − (100) 4.2 · 10−12 1.4 · 10−14 − (100) 5.5 · 10−6(94) 1.1 · 10−13(58)

2.7. The determinant of extremely ill-conditioned matrices

The final method detQRimpr of the the previous subsection seems to work for extremely ill-conditioned matrices.
We add a few more examples of well-known such matrices, namely, the Hilbert (’o’), inverse Hilbert (’x’), Pascal
(’+’) and Boothroyd (’*’) matrices [2]. All matrices, possibly after integer scaling, have only integer entries. The
results for the two QR-based methods detQR and detQRimpr of the previous subsection are shown in Figure 1. As

Figure 1: Relative error of determinant inclusion for the QR-based methods
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can be seen, an inclusion with some accuracy succeeds up to condition number 1025 or so, for inverse Hilbert matrices
even up to 1040. The inclusions by detQRimpr are significantly better than those by detQR. Remarkably, even the
simple algorithm detQR works well for condition number well beyond 1016.

3. Interval matrices

Let A ∈ IRn×n be given. We use a midpoint-radius notation A = <M,R> = {A : M − R ≤ A ≤ M + R} with
inequalities to be understood componentwise. The continuity and linearity of the determinant and the expansion [10]

det(A + δB) =

n∑
k=0

tr(adjk(A)Ck(B)) · δk (5)

using the k-th (classical) adjoint and compound matrix imply that there exist S 1, S 2 with |S ν| = eeT for e = (1, . . . , 1)T

and det(A) = [det(M + S 1 ◦ R), det(M + S 2 ◦ R)], where ◦ denotes the Hadamard (entrywise) product.
For a real interval matrix and |S | = eeT with det(M + S ◦ R) ∈ {min det(A),max det(A)}, we call M + S ◦ R an

extreme vertex of A. Potentially 22n
such vertex determinants have to be checked. As for the componentwise distance

to the nearest singular matrix, where it suffices to consider the set of 22n vertex matrices M + S 1eeT S 2 [24], one might
hope to restrict the number 22n

by some strategy. The following lemma proves the contrary.

Lemma 1. Let fixed but arbitrary Ŝ ∈ Rn×n with |Ŝ | = eeT be given. There exists a real interval matrix A = <M,R>
such that M + Ŝ ◦ R is an extreme vertex of A, and det(M + S ◦ R) , det(M + Ŝ ◦ R) for all |S | = eeT with S , Ŝ .

Proof. In every ε-neighborhood of Ŝ there exists a regular matrix B. For small enough ε we may choose B such
that all entries of Ŝ and B have the same sign. Assume det(B) > 0. Then M := B−T implies adj(M) = BT / det(B),
and hence all entries of adj(MT ) ◦ Ŝ are positive. Let S with |S | = eeT and S , Ŝ be given. Then det(M + δS ) =

det(M) + δ
∑

i, j(adj(MT ) ◦ S )i j + O(δ2) by (5), and there exists 0 < δ ∈ R such that det(M + δS ) < det(M + δŜ ).
It follows that det(M + δŜ ) = max det(A) for the unique sign matrix Ŝ , and A := <M, δeeT> proves the result. For
negative det(B), we proceed similarly. �

3.1. Inclusion of the determinant for moderate radii

For small radii, an inclusion of the determinant of a real or complex interval matrix can be computed by the
methods presented in the previous section, in particular detQR and detQRimpr. For not so small radii that inclusion
may become wide. A powerful measure to improve an inclusion is the adjoint.

For given A ∈ IRn×n, define S := S(A) ⊆ Rn×n to be the set of all matrices S with entries

S i j :=


1 if adj(A) ji ≥ 0
−1 if adj(A) ji < 0
{−1, 1} otherwise,

(6)

where adj(A) := {adj(A) : A ∈ A} ⊆ Rn×n.

Theorem 2. For given A = <M,R> and S as in (6),

min
S∈S

det(M − S ◦ R) = min det(A) and max det(A) = max
S∈S

det(M + S ◦ R).

Proof. Let A = M + S ◦ R with |S | = eeT be maximal, i.e., det(A) = max det(A), and let (i, j) be a fixed but
arbitrary index pair. Then

det(A + ε eT
i e j) = det(A) + ε adj(A) ji.

If adj(A) ji > 0, the maximality of det(A) implies S i j = 1, and similarly S i j = −1 if adj(A) ji < 0. If adj(A) ji = 0, then
S i j can be replaced by 1 or −1 without changing the determinant of A. The argument for the minimum is similar. �
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Suppose we want to compute an upper bound of det(A), where B ∈ IRn×n with adj(AT ) ⊆ B is known. If Bi j ≥ 0
for some i, j, then, according to Theorem 2, the interval entry Ai j can be replaced by Mi j + Ri j ∈ R without changing
the maximum of the determinant. Similarly, Ai j can be replaced2 by Mi j − Ri j if Bi j ≤ 0. Having done that for all
entries Bi j not containing zero as an inner point may result in a number of point components in A. Continuing that
process with a new inclusion of adj(A), other entries of the new adjoint may not contain zero as an inner point. The
same applies to the lower bound.

That approach depends on an inclusion of the adjoint of an interval matrix, which may be computed by adj(A) ⊆
det(A)A−1. However, that sounds like a vicious because we aim for an inclusion of det(A). If a verification algorithm
like INTLAB’s verifylss computes an inclusion of A−1 := {A−1 : A ∈ A}, then this proves that all matrices within A
are regular, i.e. their determinants all have the same sign. Thus we may follow the above approach two times replacing
adj(AT ) by A−T . Then taking the hull of the computed bounds delivers an inclusion of det(A).

The following shows INTLAB code for this refinement method:

function A = refine(A,sgn)

invA = inv(A)’;

k = sum(rad(A(:)>0)); kold = inf;

while ( k~=0 ) && ( k<kold )

Ainf = A.inf; Asup = A.sup;

s = ( sgn*invA(:) <= 0 ); % reduce interval entries to A.inf

Asup(s) = Ainf(s);

s = ( sgn*invA(:) >= 0 ); % reduce interval entries to A.sup

Ainf(s) = Asup(s);

A = intval(Ainf,Asup,’infsup’);

k = sum(rad(A(:))>0);

invA = inv(A)’;

end

For an interval matrix A, it follows that det(A) = hull(det(A1), det(A2)), where A1 = refine(A,-1) and A2 =

refine(A,+1). For complex interval matrices, each entry is a circle in the complex plane. Thus, a similar approach
can be defined for complex matrices, but it seems difficult to identify “vertex” matrices for the determinant. If not too

Table 7: Percentage of zero intervals of A−T after refinement

n = 200 n = 1000
% zeros intervals # iterations % zeros intervals # iterations

initial % median max median max median max median max

50 0.00 0.01 7.0 14.0 0.00 0.00 10.0 14.0
60 0.00 0.01 8.0 14.0 0.00 0.00 10.0 16.0
70 0.00 0.02 9.0 18.0 0.00 0.00 10.0 18.0
80 0.00 0.01 9.0 16.0 0.00 0.00 12.0 20.0
90 0.00 89.33 12.0 45.0 0.00 89.30 15.0 53.0

many of the entries of the inclusion of A−T contain zero as an inner point, the method may be effective. Table 7 shows
the results for 100 sample matrices with the given initial percentage of zero intervals of the inclusion of A−T . Such a
matrix is constructed by choosing a random midpoint M and inflating the radius until the desired percentage of zero
intervals of the inclusion of A−T is reached. Then the median and maximal percentage of zero intervals after applying
refine is displayed, followed by the median and maximal number of necessary iterations. For example, the value
0.01 for the maximum percentage of zero intervals for n = 200 indicates that, starting with 80% zero intervals, in one
out of the 100 samples there was one zero interval left, otherwise none. The latter implies an accurate inclusion of
det(A).

2For Bi j = 0, the determinant does not depend on Ai j.
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If the number of entries of the inclusion of A−T containing zero as an inner point is reduced to zero for both
bounds, then the inclusion of det(A) is equal to the hull of the determinants of two point matrices. Consider absolute
perturbations of a random matrix A resulting in an interval matrix A = midrad(A,r). First, the radius r is successively
increased by 10%, and denote by R1 the largest value for which the relative error of detQR(A) is less than 1. Second,
denote by R2 the largest value of r for which A1 = refine(A,s) results in a point matrix for both s = −1 ans s = 1,
so that a sharp inclusion of det(A) follows. In Table 8 we display the median and maximum of the ratios R2/R1 for 100
samples each. For example, for n = 1000 and cond(A) = 104, an inclusion with barely one correct digit is computed

Table 8: Maximal radius for absolute perturbations

n = 200 n = 1000
cond(A) median(ratio) max(ratio) inner[%] median(ratio) max(ratio) inner[%]

1 1.00 1.00 100.0 1.00 1.00 100.0
100 3.80 8.14 100.0 2.36 6.73 100.0
104 4.18 8.14 100.0 3.45 8.95 100.0
107 2.85 6.73 100.0 2.48 8.14 100.0
1010 1.00 1.95 99.9 1.00 1.00 99.7

by detQR for a certain radius R1, whereas using refine a sharp inclusion is computed in the median for a 3.45 times
larger radius.

For every matrix A within A = <M,R>, det(A) may contribute to inner bounds of det(A). Obvious candidates are
det(M ± S ◦ R) for S = sign(M−T ) obtained by the linearization of the determinant. In Table 8 we took the matrix A
of largest radius produced by refine and display the median of the ratios of the diameter of the inner inclusion and
of det(A). Since det(A) = hull(det(A1), det(A2)) for those examples, the percentages reflect the true values. The inner
bounds are good as long as the size of the radii cause small linearization errors.

One may argue that each iteration of refine costs some O(n3) operations; however, given the NP-hardness of the
problem that might be acceptable.

3.2. Interval matrices with large radii

If the entries of A = <M,R> are so wide that an inclusion of A−1 can be computed but all components contain zero
as an inner point, one may try to apply refine to sufficiently many minors of A. Another, maybe better possibility
is to fix several interval entries (i, j) of A to its infimum or supremum. Candidates are those with (M−1) ji large in
absolute value. For k such entries, however, 2k interval determinants have to be computed. This may also be a method
if an inclusion of A−1 cannot be computed.

If A contains a matrix of rank k, then all submatrices of size k × k and larger contain a singular matrix. In that
case the above approach results in many subproblems, and we do not know a method to avoid that. That reflects the
NP-hardness of the problem.

In any case, preconditioning the matrix should be avoided for larger radii. For ϕ varying between 0 and 0.03, we
generated 100 matrices by midrad(randn(n),phi*abs(A)), i.e., random matrices with relative radius ϕ. Figure
2 displays the ratio between the radius of the determinant inclusion by detQR and the Hadamard bound (1) for A.
The left graph is for n = 50, the right one for n = 200. The intersection with the horizontal line at ratio ≡ 1 is the
break-even point, i.e., left of it preconditioning is better, while right Hadamard’s bound is superior.

Note the logarithmic scale of the ratio: for n = 50 and smaller radii (ϕ . 0.018), the inclusion by detQR is much
better, for larger radii it becomes much worse. For n = 200, the break-even point is around ϕ . 0.0047, in both cases
roughly ϕ . 1/n.

Acknowledgements. The author wishes to thank the anonymous referees for fruitful suggestions, particularly one
of them for pointing out Matlab’s behavior concerning the approximate inverse of triangular matrices.
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Figure 2: Relative error of determinant inclusion for the QR-based methods

References

[1] T. Bhatia and T. Jain. Higher order derivatives and perturbation bounds for determinants. Linear Algebra Appl. (LAA), 431:2102–2108, 2009.
[2] J. Boothroyd. Algorithm 274: Generation of Hilbert derived test matrix. Communications of the ACM, 9(1):11, 1966.
[3] R.P. Brent, J.H. Osborn, and W.D. Smith. Note on best possible bounds for determinants of matrices close to the identity matrix. Linear

Algebra Appl. (LAA), 466:21–26, 2015.
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