
Error bounds for computer arithmetics
This research was partially supported by CREST, Japan Science and Technology Agency.

Siegfried M. Rump
Institute for Reliable Computing,

Hamburg University of Technology,
Am Schwarzenberg-Campus 3, 21071 Hamburg, Germany,

and Visiting Professor at Waseda University,
Faculty of Science and Engineering,

3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan.
Email: rump@tuhh.de

Abstract—This note summarizes recent progress in error
bounds for compound operations performed in some computer
arithmetic. Given a general set of real numbers together with
some operations satisfying the first standard model, we identify
three types A, B, and C of weak sufficient assumptions implying
new results and sharper error estimates. Those include linearized
error estimates in the number of operations, faithfully rounded
and reproducible results. All types of assumptions are satisfied
for an IEEE-754 p-digit base-β floating-point arithmetic.

I. INTRODUCTION

In this note we summarize some recent results on IEEE-754
floating-point and on a more general computer arithmetic. Sev-
eral findings are presented unifying and generalizing previous
ones. At few places short proofs are given rather than lengthy
explanations if we think it is the easier way to understand the
matter.

An introduction and basic properties of floating-point and of
more general computer arithmetics can be found in Higham’s
ASNA [13], see also [9], and in particular in the excellent
books [29] by Muller et al. and [4] by Brent and Zimmermann.

We start with the most popular model of computer arith-
metic, namely [14] IEEE-754 p-digit floating-point arithmetic
to some base β. For this model we show that traditional
estimates using the relative rounding error unit u “ 1

2β
1´p

can be replaced by optimal bounds for individual opera-
tions. Moreover, it was a surprise that the traditional bound
γk “ ku{p1´ kuq for compound operations, for example for
summation, dot products and also some matrix factorizations,
can be linearized to ku.

Next, we consider an arbitrary set A of real numbers and
a computer arithmetic on A with the sole requirement to
satisfy the first standard model [13], i.e., the relative error
of the computed result to the exact result is bounded by
some constant. Then we ask what additional assumptions
are necessary to prove error estimates such as the linearized
bounds mentioned above. This approach is in some way
opposite to fixing the set A to p-digit base-β numbers and
precisely defining the operations as in IEEE-754 arithmetic.
We identify three mutually different additional assumptions.

For a computer arithmetic and a, b P A denote by a‘ b the
computed result of a ` b. The first Assumption A is that the
absolute error of an addition or subtraction is bounded by the
minimum absolute value of the operands, that is

Assumption A: |a‘ b´ pa` bq| ď minp|a|, |b|q.

That suffices to prove the linearized error bounds mentioned
above. Assumption A is satisfied for any IEEE-754 p-digit
base-β floating-point arithmetic with some nearest rounding.
On the one hand, Assumption A is very weak [the error of
2 ‘ 3 to 5 is bounded by 2], on the other hand Assumption A
excludes directed rounding [adding an arbitrarily small number
to 1 results in one of the neighbors of 1].

In IEEE-754 arithmetic the relative error of an operation
aeb is not only bounded by u|a˝b|, but in fact by u¨ufppa˝bq,
where ufppxq denotes the largest power of β less than or equal
to |x|. That is the kernel of the alternative second Assumption
B, namely that errors are bounded relative to specific numbers
“near” the actual result rather than to the real result itself.
That suffices to prove the linear error estimates. For IEEE-
754 p-digit base-β floating-point arithmetic such numbers are
powers of β, and that second Assumption B is satisfied for any
rounding, including the directed and faithful ones, the latter
meaning that there is no other floating-point number between
the real result and the computed result.

Another interpretation of the fact that in IEEE-754 errors are
bounded by u ¨ ufppa ˝ bq is that those numbers are a constant
times a power of β. This is the kernel of the third Assumption
C, namely that errors grow by b ¨βk for some constants b, β, k.
With Assumption C it follows that errors grow linearly with
the height of a summation tree. For IEEE-754 p-digit base-β
floating-point arithmetic the third Assumption C is satisfied
for any rounding, including directed or faithful ones.

The conclusions by Assumption A are true without re-
striction on the number of summands. The second and third
Assumptions B and C are targeted to prove results for a general
rounding, including directed, faithful but also nearest. Such
results require a mandatory but weak restriction on the size of
the problem. Therefore Assumptions B and C are more general
than Assumption A, but imply such a restriction.

The first standard model together with Assumptions A and
B leads to the optimal error bound for summation, namely that
ku can be replaced by ku{p1`kuq, see Table I. A mandatory
restriction on k of size u´1 applies.

Depending on the assumption, the error bounds for sum-
mation are as follows. Let a set A Ď R with a computer
arithmetic according to the first standard model with relative
rounding error unit u be given. For p1, . . . , pn P A denote by
ŝ the computed sum in any order. Depending on the additional
assumption, the error of summation satisfies |ŝ ´

řn
i“1 pi| ď

Φ
řn
i“1 |pi| with constants Φ according to Table I. The bounds

depend on the number of summands n except the third one
depending on the height h of the summation tree.

TABLE I: Error bounds for summation.

Assumption Φ rounding condition

A pn´ 1qu nearest none

B pn´ 1qu any n ď 1` β´1
2

u´1

C hu any h ď u´1{2 ´ 1

A and B pn´1qu
1`pn´1qu nearest n ď 1` β´1

2
u´1

The motivation of the improved error estimates is not only a
matter of beauty, but it often suffices to show similar linearized
estimates for other types of compound operations such as dot
products, blocked summation or sums of products.

Next we reduce the arithmetic to the first standard model,
not requiring any of the Assumptions A, B or C. Based on that
we introduce a simplified pair arithmetic producing a faithfully
rounded result under precisely specified conditions. In the
world of IEEE-754 arithmetic this widens the applicability
because existing pair arithmetics rely on error-free transforma-
tions. Those, however, do not exist in case of directed rounding
because the error of an approximate operation needs not to be
representable.

Finally we close the circle and return to IEEE-754 binary
arithmetic with rounding to nearest. For that we discuss how
to obtain efficiently a reproducible result for summation.

II. OPTIMAL ERROR BOUNDS FOR THE TWO STANDARD
MODELS

We start with the most popular model of computer arith-
metic, namely IEEE-754 p-digit base-β floating-point arith-
metic. For simplicity, we assume the set F of floating-point
numbers to have no restriction on the exponent range:

F “ t0u Y tM ¨ βe : M, e P Z, βp´1 ď |M | ă βpu. (1)

Let fl : RÑ F denote a round-to-nearest function, that is

|t´ flptq| “ min
fPF

|t´ f |, t P R. (2)

To carry out rounding error analysis of algorithms, frequently
the first or second standard model of computer arithmetic
is used. That means that, according to Table II, the relative
error of a floating-point operation ˝ P t`,´,ˆ, {u shall be
bounded with respect to the true result for the first, and with

respect to the computed result for the second standard model.
The relative error of the first and second standard model for

TABLE II: First and second standard model for x, y P F.

standard model property

I flpx ˝ yq “ px ˝ yqp1` δq, |δ| ď u

II flpx ˝ yq “ x˝y
1`δ

, |δ| ď u

rounding t P R is [13]

E1ptq “
|t´ flptq|
|t|

and E2ptq “
|t´ flptq|
|flptq|

,

respectively, with the convention 0{0 “ 0. It is well known
[20] that E1ptq ď v :“ u

1`u and E2ptq ď u for the relative
rounding error unit u :“ 1

2β
1´p.

For arithmetic operations x e y :“ flpx ˝ yq, however,
the upper bound for E1 or E2 is not always attained. The
maximum value for E1 is achieved if and only if there exist
x, y P F with x ˝ y “ 1` u, the number half-way between 1
and its successor 1 ` 2u. The same is true for E2 if ties are
rounded to even.

The worst case bounds for the individual operations were
proved by Jeannerod et al. in [16] as given in Table III. The

TABLE III: Optimal relative error bounds for various inputs t and
x, y P F for IEEE-754 p-digit base-β floating-point arithmetic.

t bound on E1ptq bound on E2ptq

real number u
1`u u

x˘ y u
1`u u

xy u
1`u u

x{y

#

u´ 2u2 if β “ 2,
u

1`u if β ą 2

#

u´2u2

1`u´2u2 if β “ 2,
u if β ą 2

?
x 1´ 1?

1`2u
?

1` 2u´ 1

bounds are optimal, possibly under some mild (necessary and
sufficient) conditions on β and p outlined in [16]. Specifically,
for addition, subtraction, and multiplication the condition for
optimality is that β is even, and in the case of multiplication
in base 2 it requires that 2p`1 is not a Fermat prime. In most
practical situations such conditions are satisfied.

A rounding function fl : R Ñ F is defined by its “switch-
ing points” (called rounding boundary in [4]). In IEEE-754
these are the midpoints, i.e., the arithmetic mean of adjacent
floating-point numbers, thus minimizing the maximum relative
error E1ptq of the first standard model.

We may ask for switching points minimizing the maximum
relative error for a nearest rounding of the second, or of both
standard models. These have been identified in [37] as by
Table IV. This is not only true for the grid of p-digit base-β
floating-point numbers, but for general sets of real numbers.

TABLE IV: Optimal switching points within adjacent elements of F.

Minimizing E1ptq Minimizing E2ptq Minimizing maxpE1ptq, E2ptqq

Arithmetic mean Harmonic mean Geometric mean

III. LINEARLY BOUNDED ERROR ESTIMATES FOR
COMPOUND OPERATIONS

In this section we still assume an IEEE-754 p-digit base-
β floating-point arithmetic with some nearest rounding. Here
“some” means that ties may be rounded in any way.

The most simple and important compound operation is the
sum of floating-point numbers. Let n numbers p1, . . . , pn P F
be given, set ŝ1 :“ p1 and define recursively

ŝi :“ ŝi´1 ‘ pi for i P t2, . . . , nu. (3)

Since ŝi´1 ‘ pi “ pŝi´1 ` piqp1 ` δiq for some |δi| ď u, a
straightforward and standard computation yields [13]

|ŝn ´
n
ÿ

i“1

pi| ď
`

p1` uqn´1 ´ 1
˘

n
ÿ

i“1

|pi|. (4)

This is the classical Wilkinson-type bound [41]. To cover
higher order terms, the unwieldy factor on the right-hand
side is often replaced by γn´1 “

pn´1qu
1´pn´1qu , provided that

pn´ 1qu ă 1 (see [13]).
It was a surprise when it was proved in [34] that, at least

for recursive summation (3), the factor γn´1 can be replaced
by pn´ 1qu without restriction on n:

| ŝn ´
n
ÿ

i“1

pi | ď pn´ 1qu
n
ÿ

i“1

|pi| . (5)

That theoretical estimate was supplemented in [34] by the
computable estimate

| ŝn ´
n
ÿ

i“0

pi | ď pn´ 1qu ¨ ufppŜnq,

where Ŝn is obtained by (3) when replacing pi by |pi|. The
unit in the first place ufppxq of x P R denotes the value
of the leading digit in the β-adic representation of x (with
ufpp0q :“ 0). It was introduced in [38] and proved to be
useful to transform complicated rounding error analyses into
inequalities. At least for β “ 2 it can be computed, without
branch, using three floating-point operations and one absolute
value, see [34, Algorithm 3.5] and [17].

OPEN PROBLEM 1. Design an algorithm of similar com-
plexity and without branch to compute ufppxq for β ą 2.

After that first linear error estimate, the race began. For
the remainder of this section, in order to show the historical
progress, we still restrict our attention to a computer arithmetic
in base β ě 2 with p ě 2 mantissa digits following the IEEE-
754 standard, so that u “ 1

2β
1´p.

The next target was dot products. Rather than treating sums
of products of floating-point numbers, the error of a sum of
real numbers was estimated. To our knowledge that was the
first time to take that more general perspective. More precisely,
consider a real vector x1, . . . , xn P R and suppose the sum
of flpxiq is evaluated in floating-point arithmetic with result r̂.
Then it was shown by Jeannerod in [15] that, no matter what
the order of evaluation of the floating-point sum,

|r̂ ´
n
ÿ

i“1

xi| ď nu
n
ÿ

i“1

|xi|. (6)

The result is true without any restriction of n. For floating-
point vectors a, b P Fn it follows as a corollary that the result
r̂ of the floating-point dot product, no matter what the order
of evaluation and barring underflow, satisfies

|r̂ ´ aT b| ď nu|aT ||b|. (7)

As a consequence, the error of the floating-point product
of two matrices A,B with inner dimension k is bounded
by ku|A||B|. In [15] it was also shown that the bound for
summation (5) is true in IEEE-754 p-digit base-β floating-
point arithmetic for any order of evaluation; in the next section
we will see that (5), (6) and (7) are true for any computer
arithmetic satisfying the first error model and |a‘b´pa`bq| ď
minp|a|, |b|q. The latter is Assumption A.

Given a vector p P Fn, let r̂ be the value of the Euclidean
norm }p}2 calculated in floating-point arithmetic in any order
of evaluation. The standard error estimate

ˇ

ˇ r̂ ´ }p}2
ˇ

ˇ ď

´

p1` uqn{2`1 ´ 1
¯

}p}2

was, without restriction on n, improved in [16] to
ˇ

ˇ r̂ ´ }p}2
ˇ

ˇ ď pn{2` 1qu}p}2.

Next consider the product of floating-point numbers. First,
Graillat et al. proved in [12] that for a P F, β “ 2, the result
r̂ of the power ak`1 computed by successive multiplications
and barring over- and underflow satisfies

|r̂ ´ ak`1| ď ku|ak`1| if k ` 1 ď
a

21{3 ´ 1 ¨ u´1{2. (8)

More generally, in [35] the product of real numbers was
treated. For x0, x1, . . . , xk P R with ` of them in F, denote
by r̂ the floating-point product of all the flpxiq in any order
of evaluation, and set

K :“ 2k ` 1´ ` and ω :“

#

1 if β is odd,
2 if β is even.

(9)

Then, in the absence of underflow and overflow,

ˇ

ˇr̂ ´
k
ź

i“0

xi
ˇ

ˇ ď Ku
ˇ

ˇ

k
ź

i“0

xi
ˇ

ˇ if K ă

c

ω

β
u´1{2. (10)

Note that the index i starts from 0. In particular, if β “ 2 and
all the xi are in F, then pK,ωq “ pk, 2q and (10) becomes

ˇ

ˇr̂ ´
k
ź

i“0

xi
ˇ

ˇ ď ku
ˇ

ˇ

k
ź

i“0

xi
ˇ

ˇ if k ă u´1{2. (11)

For β “ 2 and p ě 4, the constraint in (11) cannot be replaced
by k ă 12u´1{2.

OPEN PROBLEM 2. Assume IEEE-754 p-digit base-β arith-
metic. Let T be a binary tree with k ` 1 leaves, where each
inner node represents a division. Associate to each leaf a
floating point number, denote by r the value of the root for
real division {, and by r̂ for floating-point division { . Is

|r̂ ´ r| ď ku|r| if k ă u´1{2

true? Is it also true for mixed multiplications and divisions?
If yes and assuming the first standard model, what are the
necessary assumptions on the computer arithmetic?

As another consequence, the classical factor γ2n for
Horner’s scheme was improved as well in [35]. Let
x, a0, a1, . . . , an P F be given and let r̂ be the approximation
to

řn
i“0 aix

i produced by Horner’s scheme. Then, using ω
defined in (9) and in the absence of underflow and overflow,
ˇ

ˇ

ˇ

ˇ

ˇ

r̂ ´
n
ÿ

i“0

aix
i

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2nu
n
ÿ

i“0

|aix
i| if n ă

1

2

ˆ
c

ω

β
u´1{2 ´ 1

˙

.

(12)
Finally, it was shown in [36] that the concept of linearizing
bounds by replacing γk by ku is also true for some standard
numerical linear algebra algorithms. If for some A P Fmˆn
with m ě n Gaussian elimination runs to completion, then the
computed factors L̂ and Û satisfy (comparison and absolute
value to be understood entrywise)

L̂Û “ A`∆A, |∆A| ď nu|L̂||Û |. (13a)

If for symmetric A P Fnˆn the Cholesky decomposition runs
to completion, then the computed factor R̂ satisfies

R̂T R̂ “ A`∆A, |∆A| ď pn` 1qu|R̂T ||R̂|. (13b)

If Tx “ b is solved by substitution for b P Fn and nonsingular
triangular T P Fnˆn, then the computed solution x̂ satisfies

pT `∆T qx̂ “ b, |∆T | ď nu|T |. (13c)

Each of these bounds improves upon the corresponding clas-
sical ones, that is,

γn|L̂||Û |, γn`1|R̂
T ||R̂|, γn|T |.

In contrast to the classical ones, the new bounds are valid
without restriction on n.

IV. GENERAL COMPUTER ARITHMETIC

Up to now we actively assumed to use an IEEE-754 p-
digit base-β floating-point arithmetic. Then, for example, lin-
earized error estimates follow. Next, for a computer arithmetic
satisfying the first standard model, we will passively identify
sufficient additional assumptions to prove certain results, for
example linearized error estimates. In particular we move away
from a specified grid, working instead on an arbitrary set of
real numbers.

Let a set A of real numbers together with operations
e : A ˆ A Ñ A for ˝ P t`,´,ˆ, {u be given satisfying the
first standard model [13]

@x, y P A : xe y “ px ˝ yqp1` δq, |δ| ď u (14)

for a constant u. That is our minimum accuracy requirement
bounding the relative error of x e y P A with respect to the
real result x ˝ y P R.

Most types of computer arithmetic used for numerical
computations satisfy the first standard model, chief amongst
IEEE-754-type arithmetics. That includes flush-to-zero models
[no gradual underflow] if the underflow range is excluded.

The first and second standard model are not satisfied for
multiplication and division in fixed-point arithmetic (although
addition and subtraction is always exact). They are also not
satisfied for an arithmetic without guard digit [13, Section 2.4]
and [9] which has been used in the early days of computers.1

The standard model (14) leaves much freedom for the actual
definition of the computer arithmetic, it neither implies xey “
x ˝ y if x ˝ y P A, nor ae b “ ce d if a ˝ b “ c ˝ d.

Moreover, there is quite a gap between the active “best ap-
proximation” property (2) and the mere accuracy requirement
(14) as by the following example.

Example 1: Consider a 3-digit decimal arithmetic, and x`y
for x “ 4.96 and y “ 5. Then x ` y “ 9.96 is representable
in 3 decimal digits, and x e y “ x ` y “ 9.96 is the best
approximation in the sense of (2). However, any choice of

xey P t 9.92, 9.93, 9.94, 9.95, 9.96, 9.97, 9.98, 9.99, 10.0 u

satisfies the standard model (14) for u “ 1
2β

1´p “ 0.005.
Consider the sum of p1, . . . , pn P A. The first standard

model (14) suffices to prove the standard estimate (4), but
without additional assumptions, the factor p1 ` uqn´1 ´ 1
cannot be replaced by pn´ 1qu.

Example 2: Consider a logarithmic number system F :“
t0u Y t˘ck : k P Zu for 1 ă c P R with rounding upwards.
Then u “ c´1

c`1 and, for sufficiently small e P F, p1‘eq‘e “ c2

but c2 ´ p1` 2eq ą 2 c´1
c`1 p1` 2eq “ 2up1` 2eq. The reason

is that an arbitrarily small summand e causes a relative error
of almost size u.

A. The standard model together with Assumption A

Surprisingly, for the improved and linearized bound (5) the
following Assumption A suffices:

@a, b P A : | pa‘ bq ´ pa` bq | ď minp|a|, |b|q. (15)

For a computer arithmetic with some nearest rounding (2) that
follows by

| pa‘ bq ´ pa` bq | ď minp|a´ pa` bq|, |b´ pa` bq|q
“ minp|a|, |b|q.

(16)
It is not true for a directed rounding, but it is true for Dekker’s
truncated rounding [5, Definition 3.5], i.e., a faithful rounding
such that a nonzero error pa‘ bq ´ pa` bq and the summand
of smallest absolute value have opposite signs.

To demonstrate how the first standard model and Assump-
tion A, that is (14) and (15) interplay, we repeat the proof
in [34] of the linearized estimate (5). Given p P An and
proceeding by induction we set sn :“ ŝn´1 ` pn, so that
the induction hypothesis implies

∆ :“ | ŝn ´
řn
i“1 pi | “ |ŝn ´ sn ` ŝn´1 ´

řn´1
i“1 pi|

ď |ŝn ´ sn| ` pn´ 2qu
řn´1
i“1 |pi| .

(17)

1Note that still today almost all cheap decimal pocket calculators without
exponent have no guard digit so that completely wrong results may be
produced.

We distinguish two cases. First, assume |pn| ď u
řn´1
i“1 |pi|.

Then (15) implies

|ŝn´ sn| “ |pŝn´1 ‘ pnq´ pŝn´1` pnq| ď |pn| ď u
n´1
ÿ

i“1

|pi| ,

(18)
and inserting into (17) finishes this part of the proof. Hence-
forth, assume u

řn´1
i“1 |pi| ă |pn|. Then (14) gives

|ŝn ´ sn| ď u|sn| “ u|ŝn´1 ´

n´1
ÿ

i“1

pi `
n
ÿ

i“1

pi| ,

so that (17) and the induction hypothesis yield

∆ ď u
“

pn´ 2qu
řn´1
i“1 |pi| `

řn
i“1 |pi|

‰

`pn´ 2qu
řn´1
i“1 |pi|

ă u
“

pn´ 2q|pn| ` |pn| `
řn´1
i“1 |pi|

‰

`pn´ 2qu
řn´1
i“1 |pi|

“ pn´ 1qu
řn
i“1 |pi| . l

By Table III, u can be replaced by u
1`u for an IEEE-754

p-digit base-β floating-point arithmetic.
Assumption A, that is (15) is the key to the proof. In fact,

the weaker assumption (20) in the following Theorem 4.1
suffices to prove more: in [22] it is shown that, for any order
of evaluation, both the linearized error estimates (5) for the
sum and (7) for the dot product remain true for an arithmetic
according to the first standard model (14) with the additional
assumption (20). The proof is more involved.

Theorem 4.1: [22] Let a binary tree T with root r be given.
For a node j of T , denote the set of inner nodes of the subtree
with root j by Nj , and the set of its leaves by Lj . To each
leaf i P Lr associate a real number xi, and let to each inner
node j P Nr a real number εj be associated. Define

sj :“

#

xj if j P Lr

psleftpjq ` srightpjqqp1` εjq if j P Nr,

where leftpjq and rightpjq denote the left and right child of
an inner node j, respectively. Furthermore, define for all inner
nodes j

δj :“ sj ´ sleftpjq ´ srightpjq (19)

as well as, with the convention 0
0 :“ 0,

ξj :“
|δj |

ř

iPLj
|si| `

ř

iPNjztju
|δi|

.

Suppose

|δj | ď min
kPtleftpjq,rightpjqu

|sk| `
ÿ

iPNjzNk

ξi
ÿ

iPLk

|si|
(

(20)

is true for all inner nodes j. Then ∆r :“ sr´
ř

iPLr
si satisfies

|∆r| ď
ÿ

iPNr

|δi| ď
ÿ

iPNr

ξi
ÿ

iPLr

|si| ď
ÿ

iPNr

|εi|
ÿ

iPLr

|si|. (21)

The estimate is sharp in the sense that for arbitrary εj P r0, 1s
there exists a tree T such that (20) is satisfied and there are
equalities in (21).

Here sj is the computed value of sleftpjq ` srightpjq with
error δj for an inner node j. Therefore, the only assumption
(20) in Theorem 4.1 is a trivial consequence of Assumption A.
For the specific case of p-digit arithmetic to base β it follows
ř

ξi ď
ř

|εi| ď pn ´ 1qv with v :“ u{p1 ` uq according to
Table III.

The replacement of u by v was used in [16] for a simple
proof of the linearized estimate (7) for dot products.

Example 3: For real xj , denote the floating-point sum of all
flpxjq by r̂, so that |r̂´

řn
j“1 flpxjq| ď pn´1qv

řn
j“1 |flpxjq|.

Rounding to nearest implies |flpxjq´xj | ď v|xj |, so that [16]

|r̂ ´
řn
j“1 xj | ď

ˇ

ˇr̂ ´
řn
j“1 flpxjq

ˇ

ˇ`
řn
j“1

ˇ

ˇxj ´ flpxjq
ˇ

ˇ

ď pv` pn´ 1qvp1` vqq
řn
j“1 |xj |,

and v` pn´ 1qvp1` vq ď nvp1` vq ď n v
1´v “ nu proves

the desired estimate (7).
We will use the same concept later by improving pn´ 1qu

into the optimal factor pn´1qu
1`pn´1qu for summation to show

linearized estimates for other compound operations such as
blocked summation or sums of products.

B. The standard model together with Assumption B

Next we are interested in linear estimates for other types
of rounding, for example directed or some faithful rounding.
Following the first standard model (14) one might think just
to replace u by 2u to obtain similar results. That is not true
because Assumption A (and also the weaker (20)) is not
satisfied: adding an arbitrarily small positive e P F to 1 in
rounding upwards results in the successor of 1 with an error
larger than e.

For the specific case of rounding upwards and IEEE-754
binary floating-point arithmetic, the following estimate, similar
to (5), with adapted relative rounding error unit was shown for
β “ 2 in [32]. Let x P Fn be given, and denote by r̂ the sum
computed in any order of evaluation and with all additions in
rounding upwards. Then in [32] it was shown that

|r̂ ´ r| ď 2pn´ 1qu
n
ÿ

i“1

|xi| provided that 4nu ď 1. (22)

The restriction on n is necessary for any base β: for x1 “ 1
and x2...n arbitrarily small positive numbers the sum increases
each intermediate result to the next successor in F. Up to
n ď βp ´ βp´1 summands the error is 2u, but passing the
intermediate result β increases the error to βu, eventually
spoiling the estimate (22).

Estimate (22) holds true for rounding upwards. We improve
that by showing that under Assumption B, that is (26) for the
εk defined in (25), a linearized error bound is true for any
directed or faithful rounding. In terms of IEEE-754 p-digit
base-β floating-point arithmetic this assumption amounts to
the fact that bounds on the maximum relative error in the
intervals ˘rβm, βm`1s are constant and with respect to βm,

namely uβm. The mathematical formulation is Assumption
B, that is (26) with respect to (25). It implies the mandatory
restriction on n.

Theorem 4.2: [22] Let a binary tree T with n leaves be
given. To each leaf associate a real number xi and to each
inner node associate a real number sk forming vectors x P Rn
and s P Rn´1. Denote by σk the sum of the values associated
with the children of an inner node k, and define

δk :“ sk ´ σk for 1 ď k ď n´ 1. (23)

Let nonnegative real numbers λ, µ be given such that

λ ď
n
ÿ

i“1

|xi| ă µ. (24)

Define for 1 ď k ď n´ 1

εk :“

#

|δk|
λ if |σk| ă µ,

|δk|
µ otherwise,

(25)

with the convention 0
0 :“ 0. Assume

n´1
ÿ

i“1

εi ď
µ´ λ

λ
. (26)

Then |σk| ă µ2{λ for 1 ď k ď n´ 1, and for r denoting the
root of T ,

ˇ

ˇsr ´
n
ÿ

i“1

xi
ˇ

ˇ ď

n´1
ÿ

i“1

|δi| ď
n´1
ÿ

i“1

εi

n
ÿ

i“1

|xi|. (27)

The interpretation, in particular the role of λ and µ for
Assumption B, becomes clear from the proof of the following
corollary.

Corollary 4.3: [22] Let F be a p-digit floating-point number
system in base β, and denote by s the result of a floating-point
summation of x1, . . . , xn P F using some faithful addition. If
n ď 1` β´1

2 u´1, then

ˇ

ˇs´
n
ÿ

j“1

xj
ˇ

ˇ ď 2pn´ 1qu
n
ÿ

j“1

|xj |.

PROOF. Let m P Z such that λ :“ βm ď
řn
j“1 |xj | ă

βm`1 “: µ. Let σk be as in Theorem 4.2, and denote by
ufppσkq the largest power of β being less than or equal to
|σk|. If |σk| ă µ, then ufppσkq ď λ and (25) implies

εk “
|δk|

λ
ď

|δk|

ufppσkq
“
|flpσkq ´ σk|

ufppσkq
ď 2u,

and otherwise µ ď |σk| ă µ2{λ “ βµ shows ufppσkq “ µ
and

εk “
|δk|

µ
“

|δk|

ufppσkq
“
|flpσkq ´ σk|

ufppσkq
ď 2u.

Thus, all εk are bounded by 2u. Additionally, the limit on n
implies

n´1
ÿ

j“1

εj ď pn´ 1q2u ď β ´ 1 “
µ´ λ

λ
, (28)

so that the assumption (26) in Theorem 4.2 is satisfied. Thus,

ˇ

ˇs´
n
ÿ

j“1

xj
ˇ

ˇ ď

n´1
ÿ

j“1

|δj | ď pn´ 1q ¨ 2u
n
ÿ

j“1

|xj |. l

Theorem 4.2 is tailored to the fact that the maximum abso-
lute error of a floating-point operation is uniformly bounded by
2u{λ in the interval rλ, µs with λ “ βm and µ “ βm`1, that
is Assumption B. As we have seen, some restriction on n is
mandatory; here the maximal number of such errors in rλ, µs,
see (28), bounds the number of summands n to 1` β´1

2 u´1.
The application of the theorem to faithful rounding is just

an example, it applies to nearest rounding with replacing 2u
by u and other roundings as well.

C. The standard model together with Assumption C

So far we saw that given x1, . . . , xn the error of the sum in
some computer arithmetic is bounded by pn ´ 1qu

ř

|xi| no
matter what the order of evaluation, and for a nearest rounding
without restriction on n. The corresponding traditional con-
stant p1`uqn´1´1 in the estimate is straightforward to prove,
whereas for the linearized bounds some effort is necessary.

An interesting generalization concerns error bounds depend-
ing on the height of a summation tree. For an addition tree of
height h, the traditional Wilkinson-type constant p1`uqh´ 1
in the estimate follows straightforwardly. That bound can
be linearized to hu for a standard model together with an
Assumption C. For a balanced tree in binary64 that restricts
the number of summands to n ď 294,906,264.

In terms of IEEE-754 p-digit base-β floating-point arith-
metic Assumption C amounts to the fact that bounds
on the maximum relative error increase from the interval
˘rβm, βm`1s to the interval ˘rβm`1, βm`2s by a constant
factor β. That factor β is associated with the arithmetic
model. The mathematical formulation of Assumption C are
assumptions (29) and (30) in Theorem 4.4. Note that β is
some real number, not necessarily related to some grid.

Theorem 4.4: [24] Let an α-ary tree T with root r and height
h be given. For an inner node j of T , denote the set of leaves
of the corresponding subtree by Lj and the set of all its inner
nodes including j by Nj . To each leaf i of T associate a real
number xi. Moreover, let positive real numbers b, ε as well as
β ě α be given, and let two numbers

δj P R and bj P t0u Y tβ
mb | m P Zu (29)

be assigned to each inner node j of T . Suppose that for each
inner node j

|δj | ď bj ď ε

˜

ÿ

iPLj

|xi| `
ÿ

iPNjztju

|δi|

¸

. (30)

If h is restricted by

h ď 2
b

chε
´1 ´ 1 with ch :“

#

β´1 ´ β´2 if α “ β

1´ αβ´1 otherwise,
(31)

then
ÿ

iPNr

|δi| ď hε
ÿ

iPLr

|xi|. (32)

The following corollary formulates the result for IEEE-754
p-digit base-β floating-point arithmetic. From the proof the
previous interpretation of Assumption C becomes clear. It is
satisfied for any nearest as well as for any directed or faithfully
rounded summation.

Corollary 4.5: [24] For an IEEE-754 p-digit base-β floating-
point arithmetic, let s be the result of a floating-point summa-
tion of p1, . . . , pn P F in some nearest addition in any order.
If the height h of the corresponding binary summation tree
satisfies

h ď

#

u´
1
2 ´ 1 if β “ 2

a

4´ 8β´1u´
1
2 ´ 1 otherwise,

(33)

then ˇ

ˇ

ˇ

ˇ

ˇ

s´
n
ÿ

j“1

pj

ˇ

ˇ

ˇ

ˇ

ˇ

ď hu
n
ÿ

j“1

|pj |. (34)

The result remains valid for any faithful addition when replac-
ing the error constant u by 2u in (33) and (34).
PROOF. Let T denote a binary summation tree, where to
each inner node j of T the respective intermediate summation
result sj including the perturbations δi is associated. Using
the notation as in Theorem 4.4 it follows sj “

ř

iPLj
xi `

ř

iPNj
δi. Furthermore, let b “ ε “ η, where η “ u in

case of a nearest addition, and η “ 2u in case of faithful
addition. Define bj :“ η ¨ ufppsj ´ δjq for all inner nodes
j. This definition of bj complies with assumption (29), i.e.,
bj P t0u Y tβ

mη | m P Zu. Moreover,

|δj | ď bj ď η|sj ´ δj | ď η

˜

ÿ

iPLj

|xi| `
ÿ

iPNjztju

|δi|

¸

validates the assumption (30). Finally, for α “ 2,

h ď

$

’

’

&

’

’

%

η´
1
2 ´ 1 “ 2

a

pβ´1 ´ β´2qη´1 ´ 1 if β “ α
a

4´ 8β´1 η´
1
2 ´ 1

“ 2
a

p1´ αβ´1qη´1 ´ 1
otherwise

shows the equivalence of (31) and (33). Thus (34) follows. ˝
Similar to Example 3, the result extends to dot products.

Denote by s the result of a floating-point dot product of
a, b P Fn in some rounding to nearest. Let the height h of
the corresponding binary evaluation tree satisfy (33). Then,
barring over- and underflow,

ˇ

ˇs´ aT b
ˇ

ˇ ď hu
n
ÿ

i“1

|aibi|. (35)

For faithful rounding the result is true when replacing the error
constant u by 2u.

Given some computer arithmetic satisfying Assumption B
or C, there is any freedom for the corresponding subset of R
of representable numbers. Unless that set is fairly exotic, we
can expect that Assumption C implies Assumption B.

D. The standard model together with Assumptions A and B

Even the linearized bounds presented so far are not optimal
for an IEEE-754 p-digit base-β floating-point arithmetic. We
guess everybody thinking about a worst case error for recursive
summation quickly constructs x “ p1,u, . . . ,uq. The result r̂
of a nearest addition with rounding ties to even is 1, so that
the error is pn´ 1qu and satisfies

|r̂ ´
n
ÿ

i“1

xi| “
pn´ 1qu

1` pn´ 1qu

n
ÿ

i“1

|xi|. (36)

By means of explicit examples (cf. [24]) it is easy to see that
some restriction on n is mandatory for (36). But although it
was common belief that this is the worst case, it could not be
proved.

The first result in this direction can be found in [28], where
Mascarenhas introduces a new concept of using continuous
mathematics to analyze floating-point arithmetic to prove (36)
for recursive summation provided that n ď 1

20u
´1.

However, despite the comparatively small upper bound on
n and the restriction to recursive summation, the given proof
is rather complicated and longish. In [24, Theorem 5] a
more general result was proved using fairly simple arguments.
The assumptions are in fact more general than Assumptions
A and B together. However, the mathematical statement is
technical, so we state only the following corollary (which is
[24, Proposition 1]) for IEEE-754 p-digit base-β arithmetic.
Note that this arithmetic satisfies Assumptions A and B.

Theorem 4.6: Let a p-digit floating-point arithmetic to base
β be given. Let r̂ be the result of a floating-point summation
of p1, . . . , pn P F in some nearest addition in arbitrary order.
Then
ˇ

ˇ

ˇ

ˇ

ˇ

r̂´
n
ÿ

j“1

pj

ˇ

ˇ

ˇ

ˇ

ˇ

ď
pn´ 1qu

1` pn´ 1qu

n
ÿ

j“1

|pj | if n ď 1`
β ´ 1

2
u´1.

(37)
As has been mentioned, the result holds true for a more general
computer arithmetic as well. In that case the mandatory
restriction on n has to be re-computed.

The upper bound on n is almost sharp. For rounding ties
away from zero it cannot be replaced by the next larger integer;
for rounding ties to even, p ě 3 mantissa digits and even β
the upper bound cannot be increased by 2` β

2 , see [24].
OPEN PROBLEM 3. Devise a sharp error estimate for dot

products in the spirit of (37).

E. Some applications

As exploited in [24], this Theorem 4.4 has a number of
consequences. Denote by s “ floatpexpressionq the result of
an expression with each operation replaced by the correspond-
ing floating-point operation in some nearest rounding. The
evaluation may be in any order but, if applicable, respecting
parentheses. First, consider a sum of products

s :“
n
ÿ

i“1

m
ź

j“1

pij for pij P F. (38)

Provided that pn`m´ 2qu ă 1, the standard Wilkinson-type
error estimate [41] gives

ˇ

ˇ

ˇ

ˇ

ˇ

float
`

n
ÿ

i“1

m
ź

j“1

pij
˘

´ s

ˇ

ˇ

ˇ

ˇ

ˇ

ď γn`m´2

n
ÿ

i“1

m
ź

j“1

|pij |.

Corollary 4.5 and barring over- and underflow implies the
linearized estimate

ˇ

ˇ

ˇ

ˇ

ˇ

float
`

n
ÿ

i“1

m
ź

j“1

pij
˘

´ s

ˇ

ˇ

ˇ

ˇ

ˇ

ď pn`m´ 2qu
n
ÿ

i“1

m
ź

j“1

|pij | (39)

provided that

m ď β´
1
2u´

1
2 , n ď 1`

β ´ 1

2
u´1, and m ď n.

For binary floating-point numbers, assuming m ď u´
1
2

suffices for (39) to hold true. The proof is very similar to
that in Example 3 for dot products, where the improved error
bound v “ u

1`u instead of u was sufficient to obtain the error
bound nu; now the optimal error bound (37) is used instead
of pn´ 1qu.

Another direct application is a bound on the error of
a Vandermonde matrix times a vector. Let Vij “ αij for

0 ď i, j ď n for given αj P F. Then pV xqi “
n
ř

j“0

αijxj ,

so that for a vector x P Fn`1, starting with index 0, we obtain

|floatpV xq ´ V x| ď diag pnu, nu` u, . . . , 2nuq |V | |x|
ď 2nu |V | |x|.

Another application is an error estimate for blocked summa-
tion. Let a vector p P Fmn be given and consider

s :“ float

˜

n
ÿ

i“1

ˆ m
ÿ

j“1

pij

˙

¸

. (40)

Then |s ´
ř

ij pij | ď γn`m´2

ř

ij |pij |, the standard
Wilkinson-type error estimate, improves to

ˇ

ˇ

ˇ

ˇ

s´
ÿ

ij

pij

ˇ

ˇ

ˇ

ˇ

ď pn`m´ 2qu
ÿ

ij

|pij | (41)

provided that maxpm,nq ď 1` β´1
2 u´1.

V. FAITHFUL RESULTS BY A SIMPLIFIED PAIR ARITHMETIC

In the previous sections error bounds for single or com-
pound operations were shown, either for an actively given
arithmetic such as IEEE-754, or for a computer arithmetic pas-
sively satisfying the first error model (14) with some additional
weak assumptions. In this section, accuracy estimates related
to the condition number of the problem will be investigated,
in particular methods to achieve a faithfully rounded result.

Common methods to improve the accuracy are compensated
algorithms. Prominent examples are Kahan’s and Shewchuk’s
summation algorithms [19], [40] for which a small backward
error2 of size 2u follows. The doubly compensated summation

2The computed result is the true result for a small perturbation of the input
data [13].

by Priest [33] requires ordering of the summands and proves
a forward error of size 2u.

A notable exception to the many algorithms is Neumaier’s
summation [30] which he found as a master student in 1974.
Obviously without knowing, he uses what we call today “error-
free transformations”, a term I coined in [31]. For example,
consider

function [x,y] = FastTwoSum(a,b)
x = a + b;
y = a - (x - b);

For any two floating-point numbers a, b P F with |a| ě |b|
it holds a ` b “ x ` y [5] for a nearest rounding and
β ď 3. Similar algorithms for addition without constraint on
the ordering of the summands (TwoSum) and for products
(TwoProduct) are known [5], [20], [29]. Note that for IEEE-
754 precision-p base-β arithmetic it is necessary [29] that
a` b is computed in rounding to nearest, otherwise the error
a‘ b´ pa` bq need not be representable.

Algorithm TwoSum implies an error-free vector transfor-
mation. Given a vector p P Fn, the call q = VecSum(p)
of

function p = VecSum(p)
for i=2:n
[p(i),p(i-1)] = TwoSum(p(i),p(i-1))

produces a vector q P Fn with
ř

pi “
ř

qi and qn “

floatp
ř

piq. Summing the vector q in floating-point after a
single call of VecSum is Algorithm Sum2 in [31], which
is identical to Neumaier’s fourth algorithm in [30]. The
accuracy of the result depends on the condition number
k “ p

ř

|pi|q{|
ř

pi|. The results in [31] imply that basically
for k À 1{p2n2uq the result of Sum2 is faithfully rounded, so
that there is no other floating-point number between the true
and the computed result. A similar result holds true for the
dot product algorithm Dot2 in [31].

Using similar techniques, a number of algorithms with
faithfully rounded result have been developed for several
standard problems in numerical analysis. For example, Graillat
gave in [10] a compensated scheme for

śn
i“1 xi with faithfully

rounded result provided that

n ă

?
1´ u

?
4` 2u` 2

a

p1´ uqu
u´1{2 ;

Boldo and Muñoz showed in [3] a compensated polynomial
evaluation to be faithful provided that

k :“

řn
i“0 |pi||x

i|

|
řn
i“0 pix

i|
ă
p1´ uqp1´ 2nuq2

4n2up2` uq
;

in [31] algorithm Sum2 is shown to be faithful if

pn´ 2qpn´ 1q

p1´ pn´ 2quqp1´ pn´ 1quq
ď

1

2ku
.

In binary64 the assumptions read n ă 47, 453, 132, and, for
n “ 1000, k ă 1.13 ¨ 109 and k ă 4.52 ¨ 109, respectively.
Sometimes restrictions apply, for example the latter result

for summation supposes recursive summation in binary, and
all results suppose that transformation algorithms such as
TwoSum are indeed error-free, i.e., produce x` y “ a` b.

Another approach to compute a faithfully rounded result,
also based on error-free transformations, is Bailey’s double-
double arithmetic [1]. Here numbers are represented as an
unevaluated sum of two elements of F.

The double-double arithmetic is analyzed in [18]. For addi-
tion, for example, two algorithms are given. The first algorithm
[18, Algorithm 5], called “sloppy addition”, was already given
by Dekker as add2 in [5]. However, the result may have no

Function (c, g) = SloppyDWPlusDW(a, e, b, f)

rc, ts “ TwoSumpa, bq
s “ flpe` fq
g “ flpt` sq
rc, gs “ FastTwoSumpc, gq

significance at all.
Alternatively, an accurate algorithm AccurateDWPlusDW is

analyzed with relative error not larger than 3u2

1´4u . The double-
double arithmetic is based on IEEE-754 binary arithmetic and
error-free transformations.

The target for this section is to introduce a new and simpli-
fied pair arithmetic with the goal to give conditions for which
the final result is faithful. That applies to general arithmetic
expressions comprising of `,´,ˆ, {,

?
¨. As we will see

this includes all methods mentioned at the beginning of this
section. Another target is to require as weak assumptions on
the arithmetic as possible, but nevertheless guaranteeing a
faithfully rounded result under specified conditions.

Our pair arithmetic is more general than previous ap-
proaches in several aspects. First, we require only an arithmetic
following the first standard model, neither of the previous
Assumptions A, B or C has to be satisfied. Hence a situation
as in Example 1 may occur.

Second, to estimate the error of an individual operation only
an approximation of the residual is needed, for example of
a ‘ b ´ pa ` bq for addition. Again that approximation is
only required to satisfy the first standard model. In particular,
“error-free transformations” are no longer needed but replaced
by “approximate transformations”.

Third, for a pair pc, gq, no relation between c and g is
required. Fourth, the pair operations are simplified requiring
less operations compared to double-double. Fifth, for every
pair pc, gq the first part c is equal to the result when computing
in the given computer arithmetic.

As a special example, all of the following results are true
for an IEEE-754 p-digit base-β arithmetic and any round-
ing scheme. As has been mentioned, for directed rounding
error-free transformations are not possible because the error
a ‘ b ´ pa ` bq need not be representable. Nevertheless, our
arithmetical model remains applicable.

Let A be an arbitrary discrete set of real numbers. For a
given positive constant v ă 1 define the working set of A by

W :“ tr P R | Df P A : |f ´ r| ď v|r|u. (42)

Consider a real function g : Rn Ñ R and let x P An be such
that gpxq P W. The left-hand side of c Ð gpxq for c P A is
called an A-arithmetic approximation if

c “ gpxqp1` εq with |ε| ď v, (43)

abbreviated by cÐ gpxq. We choose the notation “Ð” rather
than “flp¨q” to indicate that only the error estimate (43) has to
be satisfied, i.e., a relation rather than a function. Our general
assumption on the arithmetic in A is as follows.

Assumption 5.7: For a, b P A and ˝ P t`,´,ˆ, {u, let
ĉ :“ a ˝ b. If ĉ P W, we assume that c Ð a ˝ b can be
evaluated and satisfies |c ´ ĉ| ď v|ĉ| according to (43). A
similar statement is true for the square root. Moreover, assume
that for

tÐ a ˝ b´ c if cÐ a ˝ b for ˝ P t`,´,ˆu,
tÐ a´ bc if cÐ a{b,

tÐ a´ c2 if cÐ
?
a

(44)

a method to evaluate t is available satisfying the estimate in
(43) with appropriate interpretation.

For the special case of IEEE-754 binary64 floating-point
arithmetic with rounding to nearest, Assumption 5.7 is satisfied
if the real result ĉ does not cause over- or underflow by setting
v :“ u{p1` uq for u :“ 2´53, by replacing cÐ a ˝ b by c “
flpa ˝ bq and evaluating the expressions in (44) by appropriate
error-free transformations3, possibly using the fused multiply-
add operation FMA.

Next we define our pair arithmetic [23]. An algorithm for
subtraction follows directly from addition, and all results hold
true mutatis mutandis. To ease the exposition we omit sub-
traction by the technical assumption A “ ´A. The comments
“//TwoSum or Add3”, “FMA or TwoProduct” etc. in
the following algorithms refer to a possible implementation
when using IEEE-754 arithmetic; they are not mandatory.

Function (c,g) = CPairSum((a, e),(b, f))

cÐ a` b
tÐ a` b´ c // TwoSum or Add3
sÐ e` f
g Ð t` s

The first part c of the result of our pair operations is
always equal to the one computed in the given arithmetic.
That property is spoiled by the final normalization step in
SloppyDWPlusDW, also used in [25]. Technically, the double-
double SloppyDWPlusDW and our CPairSum are identical up
to the final normalization; however, the assumptions of our pair

3Error-free transformations require the absence of over- and underflow not
only for the results but also for all intermediate values; see Boldo et al. [2].

Function (c,g) = CPairProd((a, e),(b, f))

cÐ ab
tÐ ab´ c // FMA or TwoProduct
q Ð af
r Ð be
sÐ q ` r
g Ð t` s

Function (c,g) = CPairDiv((a, e),(b, f))

cÐ a{b
tÐ a´ bc // FMA
pÐ t` e
q Ð cf
r Ð p´ q
sÐ b` f
g Ð r{s

arithmetic are far less. The flop counts for the pair addition
algorithms are as follows.

CPairSum 8 flops
SloppyDWPlusDW 11 flops
AccurateDWPlusDW 20 flops

Compared to double-double arithmetic, our other pair opera-
tions have a smaller flop count as well.

In turn, the results of the double-double arithmetic are usu-
ally more accurate than those of our pair arithmetic. However,
one target was to derive provable conditions for a faithful result
with as weak assumptions on the arithmetic as possible.

Consider an arbitrary arithmetic expression represented by
a binary tree. For given input data we henceforth assume
that all intermediate operations are well defined with result
in the working set W. That is in particular satisfied if, when
using IEEE-754 p-digit base-β floating-point arithmetic, no
intermediate over- or underflow occur.

To formulate the conditions for a faithfully rounded result,
we need to define the condition number of an arithmetic
expression. An essential ingredient is the notation of the No
Inaccurate Cancellation (NIC) principle. Demmel et al. used
that in [6] to identify algorithms computing accurate results
basically independent of the condition number.4

4A famous example is to treat Hilbert matrices as Cauchy matrices allowing
to faithfully compute the inverse or smallest singular value up to about
dimension 108 solely in binary64.

Function (c,g) = CPairSqrt((a, e))

cÐ
?
a

tÐ a´ c2 // FMA
r Ð t` e
sÐ c` c
g Ð r{s

Definition 5.8: Let T be an evaluation tree with input data
p (the values at the leaves), and inner nodes consisting of
operations from the set t`,ˆ, {,

?
¨u. If no sum with at least

one addend not being input data is performed on numbers with
opposite signs, then pT, pq complies with the No Inaccurate
Cancellation (NIC) principle.

The rationale is to avoid catastrophic cancellation. If an
arithmetic expression does not satisfy the NIC principle, for
example x`y´x, then for large positive x and small positive
y cancellation and a large relative error to the true result y
occurs. That cannot happen for an arithmetic expression satis-
fying the NIC principle, the relative error of every intermediate
to the corresponding true result may grow, but very slowly.

Definition 5.9: Consider an evaluation tree T with input data
p P An and inner nodes consisting of operations from the set
t`,ˆ, {,

?
¨u. Let any pair of input numbers pi and pj that is

added in T with negative result be replaced by p1i :“ ´pi and
p1j :“ ´pj , respectively. Moreover, let all other input numbers
pk be replaced by their absolute value p1k :“ |pk|. The so
obtained data p1 is called NIC remodeled input data to pT, pq.

The rationale behind this definition is as follows. Let a
compound operation be given depending on x P Rn. Then the
error of an approximation is usually estimated relative to the
maximal possible value S for all possible sign combinations
of the xi. Examples are S “

ř

|xi| for summation (4) or
S “

řn
i“0 |aix

i| for Horner’s scheme (12). In those examples,
the ratio between S and the true value for the original xi is
the condition number, and that is the result of the problem
with NIC remodeled data5.

Suppose evaluating an arithmetic expression by our pair
arithmetic results in pc, gq. In order to obtain a faithfully
rounded result, an element of A, we need to add c and g
approximately. Here assuming the first standard model is not
sufficient as by Example 1; this (and only this) final addition
has to be done in some nearest rounding, otherwise the result
cannot be guaranteed to be faithful. To be precise, we say
ĉ P A is a nearest A-approximation to c P R if

@a P A : |ĉ´ c| ď |a´ c|. (45)

Finally, we need a measurement for the minimum relative
distance between two adjacent numbers in A, namely

η :“ inf

"

|s´ t|

|s` t|
: s, t P A, s ‰ t

*

, (46)

For a p-digit base-β floating-point arithmetic it follows η “
u

β´u ą u{β.
Based on that we can state our result for general arithmetic

expressions.
Theorem 5.10: [23] Let an arithmetic expression be given by

an evaluation tree T with n leaves, where to each inner node j
an operation ˝j out of t`,ˆ, {,

?
¨u is assigned. Moreover, to

5That is not always true, for example when divisions occur; however, for
our condition to prove that a result is faithful it is sufficient.

every node j, inner node or leaf, let an integer kj be assigned
according to

kj :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if j is leaf
maxtkleftpjq, krightpjqu ` 1 if ˝j “ `

kleftpjq ` krightpjq ` 1 if ˝j “ ˆ

kleftpjq ` krightpjq ` 2 if ˝j “ {
P

4
5kchildpjq `

5
4

T

if ˝j “
?
¨,

(47)

where leftpjq, rightpjq, and childpjq are denoting the left, right,
and only child of j, respectively. For given input data p P
An, let ppi, 0q be the pairs at the leaves of T , and denote by
pc, gq the result evaluated at root r using our pair arithmetic.
Furthermore, let ĉ be the true result of the expression for input
data p, and let Ĉ be the true result for the NIC remodeled input
data p1.

Suppose that all denominators and all expressions below a
square root comply with the NIC principle. Furthermore, sup-
pose that kj is not larger than u´

1
2 for any node j comprising

of division or square root. Otherwise kj is unbounded.
Assume the pair arithmetic produces pc, gq P A2 as a final

result with final k according to (47), and define

k :“
Ĉ

|ĉ|
with the convention

0

0
:“ 1. (48)

Let η be defined as in (46). If k is restricted via

k ď

c

mintη,uu

ku2
´ 2, (49)

then a nearest A-approximation of c`g according to (45) is a
faithful rounding of ĉ. For an expression complying with the
NIC principle condition (49) reduces to

k ď

a

mintη,uu

u
´ 2.

That theorem yields conditions on k and the length of
input data for all examples mentioned at the beginning of this
section, and more.

For simplicity, assume an IEEE-754 p-digit base-β floating-
point arithmetic. Then η ą u{β reduces the condition on k to
k ď

b

1
βku ´ 2 for general expressions, and the same with

k “ 1 for expressions complying with the NIC principle. The
error estimates in Table V follow by calculating the maximum
value of k for the input expression.

For all examples mentioned at the beginning of this section,
a faithfully rounded result is computed with as many or fewer
operations and with weaker condition on n, but for any order
of evaluation, and for any base β.

In the third example “binary” refers to binary summation.
The sixth example “mixed ˆ, {” means that for n input num-
bers xi a tree is evaluated with each node being multiplication
or division. The final k satisfies k ď 2pn ´ 1q and the tree
complies with the NIC principle, so that k “ 1 and the bound
on n for a faithfully rounded result follows.

Note in particular for polynomial interpolation, the second
last problem, all denominators satisfy the NIC principle so that

TABLE V: Faithfully rounded results by the pair arithmetic.

Problem k bound on n

s :“
řn
i“0 pix

i

řn
i“0 |pix

i|

|s|
n ď

1

2
?
βku

´ 1

s :“
řn
i“1 xi

řn
i“1 |xi|

|s|
n ď

1
?
βku

´ 1

s :“
řn
i“1 xi binary

řn
i“1 |xi|

|s|
rlog2pnqs ď

1
?
βku

´ 2

s :“
řn
i“1 xiyi

řn
i“1 |xiyi|

|s|
n ď

1
?
βku

´ 2

śn
i“1 xi 1 n ď

1
?
βu
´ 1

mixed ˆ, { 1 n ď
1

2
?
βu

s :“
řn
i“0

ś

j‰i x´xj
ś

j‰i xi´xj
yi

“:
řn
i“0 Θipxq yi

řn
i“0 |Θipxqyi|{|s| n ď 1

5
pβkuq´

1
2 ´ 3

5

s :“ }x}2 1 n ď
1
?
βu
´ 4

Theorem 5.10 is applicable. With adapted constants that holds
also true for the faster approach

R :“
n
ź

j“0

px´ xjq, ppxq “
n
ÿ

i“0

R

px´ xiq
ś

j‰ipxi ´ xjq
yi.

For the last example in Table V, the Euclidean norm of
a vector, double-double arithmetic adapted to nonnegative
summands is used by Graillat et al. in [11] requiring 13n` 1
operations compared to 10n` 1 for our pair arithmetic. They
prove, however, that for recursive summation in binary arith-
metic the result is faithful for considerably larger maximum
vector length n ď 1

24u`u2 ´ 3. That is useful for binary32,
lifting the bound in Table V on n from 2, 892 to 699, 047; for
binary64 the bound n ď 67, 108, 860 from Table V may be
sufficient.

VI. FAITHFULLY ROUNDED AND REPRODUCIBLE RESULTS

The results in the previous section are proved to be faithfully
rounded for not too large condition number. However, the
condition number is, in general, not known. Besides, for
small condition number likely the nearest approximation is
computed, but not always.

Recently, so-called “reproducible” results became popular.
In this section we restrict our attention to summation. Then
the true sum is a real number, and reproducibility means
to produce exactly the same floating-point approximation no
matter what the order of evaluation. That implies addition to
become associative, a property which is outside the scope of
traditional floating-point algorithms. In addition to “always
exactly the same result” we add some not explicitly specified
accuracy requirement such as backward stability in a certain
sense. Such a requirement is often forgotten in the literature.

For the remaining of this note we assume IEEE-754 p-digit
binary arithmetic with the nearest rounding tie-to-even. It is
not difficult to extend the methods to general base β.

Following we discuss two approaches producing a faithfully
rounded and/or reproducible result, independent of the condi-
tion number and guaranteeing associativity. First, a limited
exponent range allows to compute the exact sum, for example
using a long accumulator as popularized by Kulisch [21],
or Malcolm’s adding by exponents [27] which is based on
Wolfe’s approach [42] in 1964. In either case the exact value
of the sum can be extracted and rounded faithfully and/or
reproducibly.

The second approach splits the bits of a given vector into
slices which can be regarded as scaled integers. For example,
in binary64 corresponding to 53-bit mantissa (including the
implicit 1), suppose each slice is 53 ´M bits wide. Then at
least 2M numbers [scaled integers representable in at most
53 ´M bits] within a slice can be added without error, see
Figure 1.

This idea is due to Zielke and Drygalla [43] who developed
it to improve the accuracy of summation and dot products. No
analysis is given, and they use a splitting by integer scaling in
a way that the exponent range of the input is severely limited.

In [38] the shortcomings are removed, and a complete anal-
ysis is given to achieve a faithfully rounded result. Recently,
that method has been used for reproducible summation and
popularized by Demmel et al. [7], [8].

53 �M bits 53 �M bits 53 �M bits

Fig. 1: Splitting bits of a vector by Zielke/Drygalla [43].

The Wolfe/Malcolm methods adjoins each input to a fixed
exponent, whereas the slices by Zielke/Drygalla are created
depending on the actual input data, a static versus dynamic
approach. As a consequence, the first method generates an
array of variables over the whole exponent range, independent
of the input data, whereas the second method uses just as
many slices as necessary to produce a faithfully rounded or
reproducible result. In [26] that is used to compute a correctly
rounded approximation of a sum with arbitrary precision.

A key point is an efficient way to extract the input into slices
[38]. The extraction is relative to some σ so that p “ q`p1 and
the bits of q and p1 do not overlap as by ExtractVector.
A choice for σ is a power of 2 larger than

ř

|pi|.
The bit patterns of Algorithm ExtractVector is outlined

in Figure 2. The main property of the extraction is the error-
free transformation

řn
i“1 pi “ τ`

řn
i“1 p

1
i, see [38] for details.

Algorithm 1: Error-free vector transformation extract-
ing high order part.

function rτ, p1s “ ExtractVectorpσ, pq
τ “ 0
for i “ 1 : n

qi “ flpflpσ ` piq ´ σq
p1i “ flppi ´ qiq
τ “ flpτ ` qiq

end for

Here τ is the error-free sum of the first slice, comprised of the
leading bits of the vector entries pi belonging to this slice [the
bold lines in Figure 2]. Note in particular that τ is a sum of
scaled integers, thus the computation is associative and error-
free.

input p output p´

 = 2k u = 2k-532k-M

bold parts sum to

Fig. 2: ExtractVector: error-free transformation
ř

pi “ τ `
ř

p1i.

Next, this process is applied to the vector p iteratively,
resulting in Algorithm Transform. Here realmin denotes the
smallest positive normalized floating-point number. In [38] it

Algorithm 2: Error-free transformation of a vector pp0q

of length n.

function rτ1, τ2, ppmq, σs “ Transformppp0qq

µ “ maxp|p
p0q
i |q

if µ “ 0, τ1 “ τ2 “ ppmq “ σ “ 0, return, end if
M “

P

log2pn` 2q
T

σ0 “ 2M`rlog2pµqs

tp0q “ 0, m “ 0
repeat

m “ m` 1

rτ pmq, ppmqs “ ExtractVectorpσm´1, p
pm´1qq

tpmq “ flptpm´1q ` τ pmqq
σm “ flp2Muσm´1q

until |tpmq| ě flp22Muσm´1q or σm´1 ď realmin
σ “ σm´1

rτ1, τ2s “ FastTwoSumptpm´1q, τ pmqq

is shown that this algorithm stops, and for each intermediate

m between 1 and its final value
řn
i“1 p

p0q
i “ tpm´1q ` τ pmq `

řn
i“1 p

pmq
i and

max |p
pmq
i | ď p2Muqmσ0

(50)

is satisfied. Moreover it is shown that, denoting the final ppmq

by p1, floatpτ1`pτ2`p
řn
i“1 p

1
iqqq is a faithful approximation

of the exact sum.
That algorithm offers a convenient way to compute a

reproducible result by choosing a fixed maximum number of
extractions m and return res = tpm´1q ` τ pmq, i.e., ignoring
the remainder terms ppmqi . By the nature of the algorithm and
(50), the quantities tpm´1q and τ pmq are uniquely determined
and, as sums of scaled integers, independent of the order of
evaluation in ExtractVector and Transform.

The quantity σ0 is of the order
ř

|xi|, so that the omitted
summands ppmqi are bounded by about pnuqm

ř

|xi|. Hence
for a condition number up to about upnuq´m the result res
is faithful, where for larger condition number the accuracy
decreases.

For any value of m the result is reproducible. In binary64
and n “ 1000, the result is faithful up to condition number
k ď 9 ¨ 109 for m “ 2, and up to k ď 8 ¨ 1022 for m “ 3.

The equality in (50) implies that for any m the exact
sum is available, so a rounded to nearest or K-fold, i.e. an
unevaluated sum of K numbers, result can be computed as
well [39].

VII. SUMMARY

We first assumed an IEEE-754 p-digit binary floating-point
arithmetic, for which the general bound for the first and second
standard model is u{p1 ` uq and u, respectively. Optimal
bounds were given, in particular improved for division and
square root.

Next we considered a general computer arithmetic satisfying
the first standard model, where “rounding” mutated to an
arbitrary perturbation of the true real result. With the additional
Assumption A, that is | pa ‘ bq ´ pa ` bq | ď minp|a|, |b|q,
standard error estimates for summation, dot products and
others of type γk “ ku{p1´ kuq reduce to ku for any order
of evaluation and without restriction on k. Assumption A is
not satisfied for directed or faithful rounding.

For the first standard model together with Assumption B,
the same holds true for general perturbations of the true result
including directed or faithful rounding with adapted relative
rounding error unit u. A mandatory but weak restriction of
order u´1 on the number of operations applies.

For the first standard model together with Assumption C
instead, the results were extended to replacing γh by hu for
h denoting the height of a tree. Again, this is true for any
rounding and a mandatory weak restriction on the height.

For a first standard error model together with the additional
Assumptions A and B, an optimal error bound ku{p1`kuq was
shown for k ` 1 summands provided that k ď β´1

2 u´1. That
implies linearized error bounds for other compound operations
such as blocked summation or sums of products.

Next we assumed nothing but the first standard model, in
particular none of the Assumptions A, B or C. Based on that
a pair arithmetic was introduced, simpler and more generally
applicable than existing ones. In particular, the often used
error-free transformations were weakened by not assuming
equality in the transformation. That opens this approach, for
example, for IEEE-754 to any base β and any rounding
scheme. Sufficient conditions were given that the computed
result is a faithfully rounded exact result for arbitrary expres-
sions consisting of `,´,ˆ, {,

?
¨.

Finally, for IEEE-754 binary arithmetic, a summation
method was introduced for computing a result that is guaran-
teed to be faithfully rounded or rounded to nearest independent
of the condition number of the sum. The method computes
slices of the result and is an efficient way to compute repro-
ducible results.

ACKNOWLEDGMENT

The author is indebted to Claude-Pierre Jeannerod, Marko
Lange and Paul Zimmermann for their thorough reading and
many valuable comments, including advices on the structure
of the paper. Moreover many thanks to Sylvie Boldo, Florian
Bünger, Stef Graillat, Christoph Lauter, Jean-Michel Muller
and Takeshi Ogita for very fruitful suggestions and remarks.

REFERENCES

[1] D.H. Bailey. A Fortran-90 based multiprecision system. ACM Trans.
Math. Software, 21(4):379–387, 1995.

[2] S. Boldo, S. Graillat, and J.-M. Muller. On the robustness of the 2Sum
and Fast2Sum algorithms. ACM Trans. Math. Softw., 44(1):1–14, 2017.

[3] S. Boldo and C. Muñoz. Provably faithful evaluation of polynomials. In
Proceedings of the 2006 ACM Symposium on Applied Computing, SAC
’06, 1328–1332, 2006.

[4] R. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge
University Press, New York, NY, USA, 2010.

[5] T.J. Dekker. A floating-point technique for extending the available
precision. Numerische Mathematik, 18:224–242, 1971.

[6] J. Demmel, I. Dumitriu, O. Holtz, and P. Koev. Accurate and efficient
expression evaluation and linear algebra. Acta Numerica, 2008:87–145,
2008.

[7] J. Demmel and H.D. Nguyen. Fast reproducible floating-point summa-
tion. 163–172. Proc. 21st IEEE Symposium on Computer Arithmetic,
Austin, Texas, 2013.

[8] J. Demmel and H.D. Nguyen. Parallel reproducible summation. IEEE
Trans. Comp., 64(7):2060–2070, 2015.

[9] D. Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computaing Surveys, 23(1):5–47, 1991.

[10] S. Graillat. Accurate floating-point product and exponentiation. IEEE
Trans. Comp., 58(7):994–1000, 2009.

[11] S. Graillat, C. Lauter, P. Tang, N. Yamanaka, and S. Oishi. Efficient
calculations of faithfully rounded l2-norms of n-vectors. ACM TOMS,
41(4):24:1–20, 2015.

[12] S. Graillat, V. Lefèvre, and J.-M. Muller. On the maximum relative error
when computing integer powers by iterated multiplications in floating-
point arithmetic. Numerical Algorithms, 70(3):653–667, 2015.

[13] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM
Publications, Philadelphia, 2nd edition, 2002.

[14] IEEE, New York. ANSI/IEEE 754-2008: IEEE Standard for Floating-
Point Arithmetic, 2008.

[15] C.-P. Jeannerod and S.M. Rump. Improved error bounds for inner
products in floating-point arithmetic. SIAM J. Matrix Anal. Appl.
(SIMAX), 34(2):338–344, 2013.

[16] C.-P. Jeannerod and S.M. Rump. On relative errors of floating-point
operations: optimal bounds and applications. Math. Comp., 87:803–819,
2017.

[17] C.-P. Jeannerod, J.-M. Muller, and P. Zimmermann. On various ways to
split a floating-point number. In ARITH 2018 - 25th IEEE Symposium
on Computer Arithmetic, pages 53–60. IEEE, June 2018.

[18] M. Joldes, J.-M. Muller, and V. Popescu. Tight and rigorous error bounds
for basic building blocks of double-word arithmetic. ACM Trans. Math.
Softw., 44(2):1–27, 2017.

[19] W. M. Kahan. A survey of error analysis. In Proceedings of the IFIP
Congress, Ljubljana, Information Processing 71, 1214–1239. North–
Holland, Amsterdam, 1972.

[20] D.E. Knuth. The Art of Computer Programming: Seminumerical
Algorithms, volume 2. Addison Wesley, Reading, Massachusetts, 3rd
edition, 1998.

[21] U. Kulisch and W.L. Miranker. Computer Arithmetic in Theory and
Practice. Academic Press, New York, 1981.

[22] M. Lange and S.M. Rump. Error estimates for the summation of real
numbers with application to floating-point summation. BIT, 57:927–941,
2017.

[23] M. Lange and S.M. Rump. Faithfully rounded floating-point operations.
ACM Trans. Math. Softw., to appear, 2019.

[24] M. Lange and S.M. Rump. Sharp estimates for perturbation errors in
summations. Math.Comp., 88:349–368, 2019.

[25] P. Langlois and N. Louvet. More instruction aevel parallelism explains
the actual efficiency of compensated algorithms. Technical report, 2007.
https://hal.archives-ouvertes.fr/hal-00165020.

[26] V. Lefèvre. Correctly rounded arbitrary-precision floating-point summa-
tion. IEEE Transactions on Computers, 66(12):14, 2017.

[27] M. Malcolm. On accurate floating-point summation. Comm. ACM,
14(11):731–736, 1971.

[28] W.F. Mascarenhas. Floating-point numbers are real numbers.
ArXi:1605:09202, 2016.

[29] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V.
Lefèvre, G. Melquiond, N. Revol, and S. Torres. Handbook of Floating-
Point Arithmetic. Birkhäuser Boston, 2nd edition, 2018.

[30] A. Neumaier. Rundungsfehleranalyse einiger Verfahren zur Summation
endlicher Summen. Zeitschrift für Angew. Math. Mech. (ZAMM), 54:39–
51, 1974.

[31] T. Ogita, S.M. Rump, and S. Oishi. Accurate sum and dot product.
SIAM Journal on Scientific Computing (SISC), 26(6):1955–1988, 2005.

[32] K. Ozaki, T. Ogita, F. Bünger, and S. Oishi. Accelerating interval matrix
multiplication by mixed precision arithmetic. Nonlinear Theory and Its
Applications, IEICE, 6(3):364–376, 2015.

[33] D.M. Priest. On properties of floating-point arithmetics: numer-
ical stability and the cost of accurate computations. PhD the-
sis, Mathematics Department, University of California at Berkeley,
CA, 1992. ftp://ftp.icsi.berkeley.edu/pub/theory/
priest-thesis.ps.Z.

[34] S.M. Rump. Error estimation of floating-point summation and dot
product. BIT, 52(1):201–220, 2012.

[35] S.M. Rump, F. Bünger, and C.-P. Jeannerod. Improved error bounds
for floating-point products and Horner’s scheme. BIT, 56(1):293–307,
2015.

[36] S.M. Rump and C.-P. Jeannerod. Improved backward error bounds for
LU and Cholesky factorizations. SIAM J. Matrix Anal. Appl. (SIMAX),
35(2):684–698, 2014.

[37] S.M. Rump and M. Lange. On the definition of unit roundoff. BIT,
56(1):309–317, 2015.

[38] S.M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation
part I: faithful rounding. SIAM J. Sci. Comput. (SISC), 31(1):189–224,
2008.

[39] S.M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation
part II: sign, K-fold faithful and rounding to nearest. Siam J. Sci.
Comput. (SISC), 31(2):1269–1302, 2008.

[40] J.R. Shewchuk. Adaptive precision floating-point arithmetic and fast
robust geometric predicates. Discrete Comput. Geom., 18(3):305–363,
1997.

[41] J.H. Wilkinson. Error analysis of floating-point computation. Nu-
merische Mathematik, 2:319–340, 1960.

[42] J.M. Wolfe. Reducing truncation errors by programming. Comm. ACM,
7(6):355–356, 1964.

[43] G. Zielke and V. Drygalla. Genaue Lösung linearer Gleichungssysteme.
GAMM Mitt. Ges. Angew. Math. Mech., 26:7–108, 2003.

	Introduction
	Optimal error bounds for the two standard models
	Linearly bounded error estimates for compound operations
	General computer arithmetic
	The standard model together with Assumption A
	The standard model together with Assumption B
	The standard model together with Assumption C
	The standard model together with Assumptions A and B
	Some applications

	Faithful results by a simplified pair arithmetic
	Faithfully rounded and reproducible results
	Summary
	References

