精度保証付き数値計算の 基礎

工学博士 大石 進一 【編著】 博士(情報科学) 荻田 武史 柏木 雅英 博十(丁 学) 劉 雪峰 博士(数理科学) 博士(工学) 尾崎 克久 博士(工学) 山中 脩也 博士(理学) 高安 亮紀 【共著】 博士(工学) 関根 晃太 博士(理学) 木村 拓馬 博士(理学) 市原 一裕 博士(理学) 正井 秀俊 博士(工学) 森倉 悠介

Ph.D. (Mathematics) Siegfried M. Rump

まえがき

数値計算は、コンピュータがなかった時代の数値による計算の工夫から始まって、フォン・ノイマンの流体計算を目指したプログラム方式の計算機の発想を一つの始まりとする、現代のコンピュータを前提とする数値計算に至る長い歴史がある。この中で、ノイマンやチューリングのような大家の指摘などによって数値計算で得られた解の近くに真の解が存在することを示すのは多くの場合難しいとの認識が形成され、このような事後誤差評価を実際に実行することなしにコンピュータによる数値計算が行われることが、現代では日常化している。

しかし、非線形問題の解の存在など数学の問題を数値計算で証明する場合には、数値計算の誤差をさらに計算し、すべての数値計算誤差を明らかにして数値解の近くに真の解が存在することを証明しなければならないことは明白である。それ以外の場面であっても、計算が大規模化したり、安全性への要求が高くなったりすることによって、数値解析の誤差を厳密に把握することが重要となる局面は、非常に多くなりつつある。編著者は数値計算の誤差を完全に把握する数値計算(「精度保証付き数値計算」と呼ぶ)が非常に重要であると考え、この分野で30年近く研究を行ってきた。本書はその成果をもとに、現在における精度保証付き数値計算の基礎となる事項を体系的にまとめたものである。

精度保証付き数値計算の最も重要な点の一つは、数値解析の誤差を厳密に把握する計算に要するコストと近似計算のコストをほぼ同程度になるようにバランスさせることであり、ここに数値解析の理論と現代コンピュータのアーキテクチャに関わる技術的な知見を総動員して研究する必要性が生じる。また、解くべきは数学の問題であるので、数学の理論も必要となる。

本書は、コンピュータによる基本演算を議論することから始める (1章, 2章)。 これを抽象的に始めることもできるが、現代の数値計算における基本演算の標 準が浮動小数点演算であること、および技術的には IEEE 754 規格が用いられ ることが多いことから、それを前提として議論を開始する。ここで展開されて いる議論は基礎であるが、他書にはない、最新の成果に基づく記述がなされて いる。区間演算(1.2 節)も含め、基本演算の誤差を厳密に把握しようとするこ とによって. 基本演算に潜む数値計算の難しさや勘所が数理的に体系化されて 浮き彫りになる。続いて、3章では数値計算全般で基礎となる数値線形代数の 問題の精度保証理論が展開される。ここでも、連立1次方程式と固有値問題の 精度保証付き数値計算法の基礎が最新の成果を踏まえて記述されている。4章 で取り扱う初等関数に対する精度保証法は多様な発展があるが、基礎的な記述 に留めている。5章では、数値積分について、二重指数関数公式の厳密な誤差 公式を含む各種の誤差公式と精度保証の実例が示されている。6章では、非線 形方程式に対する標準的な精度保証法が示されている。7章では、常微分方程 式について、独自の有効な積分法が示され、標準的な手法との比較がなされる。 8章では、偏微分方程式について、有界領域における楕円型作用素の固有値の 厳密な下限の精度保証付き数値計算法を含む。本分野の最新成果に基づく有限 要素法を用いた基礎理論が展開されている。9章では、まず、線形計画問題の 精度保証法、計算幾何学問題の精度保証法が論じられる。そして、数学問題に 対する計算機援用証明の例として、3次元多様体の双曲性判定の問題への応用 が述べられる。続いて、GPGPU やスーパーコンピュータなどの HPC 環境に おける精度保証法の展開の仕方. および MATLAB や Octave 上での精度保証 法ツールである INTLAB の紹介がされる。INTLAB には、本書の 6 章までに 示す多くのアルゴリズムが実装されている。

各章には章末問題が用意されている。解答例などについては、以下の本書の サポート Web ページに順次掲載する予定である。

http://www.oishi.info.waseda.ac.jp/vncbook

本書は編著者の研究グループと共同研究者によって執筆されている。 それは 以下のとおりである。

- 序論 荻田武史(東京女子大学),柏木雅英(早稲田大学),劉雪峰(新潟大学)
- 1章 浮動小数点演算と区間演算:尾崎克久(芝浦工業大学)、荻田武史
- 2章 丸め誤差解析と高精度計算:尾崎克久,荻田武史
- 3章 数値線形代数における精度保証:荻田武史,尾崎克久
- 4章 数学関数の精度保証:柏木雅英
- 5章 数値積分の精度保証:山中脩也(明星大学)
- 6章 非線形方程式の精度保証付き数値解法:高安亮紀(筑波大学)
- 7章 常微分方程式の精度保証付き数値解法:柏木雅英
- 8章 偏微分方程式の精度保証付き数値解法:劉雪峰 関根晃太 (東洋大学)
- 9章 精度保証付き数値計算の応用
 - 9.1 節 線形計画法の精度保証:木村拓馬(佐賀大学)
 - 9.2 節 計算幾何の精度保証: 尾崎克久
 - 9.3 節 3 次元多様体の双曲性判定:市原一裕(日本大学) 正井秀俊(東 北大学)
 - 9.4 節 HPC 環境における精度保証:森倉悠介(帝京平成大学)
 - 9.5 節 INTLAB の紹介: Siegfried M. Rump (ハンブルク工科大学), 訳: 荻田武中

本研究グループの形成にあたって、文科省科研費の特別推進研究や、三度にわ たる JST CREST の研究費をはじめとして、国から大きな支援をいただいてい ることに感謝したい。本書の執筆も研究グループで行わなければ不可能であっ たように、この支援が、ここまで研究を進展できたことの絶対的基盤になって いる。1章から3章までの執筆にあたっては、9.5節担当のハンブルク工科大 学教授の Siegfried M. Rump 氏から多くのコメントをいただいた。8 章の執筆 にあたっては、東京大学名誉教授の菊地文雄氏に草稿を細かく読んでいただき、 たくさんのご指摘を頂戴するなど、たいへんお世話になった。カバーと挿絵に は、早稲田大学栄誉フェロー・名誉教授の藪野健氏に素敵なイラストを頂戴し た。この場を借りて謝意を表したい。また、とりまとめにあたり、荻田氏と尾 崎氏の編集幹事としてのご尽力に深く感謝する。最後に、出版にあたり、コロ ナ社の温かいご配慮に感謝したい。

本書を恩師、堀内和夫先生に捧ぐ

2018年4月

本書で用いる表記一覧

○:部分集合

● Ç:真部分集合

N:自然数全体の集合

Z:整数全体の集合

■ R:実数全体の集合

● C:複素数全体の集合

F:浮動小数点数全体の集合

● 『*:正負の無限大を含む浮動小数点数全体の集合

IR: 実区間全体の集合

Iℝ*:無限区間を含む実区間全体の集合

• IC: 複素円板領域全体の集合

IF: 浮動小数点区間全体の集合

• 耶*:無限区間を含む浮動小数点区間全体の集合

O:零行列(要素がすべて0の行列)

I:単位行列

• \mathbf{u} : 単位相対丸め(IEEE 754 binary64 では、 $\mathbf{u}=2^{-53}$)

• F_{max} : 浮動小数点数の最大値(binary64 では、 $F_{max}=2^{1024}(1-2^{-53})$)

• F_{min} : 正規化浮動小数点数の正の最小値 (binary64 では, $F_{min}=2^{-1022}$)

• S_{min} : 浮動小数点数の正の最小値(binary64 では、 $S_{min} = 2^{-1074}$)

目 次

序 論

1. 浮動小数点演算と区間演算

1.1	l 浮!	動小数	汝点演	算・	• • •											 	 	11
	1.1.1	浮	動小	数点	数											 	 	12
	1.1.2	浮	動小貓	数点演	算											 • • •	 	16
1.2	2 区	間	演	算·												 	 	19
	1.2.1	区			間											 	 	19
	1.2.2	区	間	演	算											 	 	22
	1.2.3	機	械区	間演	算											 • • • •	 	27
	1.2.4	無	限区	間にま	3け	る何	财外	処理	里…							 	 	31
章	末	問	題													 	 	31
	-		/62															-
		. •	, _															
			, ,	2.				是差										
0.1	. +			2.	5	ኒሪ	り設	是	解	析	と高	寄精	度	計算	拿			
2.1	1 丸			2.	5	ኒሪ	り設	是	解	析	と高	寄精	度	計算	拿			33
2.1	L 丸 2.1.1	め誤	差解	2.		し め	か 訳	误差 	解	析 d	と高 	高精	度	計算 	拿 	 • • • •	 	
2.1		め誤総	差解和に対	2.		九 を 差解	う 誤 … 解析	是差	解	析 d	と i	高精	度	計算 ····	章 ····	 	 	33
2.1	2.1.1	め誤総	差解和に対	2. !析・! 対する	誤	九め ・・・・ 差解 差解	ク 計 ・・・ 解析	是 	解	析。 	と高 	高精 		計算 ·····	拿 ····	 	 	33 33
	2.1.1 2.1.2	め誤総内後	差解和に対積に対	2. 析・オオオオオオオ	· : 誤 : 誤 : 析	九 め … 差解 差解	か 記 : 析 解析	是差 	解	析。 	と高 	高精	i度i	計算 ·····	章 ·····	 	 	33 33 37

,	vi _	目 次	
	2.2.2	浮動小数点数の積	43
2.3	、 べク	プトルの総和や内積の高精度計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
	2.3.1	高精度演算を実現するアルゴリズム	45
	2.3.2	計算結果が高精度になるアルゴリズム	50
章	末	問 題	54
		3. 数値線形代数における精度保証	
3.1	準	備	56
	3.1.1	ベクトルノルムと行列ノルム	56
	3.1.2	特 別 な 行 列	58
3.2	2 🗵	間 行 列 積	59
	3.2.1	高速な区間行列積	60
	3.2.2	区間行列積のさらなる高速化	61
3.3	連 3	51次方程式	63
	3.3.1	ガウスの消去法と LU 分解 · · · · · · · · · · · · · · · · · ·	64
	3.3.2	コレスキー分解	66
	3.3.3	反 復 改 良 法	67
	3.3.4	区間ガウスの消去法	67
	3.3.5	密行列に対する精度保証法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
	3.3.6	疎行列に対する精度保証法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	73
	3.3.7	区間連立1次方程式	76
3.4	1 行列	·]固有值問題 · · · · · · · · · · · · · · · · · · ·	78
	3.4.1	密行列に対する精度保証法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	82
	3.4.2	非線形方程式を利用した精度保証法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	85
	3.4.3	大規模疎行列の場合・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	87
音	*	問 題	88

4. 数学関数の精度保証

4.1	指	数 関 数 …	
	4.1.1	指数関数	ģ 92
	4.1.2	${\rm expm1} \cdots \cdots$	
4.2	対	数 関 数	
	4.2.1	対 数 関 数	ģ 93
	4.2.2	$log1p \cdots \cdots$	
4.3	三	角 関 数 …	
	4.3.1	sin, cos ······	
	4.3.2	$\tan\!\cdots\!\cdots\!\cdots\!\cdots\!$	
4.4	逆	三角関数	
	4.4.1	arctan · · · · · ·	
	4.4.2	$\arcsin\cdots\cdots$	
	4.4.3	arccos ······	
	4.4.4	$atan 2 \cdot \cdot \cdot \cdot \cdot$	
4.5	双日	曲線関数	
	4.5.1	$\sinh\cdots\cdots$	
	4.5.2	cosh	
	4.5.3	$\tanh\cdots\cdots\cdots$	
4.6	逆刃	ス曲線関数	
	4.6.1	$\sinh^{-1} \cdots$	
	4.6.2	$\cosh^{-1} \cdot \dots \cdot$	
	4.6.3	\tanh^{-1}	
章	末	問 題	

5. 数値積分の精度保証

5.1	準	備	108
	5.1.1	積 分 と は	108
	5.1.2	ラグランジュ補間多項式	109
	5.1.3	コーシーの積分公式と高階微分	110
5.2	近似	以積分公式と誤差	111
	5.2.1	台形則と中点則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113
	5.2.2	ニュートン-コーツの公式	114
	5.2.3	Steffensen 公式 (開いたニュートン-コーツの公式) · · · · · · ·	117
	5.2.4	ガウス-ルジャンドル公式	119
	5.2.5	Lobatto 積分と Radau 積分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	120
	5.2.6		
	5.2.7	Romberg 積分法 · · · · · · · · · · · · · · · · · · ·	123
	5.2.8	二重指数関数型数值積分公式	125
5.3	精度	度保証付き数値積分法の例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	128
	5.3.1	高階微分を用いた精度保証付き数値積分法	128
	5.3.2	複素領域上の値を用いた精度保証付き数値積分法	130
	5.3.3	被積分関数の関数値計算における丸め誤差の高速計算	131
章	末	問 題	134
		6. 非線形方程式の精度保証付き数値解法	
6.1	==	ュートン-カントロヴィッチの定理	136
	6.1.1	ニュートン法	136
	6.1.2	半局所的収束定理 · · · · · · · · · · · · · · · · · · ·	137

目	次	ix

6.1.3	検 証 例141
6.1.4	ニュートン-カントロヴィッチの定理の応用について 145
6.2 Kra	wczyk による解の検証法 · · · · · · · 145
6.2.1	平均値形式と Krawczyk 写像 · · · · · · · · · · · · · · · · · ·
6.2.2	Krawczyk 写像による解の検証定理 · · · · · · · · · · · · · · · · · · ·
6.2.3	非線形方程式の全解探索アルゴリズム 149
6.3 Kra	wczyk の方法による検証例 · · · · · · · · · · · · · · · · · · ·
6.3.1	自動微分を使ったヤコビ行列の計算153
6.3.2	検 証 例156
6.4 区間]ニュートン法・・・・・・・159
章末	問 題162
	7. 常微分方程式の精度保証付き数値解法
	1. 市场为为住民公相及休证的已数临所为
7.1 ベ ^ミ	F 級 数 演 算 · · · · · · · · · · · · · · · · · ·
7.1 ベジ 7.1.1	
	F 級 数 演 算 · · · · · · · · · · · · · · · · · ·
7.1.1	F 級 数 演 算
7.1.1 7.1.2	F 級 数 演 算 · · · · · · · · · · · · · · · · · ·
7.1.1 7.1.2 7.1.3 7.1.4	F 級 数 演 算
7.1.1 7.1.2 7.1.3 7.1.4 7.2 ピカ	F 級 数 演 算
7.1.1 7.1.2 7.1.3 7.1.4 7.2 ピカ 7.3 解の	F 級 数 演 算
7.1.1 7.1.2 7.1.3 7.1.4 7.2 ピカ 7.3 解の 7.4 解の	F 級 数 演 算
7.1.1 7.1.2 7.1.3 7.1.4 7.2 ピガ 7.3 解の 7.4 解の 7.5 Loh	F 級 数 演 算 165 Type-I PSA 166 Type-I PSA の例 167 Type-II PSA の例 169 Type-II PSA の例 171 コール型の不動点形式への変換 175 コテイラー展開の生成 176 の精 度 保 証 177
7.1.1 7.1.2 7.1.3 7.1.4 7.2 ピガ 7.3 解の 7.4 解の 7.5 Loh	F 級 数 演 算 165 Type-I PSA 166 Type-I PSA の例 167 Type-II PSA の例 169 Type-II PSA の例 171 アール型の不動点形式への変換 175 のテイラー展開の生成 176 の精度 保証 177 mer 法 179
7.1.1 7.1.2 7.1.3 7.1.4 7.2 ピカ 7.3 解の 7.4 解の 7.5 Lob 7.6 初期	F 級 数 演 算

1	X _	目		次	=
	7.7.1	推進写	4像の微	效分	
	7.7.2	推進写	像の書	き直し…	
	7.7.3	解 の	接	続	
7.8	8 縮기	、写像原	理によ	る解の一意	性
7.9	9 射雪	隆法によ	る境界	値問題の精	度保証
7.1	10 ベ	キ級数額	質算の無	無駄の削減	
章	末	問題.			
		8.	偏微	数分方程式	大の粉
			b	_,	
8.1				デル問題・	
	8.1.1			是式の境界位	
	8.1.2			素の固有作	
	8.1.3			方程式の均	
8.2	2 関数	女空間 の	設定と	記号	• • • • •
8.3	3 補間	間関数の	誤差定	数	
8.4	4 ポラ	アソン方	程式の	境界値問題	を有
	8.4.1	有 限	要素	法	
	8.4.2	正則な	解の場		
	8.4.3	解に特	F異性の)ある場合	
	8.4.4	計	算	例	
8.5	5 微気	介作用素	の固有	値評価	
	8.5.1	固有值	の下界	評価	
	8.5.2	ラプラ	ス作用	素の固有化	直問是
	8.5.3	固有值	評価の)計算例 …	
8.6	5 半線	泉形楕円	型偏微	分方程式問	題の
	8.6.1	対象と	する問	閉題と準備	

	8.6.2	フレームワーク・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	230
	8.6.3	ソボレフの埋め込み定理と線形化作用素の局所連続性	· 233
	8.6.4	線形化作用素 $\mathcal{F}'[\hat{u}]$ の正則性とその逆作用素のノルム評価 \cdots	236
	8.6.5	残差ノルムの評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 240
	8.6.6	解の検証例	· 241
章	末	問 題	· 243
		9. 精度保証付き数値計算の応用	
9.1	線刑	ジ計画法の精度保証・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 247
	9.1.1	線形計画問題の基礎・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 247
	9.1.2	単体法における解の条件と精度保証付き数値計算法	. 252
	9.1.3	最適値(最適目的関数値)の精度保証付き数値計算法	255
	9.1.4	内点法を基礎とした解の精度保証付き数値計算法	257
9.2	計算	章幾何の精度保証 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 262
	9.2.1	位置関係の判定問題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 263
	9.2.2	浮動小数点フィルタ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 264
	9.2.3	ロバスト計算	· 266
	9.2.4	精度保証を用いた反復アルゴリズム	· 267
9.3	3 次	マ元多様体の双曲性判定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 271
	9.3.1	背 累	· 271
	9.3.2	Gluing equation ~解が双曲性を証明する~・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 273
	9.3.3	HIKMOT ~Gluing equation を精度保証付き計算で解く~ …	274
	9.3.4	応 用	276
9.4	НР	C 環境における精度保証・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 278
	9.4.1	GPU における区間演算 · · · · · · · · · · · · · · · · · · ·	· 278
	9.4.2	最近点丸めのみを用いた計算例	. 280

3	cii _	<u></u>
	9.4.3	高精度な行列積計算法
	9.4.4	GPU を用いた数値計算例·······286
	9.4.5	分散メモリマシンを用いた数値計算例 288
9.5	INT	LAB の紹介 · · · · · · · · 290
	9.5.1	区間の入力290
	9.5.2	区間の出力291
	9.5.3	区 間 演 算292
	9.5.4	区間ベクトル・区間行列 295
	9.5.5	残差の高精度計算296
	9.5.6	固有值問題298
	9.5.7	MATLAB による固有値の不正確な近似 · · · · · · · 299
	9.5.8	自動微分: 勾配とヘッセ行列 301
	9.5.9	局所的最適化 303
	9.5.10	関数のすべての根 … 303
	9.5.11	大域的最適化 304
	9.5.12	その他のデモ305
章	末	月 題305
索		引 · · · · · · · 309

序論

数値計算は、解析的に解くことが困難な問題を数値的に解く計算手法であるが、これは実数演算のような厳密な計算ではなく近似計算であり、計算途中でさまざまな誤差が発生するため、最終的に得られた結果がどれくらい正しいかは問題に依存する。数値計算によって得られた結果に対して、数学的に厳密な誤差限界を与える手法が、精度保証付き数値計算である。

ここでは、いくつかの例を交えながら、精度保証付き数値計算の有用性や必要性について述べる。

計算機援用証明

計算機を用いて数学的な定理を証明することを計算機援用証明(computer-assisted proof)と呼ぶ。精度保証付き数値計算は、従来の数値計算に数学的な厳密性を付加するものであり、計算機援用証明のための新しい強力なツールとなりうる。以下は、実際に精度保証付き数値計算によって計算機援用証明に成功した代表的な例である。

- ローレンツアトラクタの存在検証^{1)†} (スメイルの第 14 番目の問題)
- ケプラー予想(球充填問題)の肯定的解決^{2),3)}(約400年間の未解決問題)
- Double Bubble 予想の肯定的解決⁴⁾(100 年間以上の未解決問題)

計算機を用いた証明については賛否両論があると思われるが、それを受け入れることができるならば、解くことができる問題の幅が広がることは確かである。

区間演算

連続した数の集合は閉区間によって表現できる。区間演算は、通常の実数演算を区間による演算に置き換えたものである。すなわち、なんらかの計算を実

[†] 肩付き番号は章末の引用・参考文献を示す。

数演算の代わりに区間演算で実行すると、得られた結果は必ず実数演算による 結果を含む区間となる。

アルキメデスが円に接する正多角形の挟み込みによって円周率 π を計算したことは有名である。これは、直径 1 の円に外接する正 N 角形の周の長さを P_N 、内接する正 N 角形の周の長さを P_N とすると、 P_N であり、同じ円に外接する正 P_N 角形の周の長さは P_N となる性質を利用する。この方法を採用して、さらに区間演算を用いて π の範囲を特定することを考えてみよう † 。直径 P_N の円に外接する正 P_N の間の長さは P_N の道は P_N の道は P_N の間の長さは P_N の道は P_N の P_N

残念ながら、実際には、実数演算を単純に区間演算で置き換えただけでは、意味のある結果を得られないことが多いことがわかっている。例えば、連立 1 次方程式に対する区間ガウスの消去法は、その典型的な例である(3 章を参照)。このような区間演算の振る舞いについて、丸め誤差解析で著名な $J \cdot H \cdot$ ウィルキンソンは以下のように述べている5)。

区間演算は役に立たないわけではないが、適用可能な状況に至るまでに深刻な制限がある。一般に、代数的な計算に対して区間演算を有効な手段とするためには、その使用をできる限り後回しにすることが最良である。

すなわち,通常の数値計算によって近似解を得た後に,区間演算によってその 近似解の精度を保証する.という考え方が重要である。本書では、この思想に

[†] もちろん,円周率の計算については、もっと効率の良い方式が知られている。ここでは、手計算でも確認できる例として採用している。

基づいた精度保証法を多く紹介する。

丸め誤差の影響

前述のように,浮動小数点演算は有限桁の計算であるため丸め誤差が発生する。実際にどのような影響があるか,いくつかの例を挙げる。

(1) Rumpの例題 一般に、数値計算では演算精度が高いほど結果の精度も高くなる傾向がある。そこで、「ある演算精度でなんらかの計算をして、つぎにそれよりも高い演算精度で同じ計算をしたときに、双方の結果が近ければ、ある程度は結果の正しさが確認できる」と考えるかもしれない。この経験則は、確かに有効な場合もあるが、残念ながらつねに正しいわけではない。1980年代に、S. M. Rump はつぎのような例題を考案した⁶⁾。

$$f(x,y) = 333.75y^6 + x^2(11x^2y^2 - y^6 - 121y^4 - 2) + 5.5y^8 + \frac{x}{2y}$$

に、a=77617、b=33096 を代入した f(a,b) の値を評価する。これを IBM のメインフレーム S/370 上で演算精度を変えて実行すると、以下のような結果 となった $^{\dagger 1}$ 。

単精度(有効桁数:10 進約 8 桁): $f(a,b) \approx 1.172603 \cdots$

倍精度(有効桁数:10 進約 17 桁): $f(a,b) \approx 1.1726039400531 \cdots$

拡張精度(有効桁数:10 進約 34 桁): $f(a,b) \approx 1.172603940053178 \cdots$

この結果から、それぞれの精度において、一見、途中の桁までは正しい値が得られているように思われるが、じつは真の値は $f(a,b)=-0.827386\cdots$ であり、符号も合っていない間違った結果となっている $^{\dagger 2}$ 。このように、経験則では対処できない問題もある。

$$(333.75 - x^2)y^6 + x^2(11x^2y^2 - 121y^4 - 2) + 5.5y^8 + \frac{x}{2y}$$

のように計算手順の修正が必要である $^{7)}$ 。

†2 絶対値の大きな数字同士で打ち消し合いが起こり、最終的に $f(a,b)=\frac{a}{2b}-2=-\frac{54767}{66192}$ となる。

 $^{^{\}dagger 1}$ 現代の IEEE 754 に従うコンピュータ上で試す場合は

この問題に対して倍精度の区間演算を用いると、 $[-5.91,4.73] \times 10^{21}$ という結果を得る。これは、非常に区間幅が大きいため、あまり意味のある結果ではないが、少なくとも真の値を含んでいる。つまり、「区間演算は間違った答えをけっして出さない」ということが重要である。また、このように区間幅が大きい結果を得たことによって、深刻な丸め誤差が発生していることに気づくことができる。

(2) 2元連立 1次方程式 連立 1次方程式 Ax = b の近似解を \hat{x} とする と、その残差は $r := b - A\hat{x}$ と定義される。もし A が正則でr = 0 であれば、 \hat{x} は真の解であるが、例えば、r の要素の大きさが(相対的に)小さければ、 \hat{x} の精度が良いといえるであろうか。そこで、以下のような例題 8 を考えてみよう。

$$A = \begin{pmatrix} 64919121 & 159018721 \\ 41869520.5 & 102558961 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

このとき. A は正則で真の解は

$$x = A^{-1}b = \begin{pmatrix} 205117922 \\ -83739041 \end{pmatrix}$$

である。これに対して、IEEE 754 の倍精度浮動小数点演算を用いてガウスの 消去法で解を計算すると

$$\widehat{x} = \begin{pmatrix} 106018308.007133 \\ -43281793.0017831 \end{pmatrix}$$

のように 1 桁も合っていない結果が得られる $^{\dagger 1}$ 。ところが、この \hat{x} に対して残差 r を倍精度演算を用いて計算すると、残差の近似は $\hat{r}=(0,0)^T$ となり、一見 \hat{x} は正しい解のように見えてしまう $^{\dagger 2}$ 。すなわち、残差の計算からでは解が正しいかどうかを判定することができないことがわかる。

^{†1} 演算の順序によっては計算結果が異なる場合がある。

 $^{^{\}dagger 2}$ 真の残差は $r = (0.616 \cdots , 0.085 \cdots)^T$ である。

この問題に対して倍精度の区間演算を用いてガウスの消去法で解を計算する と、 $-\infty < x_i < \infty$ (i=1,2) という区間としては無意味な結果が得られる。これは問題の方程式が解きづらいことを示唆している。

以上の例は、人工的に作成したものではあるが、少なくとも実際に起こりうるわけである。IEEE 754-1985 浮動小数点演算規格の制定に尽力した $W\cdot M\cdot$ カハンは 以下のように述べている 9 。

浮動小数点演算によって得られた結果と真値に大きな差が生じることは非常に稀であり、つねに心配するにはあまりにも稀であるが、だからといって無視できるほど稀なわけではない。

これは、じつに言い得て妙である。そして、絶対に間違ってはいけないような計算をする場合、丸め誤差を無視してはいけない。

また、精度保証付き数値計算では、丸め誤差だけでなく打ち切り誤差や離散 化誤差も考慮に入れて計算する必要がある。

打ち切り誤差

例えば、 $\sin x$ のテイラー展開

を用いて、 $\sin\frac{\pi}{6}$ の値を計算することを考えよう。式 (1) の右辺を第 5 項までで打ち切り (n=5)、剰余項 $R_{11}(x)$ を無視して

$$S(x) := x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!}$$

とする。 $x=\frac{\pi}{6}$ として $S\left(\frac{\pi}{6}\right)$ を倍精度浮動小数点演算による区間演算で丸め誤差を考慮しながら計算すると $\left(\frac{\pi}{6}\right)$ も倍精度浮動小数点数では厳密には表現できないため、これを含む区間として x に代入する)

$$S\left(\frac{\pi}{6}\right) \in [0.50000000002027, 0.500000000002029]$$

索引

/±1		行列の絶対値	56	固有対	78
【あ】		行列ノルム	56	コレスキー分解	66
アフィン演算	187	局所的最適化	303	根	303
アンダーフロー	16	[<]		【さ】	
[\(\)]					
		区間	19	最適解	248
一般化固有值問題	78	, , ,	22, 292	最適化問題	247
【う】		区間ガウスの消去法	67	最適目的関数値	248
		· · · · · · · · · · · · · · · · · · ·	45, 151	三角関数	95
打ち切り誤差	5		21, 295	三角形要素	205
【え】		区間ニュートン法 1	′	[L]	
		区間ベクトル	· /		
エラーフリー変換	41	区間包囲	151	指数関数	92
円板演算	26	矩形複素区間	22	事前誤差評価	212
【お】		区分定数関数空間	213	実行可能解	248
		【け】		実行可能基底解	252
オーバーフロー	14			自動微分	153, 301
【か】		計算機イプシロン	13	射影作用素	209
		計算機援用証明	1	弱形式	198
ガウスの消去法	64	計算幾何	262	弱双対性	256
ガウス-ルジャンドル公式	119	ゲルシュゴリンの包含	定理 80	射撃法	191
仮数部	12	幻影解	7	縮小写像原理	189
下端・上端型表現	20	減次	170	主双対内点法	257
簡易ニュートン写像	145	【こ】		主問題	256
【き】				条件数	57
		後退誤差	39	シルベスターの慣性	E 則 87
機械区間演算 27	7, 152	後退誤差解析	39	【す】	
幾何化予想	272	交代結び目	277	191	
基底解	252	勾 配	301	推進写像	183
基底変数	252	候補区間	152	数値計算	1
基本解行列	183	誤差定数	205	数值積分	108
逆三角関数	97	コーシーの積分公式	110	スケーリング最大ノ	'ルム 148
逆双曲線関数	104	固有値の重複度	79	スーパーコンピュー	- タ 278
狭義優対角行列	58	固有値問題	298	スペクトル分解定理	ž 236

(せ)		デーン手術	276	複素円板領域 不等式制約条件	22 248
正規化数	11	(と)		不等式標準形	248
正定值行列	59	等式制約条件	248	浮動小数点演算	16
精 度	12	等式標準形	248	浮動小数点数	12
精度保証付き数値計算	1	凸 包 18	51, 262	浮動小数点フィルタ	264
精度保証付き数値計算		トポロジー	271	フレシェ微分	138
ライブラリ	151	【な】		分枝限定法	150
成分毎評価	63			[^]	
絶対値	20	内積	37		4.0
摂動定理	81	内点法	251	平均値形式	146
セミノルム 全解探索アルゴリズム	202 149	中尾の方法	232	ベキ級数演算 ベクトルノルム	$165 \\ 56$
線形計画法	$\frac{149}{247}$	【に】		ヘッセ行列	301
前進誤差	39	二重指数関数型数値積	5分公式		301
	0.0	一生仍然风处主然间景	125	【ほ】	
【そ】		ニュートン法	136	ポアソン方程式	197
双曲幾何構造	272	ニュートン-カントロヴ		ポアンカレ予想	271
双曲線関数	101	の定理 1:	39, 231	補間関数	206
双曲多様体	272	ニュートン-コーツの公	式 114	補間誤差定数の公式	207
双対性	256	【の】		補間作用素	206
双対問題	256	[65]			
				(±)	
総 和	33	ノルム	202	【ま】	
ソボレフ関数空間	197	ノルム ノルム評価	202 63	丸め誤差	3
	197	ノルム評価		丸め誤差 丸め誤差解析	33
ソボレフ関数空間	197	ノルム評価 【は】	63	丸め誤差	_
ソボレフ関数空間 ソボレフの埋め込み定理 【た】	197 £ 234	ノルム評価 【 は】 倍精度	63 11	丸め誤差 丸め誤差解析	33
ソボレフ関数空間 ソボレフの埋め込み定理 【た】 大域的最適化	197 234 304	ノルム評価 【は】 倍精度 バナッハ空間	63 11 138	丸め誤差 丸め誤差解析 丸めモード 【む】	33 27
ソボレフ関数空間 ソボレフの埋め込み定理 【た】	197 £ 234	ノルム評価 【 は】 倍精度	63 11	丸め誤差 丸め誤差解析 丸めモード	33
ソボレフ関数空間 ソボレフの埋め込み定理 【た】 大域的最適化 台形則	197 ½ 234 304 113	ノルム評価 【は】 倍精度 バナッハ空間 判定問題	63 11 138 263	丸め誤差 丸め誤差解析 丸めモード 【む】 無限区間 結び目	33 27 20
ソボレフ関数空間 ソボレフの埋め込み定理 【た】 大域的最適化 台形則 対数関数	197 £ 234 304 113 93	ノルム評価【は】倍精度バナッハ空間判定問題反復改良法反復の停止条件	63 11 138 263 67	丸め誤差 丸め誤差解析 丸めモード 【む】 無限区間	33 27 20
ソボレフ関数空間 ソボレフの埋め込み定理 【た】 大域的最適化 台形則 対数関数 単精度	197 234 304 113 93 11	ノルム評価 【は】 倍精度 バナッハ空間 判定問題 反復改良法	63 11 138 263 67	丸め誤差 丸め誤差解析 丸めモード 【む】 無限区間 結び目	33 27 20
ソボレフ関数空間 ソボレフの埋め込み定理 【た】 大域的最適化 台形則 対数関数 単精度 単体法 単調行列	197 £ 234 304 113 93 11 251	ノルム評価 【は】 倍精度 バナッハ空間 判定問題 反復改良法 反復の停止条件 【ひ】 比較行列	63 11 138 263 67 137	丸め誤差 丸め誤差解析 丸めモード 【む】 無限区間 結び目 【も】	33 27 20 276
ソボレフ関数空間 ソボレフの埋め込み定理 【た】 大域的最適化 台形則 対数関数 単精度 単体法 単調行列	197 234 304 113 93 11 251 58	ノルム評価 【は】 倍精度 バナッハ空間 判定問題 反復改良法 反復の停止条件 【ひ】 比較行列 ピカール型の不動点形	63 11 138 263 67 137 58 公式 176	丸め誤差 丸め誤差解析 丸めモード 【む】 無限区間 結び目 【も】 目的関数	33 27 20 276 248
ソボレフ関数空間 ソボレフの埋め込み定理 【た】 大域的最適化 台形則 対数関数 単精度 単体法 単調行列 【ち】 逐次添加法	197 234 304 113 93 11 251 58	ノルム評価 【は】 倍精度 バナッハ空間 判定問題 反復改良法 反復の停止条件 【ひ】 比較行列 ピカール型の不動点形 非基底変数	63 11 138 263 67 137 58 試 176 252	丸め誤差 丸め誤差解析 丸めモード 【む】 無限区間 結び目 【も】	33 27 20 276
ソボレフ関数空間 ソボレフの埋め込み定理 【た】 大域的最適化 台形則 対数関数 単精度 単体法 単調行列 【ち】 逐次添加法 忠実丸め	197 234 304 113 93 11 251 58 267 54	プルム評価 【は】 倍精度 バナッハ空間 判定問題 反復の停止条件 【ひ】 比較行列 ピカール型の不動点形 非基底変数 非正規化数	63 11 138 263 67 137 58 3 4 176 252 11	丸め誤差 丸め誤差解析 丸めモード 【む】 無限区間 結び目 【も】 目的関数	33 27 20 276 248
ソボレフ関数空間 ソボレフの埋め込み定理 【た】 大域的最適化 台形則 対数関数 単精度 単体法 単調行列 【ち】 逐次添加法 忠実丸め 中心・半径型表現	197 234 304 113 93 11 251 58 267 54 20	プルム評価 【は】 倍精度 パナッハ空間 判定問題 反復改良法 反復の停止条件 【ひ】 比較行列 ピカール型の不動点形 非基底変数 非正規化数 微積分学の基本定理	11 138 263 67 137 58 红 176 252 11 159	丸め誤差 丸め誤差解析 丸めモード 【む】 無限区間 結び目 【も】 目的関数 【や】 ヤコビ行列 【ゆ】	33 27 20 276 248
ソボレフ関数空間 ソボレフの埋め込み定理 【た】 大域的最適化 台形則 対数関数 単精度 単体法 単調行列 【ち】 逐次添加法 忠実丸め 中心・半径型表現 中点則	197 234 304 113 93 11 251 58 267 54 20 113	プルム評価 【は】 倍精度 バナッハ空間 判定問題 反復の停止条件 【ひ】 比較行列 ピカール型の不動点形 非基底変数 非正規化数 微積分学の基本定理 標準固有値問	63 11 138 263 67 137 58 公式 176 252 11 159 78	丸め誤差 丸め誤差解析 丸めモード 【む】 無限区間 結び目 【も】 目的関数 【や】 ヤコビ行列 【ゆ】	33 27 20 276 248 137
ソボレフ関数空間 ソボレフの埋め込み定理 【た】 大域的最適化 台形則 対数関数 単精度 単体法 単調行列 【ち】 逐次添加法 忠実・・半径型表現 中点則 直交射影	197 234 304 113 93 11 251 58 267 54 20	プルム評価 【は】 信精度 バナッハ空間 判定問題 反復の停止条件 【ひ】 比較行列 ピカール型の不動点形 非基底変数 非正規分の基本定理 標準固有値門 ピルベルト	11 138 263 67 137 58 红 176 252 11 159	丸め誤差 丸め誤差解析 丸めモード 【む】 無限区間 結び目 【も】 目的関数 【や】 ヤコビ行列 【ゆ】 有限要素解 有限要素空間	33 27 20 276 248 137 209 203
ソボレフ関数空間 ソボレフの埋め込み定理 【た】 大域的最適化 台形則 対数関数 単精度 単体法 単調行列 【ち】 逐次添加法 忠実丸め 中心・半径型表現 中点則	197 234 304 113 93 11 251 58 267 54 20 113	プルム評価 【は】 倍精度 バナッハ空間 判定問題 反復の停止条件 【ひ】 比較行列 ピカール型の不動点形 非基底変数 非正規化数 微積分学の基本定理 標準固有値問	63 11 138 263 67 137 58 公式 176 252 11 159 78	丸め誤差 丸め誤差解析 丸めモード 【む】 無限区間 結び目 【も】 目的関数 【や】 ヤコビ行列 【ゆ】	33 27 20 276 248 137

[5]		[9]		[n]	
ラグランジュ補間	205	離散化誤差	6	 例外的デーン手術	277
ラグランジュ補間多項式	109	リッツ-ガレルキン	法 209	レイリー商	219
ラプラス作用素	197			 レイリー-リッツの方泡	去 200
	,	^	,	\ \	
	(>		>	
7.4.1		Hypercircle 法	212	/D1	
[A]		H^2 正則性	198	(P)	
Aubin-Nitsche の技巧	211	[1]		Plum の方法	232
(B)				PSA	165
		IEEE 754 規格	11	(R)	
binary32	11	Inf	11		0.4
binary64	11	INTLAB	290	rad	21
[C]		(K)		Radau 積分 Raviart–Thomas 混合	120
Crouzeix-Raviart 要素	注	Krawczyk	145	要素空間	213
Crouzeix raviare & 5.	223	Krawczyk 写像	146	Raviart-Thomas 有限	_
CUDA	278			1,17	240
(p)		(L)		Romberg 積分法	123
(D)		Lobatto 積分	120		
DKA 法	162	Lohner 法	179	(s)	
Dot2	49	LU 分解	64	Smith の定理	162
(E)		(M)		Steffensen 公式	117
Emden 方程式	7	M 行列	58	(\mathbf{U})	
Emden 万柱八	,	mag	20	ufp	12
[G]		max-min 原理	219	ulp	13
GPU	278	mid	213	-	10
	2,0	min-max 原理	200, 219	[W]	
(H)		[n:1	,	wrapping effect	187
H 行列	58	(N)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~
HIKMOT	274	NaN	11	【数字】	
HPC	278			-	
hull	21			3 次元多様体	271

—— 編著者·著者略歴 ——

大石 進一(おおいし しんいち)

1981年 早稲田大学大学院理工学研究科博士後

期課程修了, 工学博士

1989年 早稲田大学教授 現在に至る

柏木 雅英 (かしわぎ まさひで)

期課程修了,博士(工学)

2009年 早稲田大学教授 現在に至る

尾崎 克久(おざき かつひさ)

2007年 早稲田大学大学院理工学研究科博士後

期課程修了,博士(工学)

2013年 芝浦工業大学准教授

現在に至る

高安 亮紀 (たかやす あきとし)

2012年 早稲田大学大学院基幹理工学研究科博

士後期課程修了,博士(理学)

2016年 筑波大学助教 現在に至る

木村 拓馬 (きむら たくま)

2010年 弘前大学大学院理工学研究科博士後期

課程修了,博士(理学)

2015年 佐賀大学准教授

現在に至る

正井 秀俊(まさい ひでとし)

2014年 東京工業大学大学院情報理工学研究科

博士後期課程修了,博士(理学)

2017年 東北大学助教

現在に至る

Siegfried M. Rump

(ジークフリード ミヒャエル ルンプ)

1980年 Ph.D. (Mathematics)

カールスルーエ大学

1987年 ハンブルク工科大学教授

現在に至る

2002年 早稲田大学訪問教授

現在に至る

荻田 武史(おぎた たけし)

2003年 早稲田大学大学院理工学研究科博士後

期課程修了,博士(情報科学)

2018年 東京女子大学教授

現在に至る

劉 雪峰(りゅう しゅうふぉん)

1994年 早稲田大学大学院理工学研究科博士後 2009年 東京大学大学院数理科学研究科博士後

期課程修了,博士(数理科学)

2014年 新潟大学准教授

現在に至る

山中 脩也(やまなか なおや)

2011年 早稲田大学大学院基幹理工学研究科博

十後期課程修了. 博士(工学)

2016年 明星大学准教授

現在に至る

関根 晃太(せきね こうた)

2014年 早稲田大学大学院基幹理工学研究科博

士後期課程修了,博士(工学)

2017年 東洋大学助教

現在に至る

市原 一裕(いちはら かずひろ)

2000年 東京工業大学大学院理工学研究科後期

博士課程修了,博士(理学)

2013年 日本大学教授

現在に至る

森倉 悠介(もりくら ゆうすけ)

2014年 早稲田大学大学院基幹理工学研究科博

士後期課程修了,博士(工学)

2017年 帝京平成大学助教

現在に至る

精度保証付き数値計算の基礎

Principle of Verified Numerical Computations

© Shin'ichi Oishi et al. 2018

2018 年 7 月 26 日 初版第 1 刷発行

検印省略

 編 著 者
 大
 石
 進
 一

 発 行 者
 株式会社
 コ ロ ナ 社
 社

 代表者
 牛 来 真 也

 印刷 所
 三美印刷株式会社

 製本所
 牧製本印刷株式会社

112-0011 東京都文京区千石 4-46-10 発 行 所 株式会社 コ ロ ナ 社 CORONA PUBLISHING CO., LTD.

Tokyo Japan

振替 00140-8-14844・電話 (03) 3941-3131(代) ホームページ http://www.coronasha.co.jp

ISBN 978-4-339-02887-4 C3041 Printed in Japan

(新宅) G

JCOPY <出版者著作権管理機構 委託出版物>

本書の無断複製は著作権法上での例外を除き禁じられています。複製される場合は,そのつど事前に, 出版者著作権管理機構(電話 03-3513-6969, FAX 03-3513-6979, e-mail: info@jcopy.or.jp) の許諾を 得てください。

本書のコピー,スキャン,デジタル化等の無断複製·転載は著作権法上での例外を除き禁じられています。 購入者以外の第三者による本書の電子データ化及び電子書籍化は,いかなる場合も認めていません。 落丁・乱丁はお取替えいたします。