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Abstract. This paper gives some details on how to obtain mathematically rigorous results
for global unconstrained and equality constrained optimization, as well as for finding all roots of a
nonlinear function within some box. The main problem to produce rigorous results for problems of
global nature is to verify that a certain sub-box cannot contain a solution to the problem.

Verification methods are based on algorithmic differentiation together with interval arithmetic.
We present certain details how to obtain fast algorithms in Matlab/Octave. The methods are imple-
mented in INTLAB, the Matlab/Octave toolbox for Reliable Computing. Several examples together
with executable code show advantages and weaknesses of the proposed methods. Comparisons to
other global methods are given, as well as timing comparisons to algorithmic differentiation by AD-
mat 2.0.
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1. Introduction. In the following we consider three types of problems, all of
which are of global nature. For the three problems, let

f : D ⊆ Rn → R
f : D ⊆ Rn → R and g : D ⊆ Rn → Rm
f : D ⊆ Rn → Rn

be given, respectively. For given X ⊆ D, define x̂ to be a solution if

f(x̂) ≤ f(x) for all x ∈ X
g(x̂) = 0 and f(x̂) ≤ f(x) for all x ∈ X with g(x) = 0

f(x̂) = 0 for x̂ ∈ X,

respectively. The goal is to compute two lists Li, L
′
j such that with mathematical

rigor the following two properties hold true:

1) each Li contains a unique solution of the problem,
2) all solutions are contained in the union of the Li and L′j .

In our approach, X and the Li and L′j are n-dimensional boxes, i.e. interval vectors.
The main obstacle for such problems of global nature is to exclude boxes, that is to

prove that they definitely do not contain a solution. Such results with mathematical
rigor are usually outside the scope of numerical algorithms.

Our goals require, in particular, the computation of rigorous error bounds for the
root of an n-dimensional nonlinear function or its derivative, and the computation of
a rigorous inclusion of the range of an n-dimensional nonlinear function, its gradient
and Hessian over some input box.

This is done by so-called verification methods. They are a combination of math-
ematical theorems together with algorithmic differentiation and interval arithmetic.
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Moreover, in order to verify that a computed box contains a minimum, it has to be
veryfied that all matrices within a set of Hessians are positive definite.

For the sake of speed but without sacrificing rigor, we use exclusively floating-
point operations, partly with directed rounding. Such an approach is possible since
the vast majority of all computers adhere to the precisely defined IEEE 754 floating-
point standard [16, 15].

All programs are entirely written in Matlab/Octave and part of INTLAB [44],
the Matlab/Octave toolbox for reliable computing. The toolbox INTLAB has several
thousand users in more than 50 countries. One of the main obstacles of Matlab/Octave
code is the slowdown by interpretation. How to defeat that is presented to a certain
detail.

We address in particular INTLAB’s efficient implementation of algorithmic dif-
ferentiation in Matlab/Octave and give some comparisons with ADMAT.

The paper is organized as follows. First, few details about interval arithmetic are
presented together with the Matlab/Octave operator concept. When used improp-
erly, interval operations may produce correct but grossly overestimated results. In
Subsection 2.2 and other places we address that issue, followed by implementation
details for fast interval matrix multiplication and interval standard functions. The
latter estimate the range of a function, gradient or Hessian over some input box and
are mandatory for the implementation of verification methods.

Next we discuss algorithmic differentiation together with details how to speed
up those computations. In Section 4 verification methods to compute an inclusion
of roots of systems of nonlinear equations are sketched. Sometimes rigorous results
are possible in pure floating-point arithmetic in rounding to nearest as explained in
Subsection 4.1. We address in particular the applicability and the scope of verification
methods.

In Section 5 some details for our global algorithms are discussed, in particular
several methods how to get rid of sub-boxes. A new kind of bisection is explained.
Some details of constrained optimization problems and how to find all roots of a
system of nonlinear equations are given.

For all topics, several computational results are presented.

2. Interval arithmetic in INTLAB. To attack one of the three problems
mentioned in the introduction, we assume f to be given by a Matlab/Octave function
comprised of arithmetic operations and standard functions. A first and major task to
obtain mathematically rigorous results is to bound the range of f over some set X.
Using ordinary floating-point arithmetic this is usually not possible without further
information on f such as a Lipschitz constant or alike.

A convenient but by no means the only way to bound f(X) is the use of interval
arithmetic. We hastily mention that such bounds may be afflicted with severe overes-
timation, see Subsection 2.2. Nevertheless, the computed bounds are always correct,
often with not too much overestimation.

The set of real intervals is defined by IR := {[a1, a2] : a1, a2 ∈ R, a1 ≤ a2}.
Operations ◦ ∈ {+,−,×, /} on IR are defined to be tightest interval satisfying the

Inclusion monotonicity A,B ∈ IR ⇒ ∀a ∈ A ∀b ∈ B : a ◦ b ∈ A ◦B. (2.1)

That is the most important and mandatory property of interval operations. Clearly

A ◦B = [min v,max v] where v = [a1 ◦ b1, a1 ◦ b2, a2 ◦ b1, a2 ◦ b2] ∈ R4 (2.2)

for A = [a1, a2] and B = [b1, b2], provided 0 /∈ B for division.
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To obtain mathematically rigorous results on digital computers, inevitable round-
ing errors have to be taken care of. For simplicity, we assume henceforth that no over-
or underflow occurs. In the practical implementation, that is of course taken care of.

Denote by F the set of double precision (binary64) floating-point numbers as
defined by the IEEE 754 standard [16, 15]. Then for a, b ∈ F and ◦ ∈ {+,−,×, /},
the result a ◦̃ b of a floating-point operation ◦̃ has minimal error to the exact real
result a ◦ b. Using a rounding to nearest function fl : R → F that is equivalent to
a ◦̃ b := fl(a ◦ b).

For x ∈ R, the result of a directed rounding is the unique largest or smallest
floating-point number being less equal or greater equal to x, respectively:

fl∇(x) := max{f ∈ F : f ≤ x} and fl∆(x) := min{f ∈ F : x ≤ f}. (2.3)

The IEEE 754 standard defines arithmetic operations with directed rounding, that
is, for a, b ∈ F, both fl∇(a ◦ b) and fl∆(a ◦ b) is computable. In INTLAB, that is
performed, for example, by the following executable code:

setround(-1), cinf = a*b; setround(+1), csup = a*b;

By (2.3) it follows

ab ∈ F ⇔ cinf = csup,

where ab is the real result of the multiplication. Here setround(-1) causes that
all subsequent operations are executed in rounding downwards until the next call to
setround, and similarly for other roundings.

In order to define rigorous operations on a digital computer we use intervals with
floating-point endpoints IF := {[f1, f2] : f1, f2 ∈ F, f1 ≤ f2}. It is important to
note that [f1, f2] represents the set of all real numbers x with f1 ≤ x ≤ f2. Then
executable floating-point operations are defined by calculating the vector v in (2.2)
both in rounding downwards and upwards, respectively. For A,B ∈ IF, again the
mandatory inclusion monotonicity (2.1) is always satisfied for all real a, b with a ∈ A
and b ∈ B.

Needless to say that these are the theoretical definitions; in practice, faster im-
plementations are used. For example, A + B = [fl∇(a1 + b1),fl∆(a2 + b2)] etc. That
is in particular important for interval vector and matrix operations.

The definitions generalize directly to interval vectors and matrices, where each
component becomes an interval. Operations between interval vectors and matrices
are defined using the real operations by replacing the sums and products by the corre-
sponding interval operation. Theoretically that is sound, however it has a significant
performance impact. Examples together with a remedy are discussed in Subsection
2.4, nonlinear functions are briefly addressed in Subsection 2.5.

2.1. The Matlab/Octave operator concept. The main reason we choose
Matlab/Octave as programming platform is the ease of use and readability. The
notation is often close if not equal to the mathematical one. Beyond the usual arith-
metical operations and standard functions, the operator concept contributes a great
deal to that.

INTLAB defines a new Matlab/Octave data type intval. For f ∈ F, the type
cast intval(f) produces the interval [f, f ]. If at least one operand of an opera-
tion is of type intval, then the corresponding interval operation is executed. Thus,
3/intval(7)+1 computes an inclusion of 10/7, but not necessarily 3/7 + intval(1).
For an operation between quantities of different user-defined data types, for example
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intval and gradient, a priority between the types is defined to choose the right
operator.

The operator concept allows easy writing and reading of programs. That is in
particular very convenient for algorithmic differentiation. However, it comes at a price.
Arithmetic expressions containing user-defined data types instead of pure floating-
point are slowed down significantly.

The inclusion monotonicity (2.1) implies a remarkable property. If in an arith-
metic expression each operation is replaced by its corresponding interval operation,
then the computed interval (vector) is an inclusion of the true value. That is even
true for interval input: Consider, as a trivial example, Schaffer’s second function

f(x, y) = 0.5 +
sin2(x2 − y2)− 0.5

(1 + 0.001(x2 + y2))2
. (2.4)

The unique global minimum in [−100, 100]2 is the origin with f(0, 0) = 0. The
executable INTLAB statements

f = @(x) 0.5 + (sqr(sin(sqr(x(1))-sqr(x(2))))-0.5) / ...

sqr(1+sum(sqr(x))/1e3);

X = [infsup(0.875,1.25);infsup(0,0.75)];

y = f(gradientinit(X))

produce the output
intval gradient value y.x =

[ 0.0413, 0.9992]

intval gradient derivative(s) y.dx =

[ 0.0033, 4.9052] [ -2.9433, 0.0014]

That proves that for all x ∈ R2 with 0.875 ≤ x1 ≤ 1.25 and 0 ≤ x2 ≤ 0.75 the
function value satisfies 0.0413 ≤ f(x) ≤ 0.9992 and the partial derivatives satisfy
0.0033 ≤ ∂f

∂x1
≤ 4.9052 and −2.9433 ≤ ∂f

∂x2
≤ 0.0014. This already uses the operator

concept for algorithmic differentiation to be discussed in Section 3. Since the partial
derivative with respect to x1 is nonzero, it follows that the input box X does not
contain a stationary point and can be discarded in the search for a global minimum
in [−100, 100]2.

2.2. Improper use of interval arithmetic. The remarkable property men-
tioned in the last subsection applies to finite algorithms as well, for example to Gaus-
sian elimination or the conjugate gradient method. Replacing each floating-point
number x by the interval [x, x], each operation is automatically replaced by its cor-
responding interval operation when executed in INTLAB. If the algorithm does not
break down because of division by an interval containing zero, then the computed
intervals are a mathematical rigorous inclusion of the true real values.

However, such a method is most certainly bound to fail because of data dependen-
cies. For example, applying the conjugate gradient algorithm [10, Algorithm10.2.1] to
a 20× 20 linear system with randomly generated symmetric positive definite matrix,
quickly produces an inclusion [−∞,∞]20.

For Gaussian elimination it can be shown [46, Subsection 10.1] that, for general
matrix, the method of replacing operations by their corresponding interval operation
(IGA) must fail for small dimensions, even for orthogonal matrices with condition
number 1.

Verification methods take advantage of the mathematical rigor by formulating
theorems and algorithms such that data dependencies are reduced to a minimum. A
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verification method using solely floating-point operations in rounding to nearest for
linear systems with s.p.d. matrix is described in Subsection 4.1.

2.3. Matlab/Octave implementation issues. Another obstacle to verifica-
tion in Matlab/Octave is the interpretation overhead. That includes also the over-
head by using the operator concept. Consider interval vectors x, y ∈ IRn. Then the
INTLAB command z = x + y produces an inclusion z ∈ IR of the sum of x and y.

There is direct access to the structure of x by xs = struct(x), so that the
operator concept could be avoided by:

setround(-1)

zs.inf = xs.inf + ys.inf;

setround(1)

zs.sup = xs.sup + ys.sup;

Here .inf and .sup access the lower and upper bound of a real interval quantity,
may it be scalar, vector or matrix. The latter commands are faster than the operator
concept by about a factor 2.1, basically independent of the dimension.

For other operations, however, such as multiplication the code would be much
more complicated. Thus it is possible to avoid the overhead by the operator concept,
but that would sacrifice readability.

More severe interpretation overhead is caused by using scalar instead of vector
operations. Consider, for example, the multiplication of random n × n matrices A,B

using the built-in multiplication A*B compared to a three-fold loop. Then the ratio
in computing time is as follows:

Table 2.1
Ratio of computing time: built-in floating-point matrix multiplication versus 3-for loops.

n=10 n=20 n=50 n=100
ratio 18.4 64 140 323

When using a 3-fold loop for interval matrix multiplication, the situation is much
worse: For dimension n = 50 the factor already larger than 50,000. That is be-
cause in the inner loop an interval multiplication and addition is performed, requiring
comparisons and switches of the rounding mode.

Some remedy is to use one loop and rank-1 updates, see [29]. For matrices A ∈
Rm×k and B ∈ Rk×n executable code is as follows:

C = intval(zeros(m,n));

for i=1:k

C = C + A(:,i)*B(i,:);

end

However, that is still far from acceptable, see Table 2.2.

2.4. Fast matrix operations. Fast interval multiplication avoiding interpreta-
tion overhead are performed by using midpoint-radius arithmetic. The latter were
already used by Gargantini and Henrici [9], however, for a different purpose. Define

〈µ, %〉 := {x : |µ− x| ≤ %}. (2.5)

With proper interpretation, that definition applies to real or complex scalars, but to
vectors and matrices as well. In the latter case, comparison and absolute value is to
be understood componentwise.

5



An interval matrix A := [A,A] ∈ IRm×n can be written equivalently as A =
〈mA − rA,mA + rA〉, where mA := 1

2 (A + A) and rA := 1
2 (A − A). Then, for

matrices A := 〈mA, rA〉 ∈ IRm×k and B := 〈mB, rB〉 ∈ IRk×n, an inclusion of the
interval matrix product A ·B can be computed as

C := 〈 mA ·mB, rA · |mB|+ (|mA|+ rA) · rB 〉. (2.6)

With little thinking the inclusion monotonicity (2.1) follows:

∀A ∈ A ∀B ∈ B : A ·B ∈ C.

Note that only matrix multiplications are used in (2.6), no scalar operations. Thus,
there is practically no interpretation overhead and fast library routines for matrix
multiplication can be used.

As a drawback, some overestimation is introduced, and that may be the reason
why that approach was not used in the interval community. However, it can be shown
that the overestimation is usually small, for practical applications almost negligible
[43].

In fact, although theoretically not possible, inclusions are sometimes more narrow
than using infimum-supremum arithmetic [43]. The reason is that the narrowest
interval in infimum-supremum representation containing, for example, 〈1.5, 2−100〉 is
[1.5− 2−53, 1.5 + 2−53] in double precision arithmetic, a significant overestimation. In
midpoint-radius arithmetic the original interval can be used.

In (2.6) we ignored possible rounding errors as well as how to convert infimum-
supremum representation [A,A] into midpoint-radius representation 〈mA, rA〉 with
rigor. Using a trick due to Oishi [37] the latter is done by the executable code

function [mA,rA] = infsup2midrad(Ainf,Asup)

setround(1)

mA = 0.5*(Ainf+Asup);

rA = mA - Ainf;

As a result,

∀A ∈ [Ainf, Asup] : A ∈ 〈mA, rA〉.

With this, executable code for multiplication of interval quantities in infimum-supremum
can be written as follows. It assumes that .inf and .sup gives access to the bounds
of an interval quantity.

function C = IVmul(A,B)

[mA,rA] = infsup2midrad(A.inf,A.sup);

[mB,rB] = infsup2midrad(B.inf,B.sup);

setround(1)

rC = rA*abs(mB) + ( abs(mA) + rA )*rB;

C.sup = mA*mB + rC;

setround(-1)

C.inf = mA*mB - rC;

Note that this Matlab/Octave code is working for compatible interval scalars, vectors,
matrices and combinations of those.

Needless to say that in the actual implementation many special cases such as
coinciding left and right bounds, combinations of real and complex factors and so
forth are taken of.
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Table 2.2
Ratio of computing time: rank-1 versus midpoint-radius.

n trank-1 tmidrad trank-1/tmidrad
100 0.03 0.002 18.1
200 0.11 0.005 21.7
500 2.04 0.05 38.4
1000 16.2 0.35 45.9

The following table shows the gain towards the mentioned rank-1 implementation.
The time ratio of the midpoint-radius method against the 3-fold loop is for n=50
already more than 400,000.

Counting the multiplications we expect a ratio of 4 towards an ordinary floating-
point matrix multiplication without verification; in practice it is often even better.
That allows to attack problems of reasonable size.

2.5. Interval standard functions. In order to solve nonlinear problems, inter-
val standard functions are mandatory. For a given function f : R→ R or f : C→ C
and given interval X ∈ IR or X ∈ IC, respectively, an interval Y is to be computed
such that

∀x ∈ X : f(x) ∈ Y.

Of course, the interval Y should be as narrow as possible. Let’s consider the real case.
For monotone functions such as the exponential or error function, obviously the

implementation of functions fi : F→ F such that

∀x ∈ F : f1(x) ≤ f(x) ≤ f2(x)

suffice. There are several possibilities of that purpose such as Taylor series, Cheby-
shev approximations, rational approximations, and more. In INTLAB I use another
method to fight the interpretation overhead. When installing INTLAB for the very
first time, the accuracy of several built-in standard functions is tested against some
interval multiple precision implementation. To each individual function f , some spe-
cific set of floating-point numbers Sf is assigned, and the maximum relative error ef
of the built-in standard function for all floating-point numbers x ∈ Sf is stored.

When computing an inclusion of f(x) for a given floating-point number x, the
argument x is expressed by x = x̃+ h. The set Sf is chosen such that h is small, and
few terms of a Taylor expansion and/or addition theorems suffice to achieve accurate
bounds. For details, see [45].

For non-monotonic functions things are more involved, in particular for the pe-
riodic elementary standard functions and an argument large in absolute value. The
necessary argument reduction uses a method by Payne and Hanek [39] which may
reduce arbitrarily large arguments in constant time. The clue is to store the bit rep-
resentation of some constant such as 2/π to high accuracy, in some way covering the
floating-point exponent range. For verified bounds that method has been written with
directed rounding [45].

Complex interval standard functions are implemented based on the real ones with
proper estimation of the radius of the result and with special care about branches.

Summarizing, all elementary standard functions are available with high accuracy
[45]. That means, the computed result differs only few bits from the best possible
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result. A couple of higher transcendental functions such as the gamma, psi, error and
other functions have been implemented in INTLAB as well.

Of course, there is a large test library for INTLAB. Sometimes, however, it dis-
covers flaws in Matlab. Consider x = -0.9999999999999999. That number is the
next larger floating-point number than −1 in IEEE 754 binary64. Then Matlab2017a
produces

>> x=-0.9999999999999999; y = gamma(x), Y = gamma(intval(x))

y =

-5.545090608933970e+15

intval Y =

1.0e+015 *

[ -9.00719925474100, -9.00719925474098]

So the Matlab approximation is off by almost a factor 2.

3. Algorithmic differentiation. The operator concept makes implementation
of the forward mode of algorithmic differentiation quite straightforward. However, a
number of details for gradients, Hessians and Taylor expansions improve the compu-
tational performance significantly.

First of all, a sparse management is mandatory. Consider approximating a sta-
tionary point of some f : Rn → R by Newton’s scheme. It requires the Hessian of f
at some point x̃ ∈ Rn. Then the gradient of each fi(x̃) comprises of n, the Hessian of
n2 real numbers. Hence, storing y = f(x̃) means potentially storing n3 real numbers.
For a moderate dimension n = 1000 that would mean already 8 GB of memory in full
storage.

Hessians are often sparse. However, sparse storage causes additional problems.
For example, the Matlab storage management implies that accessing a row may be
two times as slow as accessing a column of a sparse matrix. Moreover, computing
an outer product of two sparse vectors producing a sparse matrix may be faster than
transposing the result matrix.

For those reasons, Hessians are stored in INTLAB in a special way. Consider two
functions u, v : Rn → R, x̃ ∈ Rn, and denote the gradient (as a column vector) of
u by gu = (∇u(x̃))T and the Hessian by Hu = ∇2u(x̃), similarly for v. Then the
Hessian of uv is

(uv)′′ = Hu · v(x̃) + gu · gTv + gv · gTu +Hv · u(x̃). (3.1)

In INTLAB, rather than the Hessian itself we compute a matrix M such that MT +M
is the true Hessian. Note that M is no longer symmetric. Denoting those matrices
by Mu and Mv for the functions u and v, respectively, and taking into account that
u(x̃) and v(x̃) are scalars, it follows

Muv = Mu · v(x̃) + gu · gTv +Mv · u(x̃). (3.2)

Compared to (3.1), one outer product and/or transpose is saved. Moreover, for faster
access, the matrices M are stored as a column vector by stacking all columns below
each other. That means (3.2) comprises of an outer product and two multiplications
of a vector by a scalar.

As has been mentioned, a Hessian evaluation of f : Rn → Rn consists of n
individual Hessians of each fi(x̃). In that case the Hessian information is stored as an
n2 × n matrix, each column representing the vectorized matrix M described above.
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As an example consider problem 61 in [2], that is to minimize h : Rn → R with

h(x) :=

n−4∑
i=1

(
(3− 4xi)

2 +

(
n−4∑
i=1

x2
i + 2x2

i+1 + 3x2
i+2 + 4x2

i+3

)
+ 5x2

n

)2

(3.3)

with initial approximation x := (1, . . . , 1) ∈ Rn. The dimension n can be freely
chosen. The following is executable code for that function:

function y = h(x)

N = size(x,1);

I = 1:N-4;

y = sum( (-4*x(I)+3.0).^2 ) + sum( ( x(I).^2 + 2*x(I+1).^2 + ...

3*x(I+2).^2 + 4*x(I+3).^2 + 5*x(N).^2 ).^2 );

Then the gradient and Hessian at x̃ = (1, . . . , 1)T for n = 10, 000 is computed by
n = 10000;

x = ones(n,1);

y = h(hessianinit(ones(n,1)));

The function value, the gradient and the Hessian are accessed by y.x, y.dx and y.hx.
One such computation for dimension n = 10, 000 takes about 0.24 seconds. One
Newton iteration in INTLAB for given x ∈ Rn would be

y = h(hessianinit(x)); x = x - y.hx\y.dx’;

taking about 0.25 seconds. After convergence, computing a Cholesky decomposition
of the Hessian may confirm that the iteration arrived at a local minimum. However,
that is by no means mathematically verified.

Before presenting verification methods in the next section, we need to discuss
the computation of rigorous bounds on the range of a function value, gradient and
Hessian over some interval vector. That is in fact easily performed by replacing the
input argument by an interval quantity. For example, consider

X = midrad(x,1e-3); y = h(hessianinit(X));

First, X represents 〈x, 10−3〉, i.e. the set of all vectors x̃ ∈ Rn with |x̃i− 1| ≤ 10−3. In
the algorithmic differentiation process all operations are replaced by their correspond-
ing interval operations. That includes vector and matrix operations, real or complex.
Thus, the inclusion monotonicity (2.1) implies that for all x̃ ∈ 〈x, 10−3〉 the function
value h(x̃), the gradient ∇h(x̃) and the Hessian ∇2h(x̃) is included in y.x, y.dx and
y.hx, respectively.

Strictly speaking, that is not entirely correct. The reason is that 1e-3 is not
a floating-point number. Thus, in the command X=midrad(x,1e-3) the argument
1e-3 is first converted into a floating-point number, say r, and based on r the interval
vector is constructed. However, due to conversion errors and because 10−3 /∈ F, r
is less than or greater than 10−3. In other words, the interval vector X may be too
narrow.

In that particular case r is greater than 10−3, which can, for example, be checked
by r=1e-3; setround(1), 1000*x-1. The result is positive, proving r > 10−3. To
be in any case on the safe side, one may use

X = repmat(intval(′< 1, 1e− 3 >′), 10000, 1);

In that case the input to the INTLAB function intval is a string and the conversion
is performed in the correct way (rounding upwards) by INTLAB.

A timing comparison to ADmat 2.0 [1], which is also written in Matlab, is as
follows. We took the two sample functions suggested by ADmat. The first one is
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to calculate the Jacobian of Broyden’s function. The timing in seconds for different
dimensions is as follows.

n ADmat INTLAB ratio

10 0.005 0.003 1.5
30 0.004 0.003 1.2

100 0.005 0.004 1.4
300 0.008 0.004 2.1

1,000 0.055 0.004 14.3
3,000 0.43 0.006 73

10,000 4.8 0.013 372

The second example is the computation of the gradient of the arrow function. It is
advocated by ADmat to show the effect of sparse storage management. The following
table shows two timings for ADmat, the first column for computing the gradient. For
the second column ADmat prepared for the sparsity pattern beforehand, and then
the timing for computing the gradient excluding that preparation is shown.

n ADmat ADmat* INTLAB

300 0.011 0.004 0.001
1,000 0.024 0.004 0.001
3,000 0.12 0.006 0.002

10,000 0.83 0.008 0.005
30,000 6.2 0.015 0.014

100,000 62.6 0.047 0.044

As can be seen, the preparation for the sparsity pattern takes a signifikant amount
of computing time for larger dimensions. In INTLAB, no such preparation is neces-
sary. A call like f(gradientinit(x)) is all.

4. Verification methods. Verification methods are mathematical theorems for-
mulated in such a way that the assumptions can be verified on the computer. Then
the assertions are true, for example, the computation of a set containing a root of a
system of nonlinear equations.

One way to verify the assumptions is the use of interval arithmetic. Then the
theorems are to be formulated in such a way that possible overestimation by interval
methods is diminished. The following dichotomy holds true: Either, a mathematically
rigorous inclusion is computed or, a corresponding message is given. No wrong result
is possible.

As an example consider the mathematically rigorous inclusion of a (local) mini-
mum of (3.3). The verification consists of two steps, first the computation of some
X ⊂ Rn such that there exists x̂ ∈ X with ∇h(x̂) = 0, and second to verify that the
Hessian ∇2h(x̂) is positive definite.

The first problem means to compute an inclusion of a root of a suitably smooth
function f : Rn → Rn. Let an approximation x̃ of a root of f be given. Note that,
mathematically, x̃ is arbitrary, there are no further assumptions on x̃. Of course,
success becomes the more likely the better the quality of the approximation.

For a matrix R ∈ Rn×n define

g(x) := x−Rf(x).

Again, there are no assumptions on R, a good practical choice is an approximate
inverse of the Jacobian of f at x̃. If, for a non-empty, convex and compact set
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X ⊆ Rn, we can prove g(X) = {g(x) : x ∈ X} ⊆ X, then there exists a fixed point x̂
of g in X. If, moreover, R is nonsingular, then x̂ is a root of f .

Let an interval vector X ∈ Rn be given. Of course, g(X) ⊆ X −R ∗ f(X) is true
using interval operations. However, that way, due to interval dependencies, we can
never verify g(X) ⊆ X.

In contrast, we use a one-term Taylor expansion of f . For all x ∈ X there exists
Mx ∈ Rn×n with f(x) = f(x̃) + Mx(x − x̃), where Mx can be chosen such that the
i-th row Mi satisfies Mi = ∇fi(ξi) for some ξi ∈ X. For JX being the gradient of
f for the argument X computed with algorithmic differentiation, we have Mx ∈ JX
because each row of JX is computed independently. Now suppose

K(X) := x̃−Rf(x̃) + (I −RJX)(X − x̃) ⊆ X, (4.1)

where I denotes the identity matrix and all operations are interval operations. Then,
for all x ∈ X,

g(x) = x−R(f(x̃) +Mx(x− x̃))

= x̃−Rf(x̃) + (I −RMx)(x− x̃)

∈ x̃−Rf(x̃) + (I −RJX)(X − x̃)

⊆ X.

Thus, (4.1) proves indeed g(X) ⊆ X. Today, the operator in (4.1) is called the
Krawczyk-operator [30]. However, Krawczyk supposed that already some X ⊆ Rn is
known containing a root of f . He then showed that X ∩K(X) contains that root as
well. Moore [32] used a fixed-point argument as above. Historically, both results can
already be found in [24].

Note that overestimation due to interval dependencies are small in (4.1) because
they only occur in the product (I−RJX)(X−x̃). However, if X is of suitably small di-
ameter and R of suitable quality, then both factors are small in magnitude. Therefore,
the product and thus possible overestimation becomes very small in diameter.

The final problem is to prove the non-singularity of R. One way is verify that all
matrices in I − RJX are convergent as proposed in [24, 32]. As a more subtle and
better possibility it can be shown [42] that K(X) being contained in the interior of
X proves det(R) 6= 0. Furthermore, all matrices in JX are then non-singular, so that
the root x̂ of f in X is unique.

The final problem, to prove that x̂ is a minimizer, means to verify that the
Jacobian ∇f(x̂) is positive definite. However, the only information about x̂ available
is x̂ ∈ X. Again, interval computations may help out by proving that all matrices in
JX are positive definite.

A simple sufficient criterion for that would using Gershgorin’s circles. However,
much better methods are available, see [46, Section 10.8] or [47, Section 17]. Interest-
ingly enough that verification is performed solely using floating-point arithmetic in
rounding to nearest.

4.1. Verification in pure floating-point. There are cases where verified error
bounds can be computed using solely floating-point arithmetic in rounding to nearest.
That is particularly true when the condition number of the problem is known a priori.

For example, given a symmetric matrix A ∈ Rn×n, x̃ ∈ Rn and λ̃ ∈ R, the interval
λ̃±‖Ax̃− λ̃x̃‖2/‖x̃‖2 contains an eigenvalue of A. Error bounds for the quantities can
be computed in rounding to nearest using standard techniques involving γk := ku

1−ku ,
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where u denotes the relative rounding error unit and it is assumed that ku < 1. In
IEEE binary64 (double precision), u = 2−53 ≈ 10−16.

Surprisingly, it can be decided also solely in floating-point arithmetic with round-
ing to nearest that a symmetric matrix with floating-point entries is positive definite.
The following theorem [47] is based on a result by Demmel [8].

Theorem 4.1. Let symmetric A ∈ Fn×n be given, and let B = A − D ∈ Fn×n
for diagonal D ∈ Rn×n with D ≥ αI and α ≥ γn+1trace(A) > 0. If the floating-
point Cholesky-decomposition of B runs to completion, then, barring overflow and
underflow, A is symmetric positive definite.

A proper choice of α is some real number being a little smaller than some floating-
point approximation of the smallest eigenvalue of A. The advantage of D being a real
matrix is that B can be chosen somehow with diagonal elements suitably smaller
than those of A, it does not need to be an exact shift of A. Note that this is a
sufficient criterion: If the Cholesky-decomposition ends prematurely with negative
diagonal element, nothing can be said. However, that happens only if the matrix is
very ill-conditioned.

Based on the theorem it is not difficult to derive a verification method for sparse
linear systems, cf. [47].

For our purposes, in order to verify a strict (local) minimum, we have to verify
that all symmetric matrices within an interval matrix are positive definite. For that
we may use [46, Lemma 10.14]: If, for given A = 〈M,R〉, the matrix M − cI is
symmetric positive definite for ‖R‖2 ≤ c, then all A ∈ A are positive definite. The 2-
norm, however, is expensive to compute. But we may apply a few power set operations
on R to compute an approximate eigenvector to the largest eigenvalue or R. Then,
for an arbitrary positive vector x̃ ∈ Rn, we use Perron-Frobenius Theory and

‖R‖2 = max{|λ| : λ eigenvalue of R} ≤ max
i

(Rx̃)i
x̃i

.

4.2. Scope of applicability of verification methods. As has been mentioned
before, there is a dichotomy: Either, a verification method computes a mathematically
rigorous inclusion of the solution or, a corresponding error message is given. No false
result is possible.

Ordinary floating-point algorithms may compute erroneous approximations, some-
times without warning. We consider the latter as a worst case scenario. The following
example is taken from [47]: What are the eigenvalues of the following matrix:

A =


275 −451 708 −1880 −287
137 −218 334 −924 −180
0 −2 6 −4 11
2 −6 13 −19 13
29 −46 70 −195 −39

 Eigenwerte.jpg
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In the figure on the right, the blue circles are the eigenvalue approximations of
A computed by Matlab. However, the red crosses are the computed eigenvalues of
AT . Both results come without warning. Obviously something is wrong. In fact, the
matrix has a 5-fold eigenvalue 1.

Another example is as follows. The inverse Hilbert matrix has integer entries and
can be produced in Matlab by A=invhilb(n). Calling A\ones(n,1) for n = 13, the
latest Matlab release 2016b produces the left column of the following numbers: No

Table 4.1
Computational results by Matlab 2016b, 2017a and true result.

2.1727 −2.7138 −0.9712
1.3577 −3.1317 −1.5281
1.0151 −3.1350 −1.6508
0.8183 −3.0389 −1.6581
0.6887 −2.9134 −1.6230
0.5962 −2.7819 −1.5711
0.5267 −2.6533 −1.5130
0.4723 −2.5313 −1.4538
0.4286 −2.4170 −1.3959
0.3926 −2.3106 −1.3403
0.3624 −2.2119 −1.2877
0.3366 −2.1204 −1.2381
0.3145 −2.0355 −1.1915

warning is given. The right-most column is the true solution, i.e. not a single sign of
the approximation is correct. The numbers in the middle are the result produces by
the forthcoming release 2017a of Matlab. They are still incorrect, however, in contrast
to 2016b, a warning is given.

Such wrong results cannot happen with verification methods. If the condition of
the problem is too large in relation to the working precision, then no inclusion can be
computed. For IEEE 754 double precision, corresponding to about 16 decimal digits,
the limit for the condition number of a linear system is about 1015.

There is another, principle limitation. One target of verification methods is to
produce mathematically rigorous results in a computing time not too far from a
classical numerical algorithm. Purposely, verification methods are based on floating-
point arithmetic because of the vast speed on today’s computers. However, that
implies that the problem must be well-posed.

A typical ill-posed problem would be: ”Verify that a certain function has a double
root” or ”Verify that a matrix is singular”. Since in every neighborhood of a singular
matrix there is a regular one, a single rounding error may spoil the rigor of the result.
However, it is possible to verify that a complex disc contains exactly two roots of a
function, may it be one double root or two single ones.

Similarly, it is possible to compute X ∈ IRn such that, with mathematical cer-
tainty, a function f : Rn → R has a strict local minimum in X with positive definite
Hessian; however, such a verification is not possible if the Hessian is singular.

5. Global optimization. With the methods described in the previous section it
is possible to rigorously verify that a function has a stationary point within a certain
box, or a (local) minimum.

13



The main problem of a global optimization problem is to get rid of boxes, i.e. to
verify that a certain box cannot contain a global minimum. To perform that with
rigor is basically outside the scope of ordinary floating-point algorithms.

Using interval arithmetic to bound the range of a function, that can be done
with rigor. Knowing f(0) = 0, we already saw for the function in (2.4) that the

box
(

[0.875,1.25]
[0,0.75]

)
cannot contain a global minimum because all function values are

positive.

There are several verification methods for global optimization problems, see [14,
3, 4, 17, 26, 41, 33, 13, 23, 28, 34, 27, 7, 25, 40, 19, 20, 36, 21]. In particular we
want to mention [12, 35]. The methods are mainly based on bisection techniques and
various tests to safely discard boxes.

The simplest test to safely discard a box is the mentioned range computation: For
boxes X,Y, let fX=f(X) and fY=f(Y). If fY.inf>fX.sup, the box Y can be discarded.
Sometimes the range computation can be improved by a midpoint expansion:

xs = mid(X); y = f(gradientinit(X));

fX = intersect( fX , f(intval(xs)) + y.dx*(X-xs) );

Obviously, the new fX is also an inclusion of the range f(X) = {f(x) : x ∈ X}.
If X is in the interior of the search domain, the derivative test discards X if one

component of f ′(X) does not contain zero. If X has non-empty intersection with the
boundary of the search domain, it can be reduced to the intersection of X with the
boundary.

A strategic measure is to perform a local search after some bisections. The local
search may produce some approximation x̃ to a local minimum. Regardless of the
quality, the upper bound of y = f(intval(xs)) can be used to further discard boxes.
Note that x̃ is a point, so there is usually almost no overestimation in the computation
of y.

5.1. Another exclusion method. As has been mentioned, the main problem
is to exclude boxes by showing that they cannot contain a global minimum.
The expansion method introduced by Jansson [18] serves that pur-
pose. In Section 4, verification methods have been discussed show-
ing that a nonlinear function g : Rn → Rn has exactly one root
in a certain box X ∈ IRn. Applying that to the Jacobian of
f : Rn → R shows that there is exactly one stationary point of f
in some X.

Having computed such an X, we intentionally widen it into
some Y . If the test for verifying existence of a unique stationary
point is satisfied for Y as well, then the set difference Y \X can
safely be discarded.

expansion.pdf

This is applied as follows. Suppose some local minimization method was executed
and computed an approximate (local) minimizer x̃. Based on that it is tried to
compute a box X containing exactly one local minimizer of f . If successful, the
expansion method is applied. As a result, many tiny bisections around x̃ may be
unnecessary.

5.2. The bisection ’midpoint’. One problem of bisection is to determine a
proper coordinate, and there are several strategies for that [13, 6, 48]. The effect
depends largely on the problem, and it seems that to choose the coordinate with largest
diameter or alike is a good choice. In any case, it is bisected along the corresponding
midpoint.
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However, test problems for global minimization methods are often constructed in
such a way that the global minimum is unique and known. Often that minimum is
the origin or some point in Rn with “nice” coordinates. Moreover, the search box is
often composed of simple integer coordinates.

As a consequence, it is not unlikely that the global minimum is on the boundary
of bisected sub-boxes. A typical example is Griewank’s function [11] with initial box
[−600, 600]n and global minimum at the origin.

However, those are specifically constructed examples, no real life applications.
From a mathematical point of view, chances are of measure zero that the global
minumum is on some boundary. Thus we artificially “bisect” slightly off the midpoint
by a small amount. The exact amount is not important, it should just be some
“odd” offset. In a way that realizes the usual case, namely, that midpoints are not on
boundaries. The offset could be small and randomly chosen, however, to ease testing
the offset is always fixed in INTLAB.

This method has quite some effect. Consider, for example, the Griewank func-
tion. The following table shows the timing in seconds for dimensions 5 to 10 using a
small besection offset versus the exact midpoint. The last column shows the ratio in
computing time.

n off midpoint midpoint ratio

5 2.4 3.3 1.4
6 2.3 3.4 1.5
7 2.6 7.3 2.8
8 2.9 28 9.8
9 4.3 101 24

10 4.1 271 66

For a little larger dimensions the effect becomes more and more important. In the
next subsection we will show computational results for the Griewank function solving
the problem for dimension n = 50 in about two minutes. Obviously that would not
be possible without the mentioned offset in bisection.

5.3. Computational results. There are two other Matlab programs for global
minimization by Montanher [31] and Csendes [38, 5]. Both accept unconstrained and
the former also equality constrained global optimization problems. The former allows
for inequality constraints as well which is not implemented in INTLAB.

First, we display some results on the accuracy of the global minimizer. The
following table gives the results for the Shekel 5 and for Trefethen’s function taken
from his famous SIAM 10× 10 digit challenge [49].

Shekel 5 Trefethen

time [sec] max. rel. error time [sec] max. rel. error

Montanher 24.6 1.2 · 10−11 54 9.3 · 10−12

Pál/Csendes 6.7 6.9 · 10−9 76 5.9 · 10−8

INTLAB 1.6 7.0 · 10−16 1.5 2.1 · 10−14

As can be seen, INTLAB is faster and more accurate. Next we show the results
of other test functions in comparison to the programs by Montanher and Csendes.
The first column gives the name of the test function which we took from Csendes’
publication [5, 38]. Columns 2 to 4 show the computing time in seconds, and the
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last column gives the ratio of the computing time for INTLAB compared to the best
of Montanher’s and Csendes’. In two cases, the Schwefel 2.18 and the Schwefel 2.5
function, INTLAB is slower than the fastest of Montanher’s and Csendes’ method.

Function Montanher Csendes INTLAB best ratio

EX2 10250† 3995 1301 3.1
Griewank 5 330 191 12.5 15
Griewank 7 2618 1981∗ 12.0 165
Levy 3 127 42.3 0.95 45
Levy 5 41.0 14.7 0.79 19
Levy 8 10.4 1.34 0.43 3.1
Levy 9 7.7 2.46 0.55 4.5
Levy 10 12.5 3.8 0.69 5.5
Levy 11 34.2 9.3 2.23 4.2
Levy 12 54.7 16.3 4.9 3.3
Levy 13 2.25 0.78 0.39 2.0
Levy 14 5.1 1.51 0.74 2.0
Levy 15 8.8 2.5 0.60 4.2
Levy 16 12.2 3.1 0.66 4.7
Levy 18 25.7 6.1 2.4 2.5
Ratz 4 21.2 5.7 0.73 7.8
Ratz 5 7657† 24.4 0.75 33
Ratz 6 7497† 61 3.4 18
Ratz 7 8275† 172 5.9 29
Ratz 8 8663† 311 11.8 26
RatzNew 8598† 1.9d† 225 ∞
Schwefel 2.1 26.1 11.5 0.33 35
Schwefel 2.14 1283 34 1.5 23
Schwefel 2.18 0.073 1.2 0.45 0.16
Schwefel 2.5 0.068 1.2 0.14 0.49
Schwefel 2.7 11160† 2.5d† 15.3 ∞
Schwefel 3.1 3.8 0.81 0.16 5.1
Schwefel 3.2 4.7 0.98 0.25 3.9
Schwefel 3.7.10 5485† 885 0.39 2269
Schwefel 3.7.5 270 8.6 0.022 391
Branin 2.63 2.17 0.25 8.7
Goldstein/Pryce 4231† 207 12.8 16
Hartmann 3 16.1 3.5 0.50 7.0
Hartmann 6 216 35.4 0.71 50
Rosenbrock 2 2.77 0.95∗ 0.19 5.0
Rosenbrock 5 26.4 4.9∗ 0.35 14
Schwefel 5 26.2 3.1 0.58 5.3
Schwefel 7 11.0 3.9 0.73 5.3
Schwefel 10 15.8 5.6 1.02 5.5
shcb 11.1 6.5 0.90 7.2
Trefethen 58.4 24.1 1.7 14
thcb 3.3 2.6 0.54 4.8

The asterisks for the Griewank 7 and the Rosenbrock 2 and 5 function indicate
that the search boxes given by Csendes were too small in the published function. For
a fair comparison, we used for all functions and all methods the same standard values
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as published in the literature.
INTLAB succeeded for all test functions to compute a verified inclusion of the

global minimum. The daggers for Montanher’s program indicate that the maximum
number of iterations was reached and the program stopped prematurely. Csendes’
program proceeds until the problem is solved. Therefore, the dagger for the Csendes’
results for the RatzNew and the Schwefel 2.7 function indicates that we stopped the
program after 1.9 or 2.5 days of computing time, respectively.

As can be seen, in few cases Montanher’s program is faster than INTLAB. Of
course, that is just a subset of test functions, for other ones the relation might be
completely different.

Finally, we performed some specific tests of the Griewank function G(x). For
small dimensions, the programs compare as follows.

Montanher’s Csendes’
n #∇G(x) = 0 intsolver GOP INTLAB

1 381 1.8 1.8 0.54
2 206.281 7.4 8.6 0.74
3 ∼ 107 70 20 0.90
4 ∼ 1010 161 85 1.5
5 ∼ 1013 307∗) 229 2.3

Montaher’s solver fails for n = 5; in any case INTLAB shows the better perfor-
mance. For larger dimensions, the picture looks as follows.

Montanher’s Csendes’
n #∇G(x) = 0 intsolver GOP INTLAB

5 ∼ 1013 307∗) 229 2.3
10 ∼ 1025 5.0
20 ∼ 1051 8.0
30 ∼ 1077 15
40 ∼ 10103 28
50 ∼ 10129 130

The number of stationary points is roughly estimated; the exponent may easily
be a little wrong, but not too much.

5.4. Nice and not so nice test functions. We want to stress that Griewank’s
test function is particuarly nice for interval computations because it is not too difficult
to get rid of boxes. A main reason is that in the definition

G(x) = 1 +
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
the main term causing the many extrema is the product. However, the range of the
product is by definition, whatever the input interval box may be, bounded by [−1, 1],
the range of the cosine. That means, whenever the sum of squares becomes strictly
positive, the function value will be a strictly positive interval. Hence, as soon as a local
minimizer discovers the origin, all boxes not containing the origin can be discarded.

In other words, the Griewank test function is horrible for approximate methods,
however, not too difficult to handle for interval methods. But that can be changed.
Consider the modified Griewank function

G̃(x) := G(x) + sin2 x1 + cos2 x1 − 1.
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Note the G̃(x) = G(x) for all x. For intervals X of larger diameter it follows

sin2X + cos2X − 1 = [−1, 1]2 + [−1, 1]2 − 1 = [0, 1] + [0, 1]− 1 = [−1, 1].

Thus, for boxes of not too small diameter a little away from the origin, the interval
evaluation puts a slope of range [−1, 1] around the function range. That makes it
more difficult to exclude boxes. Computational results for small dimension for the
modified Griewank function are as follows.

Montanher’s Csendes’
n #∇G(x) = 0 intsolver GOP INTLAB

1 381 23 11.3 0.87
2 206.281 318∗) 315 3.5
3 ∼ 107 347∗) 7,177 86
4 ∼ 1010 4,224

For dimensions n = 2 and n = 3, Montanher’s solver failed. The modification
slows down the global minimization significantly. Still INTLAB is faster than com-
petitors.

Needless to say that the modification would not affect an approximate solver at
all. However, that provides only an approximation with no guarantee whatsoever.

6. Constrained global optimization problems. Consider the minimization
of f(x) subject to g(x) = 0 with f : Rn → R and g : Rn → Rm for x in some search
box, which may be unbounded. Basically, the same principles as discussed before
apply, however, special techniques to exclude sub-boxes are to be derived.

For x∗ being a local minimum, the first order necessary conditions

∇f(x∗) + λT∇g(x∗) = 0

g(x∗) = 0

are to be satisfied for some λ ∈ Rm. That is the zero (x∗, λ∗) of a nonlinear system
F : Rn+m → Rn+m, so that an interval vector Y ∈ Rn+m containing exactly one root
of F can be computed. For exclusion, the expansion principle discussed in Subsection
5.1 can be applied.

Otherwise, a box X ∈ IRn can be excluded if F (x, λ) 6= 0 for all x ∈ X and for
all λ ∈ Rm. A problem here is that λ is unbounded, causing additional problems for
a potential bisection. A remedy is as follows.

For simplicity, suppose m = 1, that is there is only one equality constraint. Define
F1 : Rn+m → Rn+m by

λT∇f(x∗) +∇g(x∗) = 0

g(x∗) = 0.

If F (x, λ) 6= 0 and F1(x, λ) 6= 0 for all x ∈ X and for all λ ∈ [−1, 1], then X cannot
contain a local minimum of f subject to g(x) = 0, provided X is in the interior of the
search box. Now the search box for λ is finite and the usual bisection process can be
applied.

Form > 1, that approach amounts to 2m nonlinear functions Fν : Rn+m → Rn+m.
If all of them are nonzero for all x ∈ X and for all λ ∈ [−1, 1], then X can be discarded.
The number of 2m nonlinear functions may sound large, however, bisection of some
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box into boxes of half width in each dimension amounts to 2n sub-boxes. This is the
intrinsic exponential complexity of verified global optimization.

Next we have to verify that a root (x∗, λ∗) of some Fν corresponds indeed to
a local minimum of f . As has been discussed in Subsection 4.2, only a strict local
minimum with positive definite Hessian can be verified. Thus, we may use the second
order sufficient condition for a strict local minimum, that is to verify that the matrix

L(x∗) := ∇2f(x∗) +

m∑
i=1

λ∗i∇2gi(x
∗)

is symmetric positive definite on the tangent space T := {y ∈ Rn : ∇g(x∗)y = 0}. A
verification is only possible if the Jacobian of g has full rank. Thus we may suppose
a partitioning ∇g(x∗)P = [B C] with some permutation matrix P ∈ Rn×n such that
B ∈ Rm×m is regular. We will comment later on how to find P .

A vector v = P
(
y
z

)
with y ∈ Rm, z ∈ Rn−m is in the tangent space T if and only

if y = −B−1Cz. Therefore

T = {Qz : z ∈ Rn−m} for Q := P

(
−B−1C

In−m

)
∈ R(n−m)×(n−m).

That means, we have prove that M(x∗) := QTL(x∗)Q is symmetric positive definite.
Note, however, that x∗ is only known to be contained in some box X ∈ IRn. Using
algorithmic differentiation, we compute inclusions of B and C, using a verification
method for linear interval systems we compute an inclusion of Q and finally an inclu-
sion M of M(x∗). Using, for example, the method discussed in Subsection 4.1 it can
be verified the all matrices within M are symmetric positive definite, in particular
M(x∗). That verifies existence of a strict local minimum x∗ of f within a box X
subject to g(x∗) = 0.

A permutation matrix P such that the left m ×m block of ∇g(x∗)P = [B C] is
regular is found by the pivoting of an LU-decomposition of the transpose of ∇g(x̃),
where x̃ is, for example, the midpoint of the search box X. Of course, such a method
is only a guess of a proper blocking. If it fails, i.e. if B is singular, the verification
method must fail as well because the linear system to compute an inclusion of B−1C
cannot be solved with verification.

For some computational tests we add the constraint xn −
∑n−1
i=1 x

2
i = 0 to the

Griewank function of dimension n. In Montanher’s package there is also a constraint
optimization program, so we can compare against INTLAB. The results with timing
in seconds are as follows.

n Montanher INTLAB

2 7.1 1.3
3 131∗) 4.1
4 113
5 226
6 1113

For n ≥ 3 Montanher’s algorithm fails to compute the global minimum. As can be
seen, the computing time increases significantly with the dimension.

As a final, constructed example [22] consider to minimize f(x, y) := x+ y subject
to

g(x, y) := x2 + 2y2 − 2xy − 2y log x+ log2 x+ 2y − 2x+ 1 = 0
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in the search box
(

[0.5,1.5]
[−0.5,1.5]

)
. We enter the function as is to camouflage its structure:

A computation yields

g(x, y) = (x− y − 1)2 + (y − log x)2,

so that (x, y) = (1, 0) is the only feasible point of the problem. INTLAB calculates

after 6.1 seconds a list of 2451 candidate boxes
(see the figure to the right). It means that,
if the problem is feasible, then the minimum
must be in one of those boxes. The inclusion
of the minimum value is M := [0.0362,∞].
Again, the interpretation is that, if the prob-
lem is feasible, then the minimum is in M .
The upper bound of M is necessarily ∞ be-
cause the feasible set contains only one point.
Thus, by the principle of the method (see Sub-
section 4.2), non-emptyness cannot be veri-
fied.

constrainedOpt.jpg

The result of Montanher’s algorithm is, without error flag, that the feasible set is
empty.

7. All roots of a nonlinear system. To find all roots of a nonlinear sys-
tem within a box follows the same principles as global optimization, see for example
[14, 28]. However, there are less possibilities to get rid of boxes. Basically, if one
component of f(X) does not contain zero, it can be discarded.

For example, we may find all roots of the gradient of Griewank’s function. By con-
struction, there are many in the default interval [−600, 600]n. Following are timings
in seconds for Montanher’s algorithm and INTLAB.

n Montanher #roots INTLAB #roots

1 69.7 375 3.2 381
2 - - 4127 206281

We did not execute Montanher’s algorithm for n = 2. However, for n = 1
Montanher’s algorithm finds only 375 roots in the interval [−600, 600], and one of
them is given twice. Thus, seven roots are missing.
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