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Abstract: Standard error estimates in numerical linear algebra are often of the form γk|R||S|
where R, S are known matrices and γk := ku/(1−u) with u denoting the relative rounding error
unit. Recently we showed that for a number of standard problems γk can be replaced by ku for
any order of computation and without restriction on the dimension. Such problems include LU-
and Cholesky decomposition, triangular system solving by substitution, matrix multiplication
and more. The theoretical bound implies a practically computable bound by estimating the
error in the floating-point computation of ku|R||S|. Standard techniques, however, imply again
a restriction on the dimension. In this note we derive simple computable bounds being valid
without restriction on the dimension. As the bounds are mathematically rigorous, they may
serve in computer assisted proofs.
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1. Introduction and main result
Denote by F a set of floating-point numbers with relative rounding error unit u and with operations
according to IEEE 754 [1]. Throughout the paper we assume that no overflow nor underflow occurs.
Then for an operation ◦ ∈ {+,−, ·, /} and a, b ∈ F the floating-point result fl(a ◦ b) satisfies [2]

|fl(a ◦ b) − a ◦ b| � u|a ◦ b|. (1)

For matrices A ∈ F
m×k and B ∈ F

k×n denote by P̂ the floating-point result of the true product
P := AB. Then [3]

|P̂ − P | � ku|A||B| (2)

is true for any dimension k ∈ N and no matter what the order of evaluation. Thus the bound is valid
for library routines including blocked code [4]; it does not apply to Strassen-like methods [5]. The
bound improves the well-known factor γk := ku/(1 − ku) (cf. for example [2]) into ku and removes
the implicit restriction on k. Similarly [6]
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|A − L̂Û | � nu|L̂||Û | and |A − ĜĜT | � (n + 1)u|Ĝ||ĜT |

are valid for computed LU-factors L̂, Û or Cholesky factor Ĝ of an n × n matrix A, respectively.
Denoting the floating-point product of |A||B| by Q̂, (2) can be used to estimate the error in the
computation of |A||B|. The standard approach is

|A||B| =: Q � Q̂ + |Q̂ − Q| � Q̂ + kuQ

and, provided ku < 1,

|fl(AB) − AB| � ku
1 − ku

fl(|A||B|). (3)

The same applies to the other mentioned estimates. Moreover, it is not difficult to take care of
underflow.

In the following, we remove the restriction on k, and we improve (3) by using the unit in the first
place (ufp): a real number t being given, we have ufp(0) = 0 and, if t �= 0, ufp(t) := 2�log2 |t|�. Thus
ufp(t) can be thought of as the weight of its first nonzero bit in its binary representation. Then (1)
can be replaced by

|fl(a ◦ b) − a ◦ b| � uufp(a ◦ b) � uufp(fl(a ◦ b)). (4)

Note that this improves on (1) by up to a factor of 2 depending on how close |a ◦ b| is to ufp(a ◦ b).
The following result was proved in [7] for recursive summation. We now extend it to summation in

any order.

Lemma 1 Let x ∈ F
k be given, define s :=

∑k
i=1 xi, denote by ŝ the floating-point sum of the xi in

any order, and denote by Ŝ the floating-point sum of the absolute values |xi| computed in the same
order as ŝ. Then

|ŝ − s| � (k − 1)u · ufp(Ŝ) (5)

is true without restriction on k. If 48u < 1, then the estimate may be false if the ordering in the
computation of ŝ and Ŝ is not the same.

Proof. For the proof we proceed by induction. For k = 1 there is nothing to prove. Assume (5)
is true for floating-point summation of up to k − 1 summands in any order. Then ŝ = fl(ŝ1 + ŝ2)
for some disjoint splitting I1, I2 of the index set {1, . . . , k} with kν := |Iν |, where ŝν is the floating-
point sum of the xi with i ∈ Iν in some order for ν ∈ {1, 2}. Define sν :=

∑
i∈Iν si, so that

s = s1 + s2. By assumption, the floating-point summation of xi and |xi| is performed in the same
order, implying |ŝ| � Ŝ and therefore ufp(ŝ) � ufp(Ŝ). Thus (4), the induction hypothesis, k1+k2 = k

and 0 � Ŝ1, Ŝ2 � Ŝ yield

|ŝ − s| = |ŝ − (ŝ1 + ŝ2) + ŝ1 − s1 + ŝ2 − s2|
� uufp(ŝ) + (k1 − 1)uufp(Ŝ1) + (k2 − 1)uufp(Ŝ2)

� uufp(Ŝ) + (k − 2)uufp(Ŝ),

and thus (5). It is mandatory that ŝ and Ŝ are computed in the same order as by the following
example:

x1 = 1 − 4u, x2...5 = u/2(1 + 8u), x6 = u(1 + 8u).

Note that all xi are in F. Denoting by ŝν the partial sums of recursive summation we have ŝ2 =
1 − 3u, ŝ3 = 1 − 2u, ŝ4 = 1 − u, ŝ5 = 1 and ŝ = ŝ6 = 1 + 2u, so that

|ŝ − s| = 1 + 2u − [1 − 4u + 4u/2(1 + 8u) + u(1 + 8u)] = 3u − 24u2.

But summing x6...2 for the error estimate yields t̂ := 3u + 24u2 without rounding error and Ŝ =
fl(x1 + t̂) = 1 − u with ufp(Ŝ) = 0.5. Thus, using 48u < 1,

|ŝ − s| = 3u − 24u2 > 5uufp(Ŝ)
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contradicting (5). �
Note that (5) is a computable bound because ufp(Ŝ) can be computed with Algorithm 3.6 in [7]

with four floating-point operations in rounding to nearest.
However, an obstacle is that the original sum and the sum of absolute values for the error bound

have to be computed in the same order. We remove that assumption by the following simple and
computable estimate for summation and dot products.

Lemma 2 Let non-negative real 0 � x ∈ R
k be given with x̂i := fl(xi) denoting the rounding of xi

into F. Denote by S :=
∑k

i=1 xi the true sum of the real xi, and by Ŝ the floating-point sum of the
x̂i in any order. Then, without restriction on k ∈ N,

S � (1 + u)(Ŝ + (k − 1)uufp(Ŝ)). (6)

At least for recursive summation and any vector length k equality may be attained. If x ∈ F
k, then

S � Ŝ + (k − 1)uufp(Ŝ). (7)

is true without restriction on k, and equality can be attained for any vector length k.

Remark. We note that for special summation schemes, in particular binary summation, sharper
estimates can be derived.

Proof. Assertion (7) follows by Lemma 1. Equality is attained for x1 := 1 and x2...k := u for
k � 1, for which Ŝ = 1 for every k � 1.

If 0 � xi ∈ R, then Lemma 1, (4) and (7) yield

S = Ŝ +
∑k

i=1 x̂i − Ŝ +
∑k

i=1 (xi − x̂i)

� Ŝ + (k − 1)uufp(Ŝ) + u
∑k

i=1 x̂i

� Ŝ + (k − 1)uufp(Ŝ) + u
(
Ŝ + (k − 1)uufp(Ŝ)

)

and prove (6). Equality is attained for x1 := 1 + u and x2...k := u(1 + u) for k � 1. Then x̂1 = 1 and
x̂i = u for all 2 � i � k, so that again Ŝ = 1 for every k � 1. �

Corollary 1 Let A ∈ F
m×k and B ∈ F

k×n be given, denote the floating-point computation of AB

by P̂ , and denote the floating-point computation of |A||B| by Q̂. Both P̂ and Q̂ may be computed in
any, not necessarily the same order. Then, without restriction on k ∈ N,

|P̂ − AB| � ku(1 + u)(Q̂ + (k − 1)uufp(Q̂)). (8)

Proof. Combining (2) and Lemma 2 proves the result. �
Recall that ufp(Q̂) is computed by Algorithm 3.6 in [7] solely in floating-point arithmetic, and that

it is straightforward to include possible underflow in the estimate. Moreover, inevitable rounding
errors in the floating-point computation of an upper bound of the right hand side in (6) or (7) are
easily estimated using (1) or (4).

We finally mention a computable lower bound on s depending only on ŝ and k. It might be less
useful in practice, however, it shows the quality of the bound in (7).

Lemma 3 Let 0 � x ∈ F
k be given. Denote by S :=

∑k
i=1 xi the true sum, and by Ŝ the floating-

point sum in any order. Then, without restriction on k ∈ N,

Ŝ

(1 + v)k−1
� S, (9)

where v := u/(1 + u). Note that (1 + v)−k+1 � 1 − (k − 1)v.
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Proof. For t ∈ R the sharper estimate

|fl(t) − t| � v|t| (10)

was noted in [5], improving upon (1). This implies

fl(a + b) � (1 + v)(a + b) and a + b � (1 + u)fl(a + b). (11)

for 0 � a, b ∈ F.
For k = 1 there is nothing to prove. Assume (9) is true for the floating-point summation of up

to k − 1 summands in any order. As in the proof of Lemma 2 let Ŝ = fl(Ŝ1 + Ŝ2) for some disjoint
splitting I1, I2 of the index set {1, . . . , k} with kν := |Iν | and Ŝν denoting the floating-point summation
of the xi with i ∈ Iν in some order, and Sν denoting the true sum. Then the induction hypothesis,
k1 + k2 = k, v � 0, k1, k2 � 1 and (11) yield

S = S1 + S2

� (1 + v)1−k1 Ŝ1 + (1 + v)1−k2 Ŝ2

= (1 + v)1−k
[
(1 + v)k2 Ŝ1 + (1 + v)k1 Ŝ2

]
� (1 + v)1−k · (1 + v)(Ŝ1 + Ŝ2)

� (1 + v)1−k · Ŝ
�
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