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Abstract: An algorithm is presented for computing verified and accurate bounds for the value

of the gamma function over the entire real double precision floating-point range. It means that

for every double precision floating-point number x except the poles −k for 0 ≤ k ∈ N the

true value of Γ(x) is included within an almost maximally accurate interval with floating-point

bounds. The application to interval arguments x ∈ IF, thus enclosing the range of Γ over x, is

discussed as well.
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1. Introduction and notation
For z ∈ C with positive real part, the gamma function is defined by

Γ(z) :=

∫ ∞

0

e−ttz−1dt ,

and otherwise by analytic continuation. For F denoting the set of double precision floating-point

numbers according to IEEE 754 [7, 8], we aim on verified error bounds for Γ(x) for all real x ∈ F
except the poles −k for 0 ≤ k ∈ N.
Numerous publications describe methods to compute approximations of the gamma function with

high accuracy, among them [1, 2, 4, 12–14, 17, 18, 22, 23]. Standard ways to approximate Γ(x) are by

continued fractions, polynomial or rational approximation, Lanczos methods, or countour integrals.

However, it seems not easy to derive rigorous and accurate error bounds based on those approxi-

mations. In particular for arguments of large absolute value and near the poles numerical difficulties

arise. For example, in the newest release R2013b of Matlab [15] the built-in approximate gamma

function delivers

>> gamma(-1+2^(-53))

ans =
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-5.545090608933970e+15

whereas the true value to five places is −9.0072 ·1015. Note that the argument −1+2−53 is the double

precision successor of −1 in F. The algorithm to be described computes

>> gamma(intval(-1+2^(-53)))

intval ans =

1.0e+015 *

[ -9.00719925474100, -9.00719925474098]

in executable INTLAB code [19]. The relative error of the bounds with respect to the midpoint is

less than 5 · 10−16 or a distance of 4 bits between the left and right bound. To my knowledge only

one method is known to compute verified error bounds [11] for the gamma function. In this paper we

aim to compute accurate bounds of a quality as in the example above over the entire range of F.
We assume the reader to be familiar with the IEEE 754 floating-point standard [7, 8] and with basic

concepts of interval arithmetic, cf. [16, 21].

2. Main results
We develop our algorithm in several steps. We start with identifying the range of floating-point

numbers such that Γ(x) is neither in the overflow nor underflow range, continue with argument

reductions into the interval [1, 2], and finally describe how to compute error bounds for x ∈ [1, 2].

Lastly, we add a remark on interval arguments.

2.1 The floating-point range
The floating-point number xmax = hex2num(’406573fae561f647’) which is about 171.624377 is the

largest floating-point number x ∈ F such that Γ(x) does not cause overflow. Hence for x > xmax

the best possible error bound of Γ(x) is [realmax, Inf]. Note that for the built-in gamma function

already gamma(171.62430) yields Inf.

For non-positive integers our inclusion algorithm yields NaN because the gamma function has a

pole with non-coinciding left and right limit. For x ∈ F, N ∈ N and −N < x < −N + 1 it follows

N1 ≤ x ≤ N2 for N1 and N2 denoting the floating-point successor and predecessor of −N and −N+1,

respectively. Hence

|Γ(x)| ≤ max
(
|Γ(N1)|, |Γ(N2|)

)
for all x ∈ F with −N < x < −N + 1 .

For −N = −185 this maximum is smaller than the smallest positive (denormalized) double precision

floating-point number T := 2−1074 ≈ 4.94 · 10−324. By the recurrence relation Γ(x + 1) = xΓ(x) it

follows that for all x ∈ F with ⌊x⌋ ≤ −185 the best possible inclusion of Γ(x) with floating-point

bounds is [0, T ] or [−T, 0], depending on whether ⌊x⌋ is even or odd, respectively.

Henceforth we can restrict our attention to the range (−184, xmax]. We will use an argument

reduction to restrict the range further to [1, 2].

2.2 Argument reduction for x > 2
The recurrence relation Γ(x+ 1) = xΓ(x) implies the argument reduction

Γ(x) = Γ(x− k)

k∏
i=1

(x− i) (1)

for every k ∈ N, so that the particular choice k := ⌊x⌋ − 1 assures x − k ∈ [1, 2). Computing the

product in (1) with directed rounding downwards and upwards yields fairly good error bounds because

the relative error of a product is bounded by the sum of the relative errors of the factors. However,

for arguments near xmax the relative error may be 10−14 and larger. To reduce this, the product has

to be computed more accurately.

One possibility is a compensated product as proposed by Graillat [5]. For a vector x ∈ Fn of

floating-point numbers the algorithm is as follows.
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Algorithm 1 Compensated product for x ∈ Fn.

function res = CompProd(x)

p1 = x1
e1 = 0

for i = 2 : n

[pi, πi] = TwoProduct(pi−1, xi)

ei = fl(ei−1xi + πi)

end for

res = fl(pn + en)

Here fl(·) means that the expression in the parenthesis is computed in floating-point arithmetic.

Moreover, [x, y] = TwoProduct(a, b) denotes the error-free transformation x+ y = ab as analyzed by

Knuth [10]. It is based on the algorithm [x, y] = Split(a) which is the error-free splitting of a ∈ F
into x+ y such that both x and y have at most 26 nonzero leading bits in the mantissa [3].

Graillat analyzes that the error of res with respect to the true product p :=
∏n

i=1 xi is bounded by

|res− p| ≤ u|p|+ γnγ2n|p| , (2)

provided no overflow or underflow occurs. Here u is the relative rounding error unit which is 2−53

in double precision, and γk := ku/(1 − ku) as usual. From (2) bounds depending on the computed

result res are easily derived.

However, we do not need this high accuracy, a result with relative error u is sufficient. For a general

vector x ∈ Fn this is achieved by the following algorithm.

Algorithm 2 Accurate product.

function [p, q] = AccProd(x)

[p, q] = Split(x1)

for k = 2 : n

[b, β] = Split(xk)

[p′, π] = Split(p · b)
q = fl(pβ + qxk + π)

p = p′

end for

The algorithm uses the fact that both p and b have at most 26 nonzero leading bits in their mantissa,

so that pb = fl(pb) and the splitting p′ + π = p · b is error-free. The only non-exact operations are

those in the secoond last line of the loop. The following is true.

Theorem 1 Let x ∈ Fn with n < 225 be given, and let p, q be the results computed in double

precision by Algorithm 2. Then

|
n∏

i=1

xi − (p+ q)| ≤ 3n2

1− 2−25n
2−79|p+ q| , (3)

provided no over- or underflow occurred.

The proof is deferred to the appendix. The theorem implies that for n ≤ 4729 the result is of

maximum accuracy, by far sufficient for our purpose. One part of the method is not to deliver one

floating-point approximation as the output but to keep the approximation and error term separately.

In our case the method can be further simplified with an adapted analysis which we omit here. For

x ∈ F with x ≥ 2, the differences x − i for i = 1, 2, . . . , ⌊x⌋ − 1 do not cause a rounding error. Thus

one error-free splitting [e, f ] = Split(x) is sufficient because it implies (e− i) + f = x− i. Moreover,

both e − i and f have at most 256 nonzero leading bits in the mantissa. Furthermore, the product

(1) for the argument reduction cannot produce underflow.

Only overflow has to be taken care of, both in the splitting algorithm and in the argument reduction.

This is because in the splitting the input is multiplied by 227 + 1, and for x ≤ xmax the product in

(1) may cause overflow. Both is easily resolved by scaling with a proper power of 2.
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2.3 Argument reduction for x < 1
For x < 1 the argument reduction is similar to that of the previous subsection, but additional care is

necessary. The recurrence relation Γ(x+ 1) = xΓ(x) implies the argument reduction

Γ(x) = Γ(x+ k)
( k−1∏

i=0

(x+ i)
)−1

(4)

for k ∈ N, so that the particular choice k := 1− ⌊x⌋ assures x+ k ∈ [1, 2). For x ∈ F and x < −1 it

follows that all x + i are floating-point numbers for 0 ≤ i ≤ k − 1, so that no rounding error occurs

in the computation of the factors x + i. This is not true for −1 < x < 1. Here we distinguish three

cases.

If −1 < x ≤ −0.5, then x + 1 ∈ F by Sterbenz’ lemma [6], but not necessarily x + 2 ∈ F as for

x = −1 + u. But 1 ≤ x+ 2 < 2, so that

−1 < x ≤ −0.5 ⇒ x+ 1 ∈ F and |fl(x+ 2)− (x+ 2)| ≤ u . (5)

Similarly it follows

−0.5 < x < 0 ⇒ |fl(x+ 1)− (x+ 1)| ≤ u/2 and |fl(x+ 2)− (x+ 2)| ≤ u , (6)

and

0 < x < 1 ⇒ |fl(x+ 1)− (x+ 1)| ≤ u . (7)

We choose the simple approach to calculate x+ i in the cases above, i.e. for −1 < x < 1, with directed

rounding to obtain an accurate inclusion of the product
∏k−1

i=0 (x+ i).

2.4 Arguments x ∈ [1, 2]
In [20] effective methods to compute accurate error bounds for elementary standard functions are

based on sample values together with some kind of addition theorems. This seems difficult because

the gamma function lacks an addition theorem expressing Γ(x̃+ δ) in terms of Γ(x̃) plus some error

term, and a Taylor expansion needs Γ′(x) = Γ(x)Ψ(x).

A polynomial approximation being accurate to the last bit requires a high degree. A simple solution

to that is to compute low degree polynomials Pi for the intervals Ii := [1+ih, 1+(i+1)h] for h := 1/N

and 0 ≤ i < N . The larger N the smaller we can choose the maximum degree of the polynomials

Pi, but the more polynomials are necessary. The polynomials are simply computed as interpolation

polynomials at Chebyshev points. We choose the tradeoff N = 512 for which polynomials of degree

4 are sufficient to produce approximations with least significant bit accuracy.

Having computed the approximating polynomials Pi, the maximum error Γ(x)−Pi(x) for x ∈ Ii is

determined by some high precision routine. This has to be done once, and lower and upper bounds

err1 and err2 for the maximum negative and positive error, respectively, are stored. For given

x ∈ F with x ∈ Ii, the final inclusion algorithm for the gamma function evaluates Pi(x) with directed

rounding and subtracts or adds err1 or err2 depending on the rounding mode, respectively.

The amount of storage for all polynomial coefficients is about 20 kByte. Note that for x ∈ Fk

Matlab’s vector notation allows a simple evalulation of the vector Pi(x) by choosing the correct

polynomial indices i depending on xν for 1 ≤ ν ≤ k.

2.5 Interval arguments
For interval input x ∈ IF we first check whether there exists some integer k ∈ Z with k ≤ 0 and k ∈ x.

In that case Γ(x) is not defined for all x̃ ∈ x and the result of Γ(x) is NaN. Otherwise, we apply the

argument reductions with directed rounding as described in the previous subsections, so that without

loss of generality we may assume x ⊆ [1, 2]. Define

ξ := hex2num(′3ff762d86356be39′) ∈ F with ξ ≈ 1.4616 .

Then
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Γ′(x̃) < 0 for 1 ≤ x̃ ≤ ξ and Γ′(x̃) > 0 for ξ < x̃ ≤ 2 .

Hence an inclusion of {Γ(x) : x̃ ∈ x} is easily computed with some case distinctions and the methods

presented in the previous subsections. In particular the lower bound of Γ(x) for x = [x1, x2] is

Λ := hex2num(′3fec56dc82a74aee′) ∈ F with Λ ≈ 0.8856

if ξ ∈ x, and the upper bound is max
(
Γ(x1),Γ(x2)

)
.

3. Computational results

As we have seen in Subsection 2.1 we have one-bit wide inclusions of Γ(x) for x outside [−184, 172].

Thus we display computational results only for x inside this interval.

We say an interval x ∈ IF has a width of m bits if the supremum of x is the m-th floating-point

successor of the infimum of x. For x outside [−184, 172] the width in bits of the inclusion of Γ(x) is

always 1. This is best possible.

For each interval Ik := [k, k + 1] with −184 ≤ k ≤ 171 we generate one million random points x

within Ik and compute inclusions y of Γ(x). We then compute the median and the maximum width

in bits of all those inclusions y and display them in Figure 1. The graph of the mean looks very

similar to the median.

Fig. 1. Median and maximum of the width in bits of inclusions of Γ(x) in
the range [−185, 171].

As can be seen in the median the width is between 3 and 4 bits, and maximally 8 bits except a

small range near zero. Next compute the same pictures for 100 million random points in the range

[−2, 2]. The results are displayed in Figure 2.

Now the median width is between 3 and 6 bits with a maximum of again 9 bits for positive arguments

near zero. For arguments in [1, 2] the median width is only 2 and maximally 3 bits. In Figure 3 the

relative error of the Matlab built-in gamma function near x = −1 is displayed. For arguments close

to but less than −1, the approximation is very accurate. However, in the range (−1,−1+10−11] only

around 6 figures, and very close to −1, as mentioned in the introduction, no figure at all is correct.

Finally we investigate small numbers and generate 100 million logarithmically distributed test points

between 10−320 and 1. Here the mean width is 4.46 bits, the median is 4 bits and the maximum again

9 bits; a corresponding figure is omitted.

The presented algorithm is included in INTLAB [19] Version 7.2.
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Fig. 2. Median and maximum of the width in bits of inclusions of Γ(x) in
the range [−2, 2].

Fig. 3. Relative error of the Matlab built-in gamma function in the range
(−1,−1 + 10−11].

4. Appendix

To prove Theorem 1 we start with an important property of the Split-function. As has been noted,

for a ∈ F the call [x, y] = Split(a) produces x, y ∈ F with x+y = a such that the binary expansion of

both x and y have at most 26 nonzero leading bits. This means that for [u, v] = Split(b) all products

xu, xv, yu and yv are floating-point numbers so that the multiplications do not produce any rounding

error. Moreover, we frequently need

[x, y] = Split(a) ⇒ |y| ≤ 2−26|a| (8)

in the following. For the analysis, we first rewrite Algorithm 2 (AccProd) with indices for each

intermediate variable.
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[p1, π1] = Split (x1)

q1 = π1

for k = 2 : n

[bk, βk] = Split (xk) % bk + βk = xk

[pk, πk] = Split (pk−1 · bk) % pk + πk = pk−1 · bk
q̃k = fl(pk−1βk + q̃k−1xk + πk)

Note that in the last line q̃k is the result of the expression in any order of evaluation. Since it is a

dot product we know by [9, Proposition 4.1] that

|q̃k − qk| ≤ 3u
(
|pk−1βk|+ |q̃k−1xk|+ |πk|

)
for qk := pk−1βk + q̃k−1xk + πk . (9)

The mentioned properties of the Split-function and in particular (8) imply pk−1bk ∈ F, such that

pk + πk = pk−1bk and |βk| ≤ φ|xk| and |πk| ≤ φ|pk−1bk| for φ := 2−26 . (10)

Define

Pk := pk + q̃k and ∆k := Pk −
k∏

i=1

xi . (11)

Then
Pk = pk−1bk − πk + q̃k − qk + pk−1βk + q̃k−1xk + πk

= pk−1(bk + βk) + q̃k−1xk + q̃k − qk

= Pk−1xk + q̃k − qk .

(12)

By bk + βk = xk and (10) we know pk = pk−1bk(1 + φk) and bk = xk(1 + φ̃k) for some |φk|, |φ̃k| ≤ φ,

so that

pk = pk−1xk(1 + φ̃k)(1 + φk) . (13)

Putting things together it follows∣∣∣∣∣pk −
k∏

i=1

xi

∣∣∣∣∣ ≤ [
(1 + φ)2k−1 − 1

] ∣∣∣∣∣
k∏

i=1

xi

∣∣∣∣∣ ≤ (2k − 1)φ

1− (2k − 1)φ

∣∣∣∣∣
k∏

i=1

xi

∣∣∣∣∣ (14)

and

|pk| ≤
(
1 +

(2k − 1)φ

1− (2k − 1)φ

) ∣∣∣∣∣
k∏

i=1

xi

∣∣∣∣∣ = (1− (2k − 1)φ)−1

∣∣∣∣∣
k∏

i=1

xi

∣∣∣∣∣ . (15)

Using (9), (10) and (8) we have

|q̃k| ≤ |qk|+ |q̃k − qk| ≤ (1 + 3u)
[
|pk−1βk|+ |q̃k−1xk|+ |πk|

]
≤ (1 + 3u)[φ|pk−1xk|+ |q̃k−1xk|+ φ|pk−1bk|]

≤ (1 + 3u)
[
φ|pk−1|+ |q̃k−1|+ φ(1 + φ)|pk−1|

]
|xk|

= (1 + 3u)
[
φ(2 + φ)|pk−1|+ |q̃k−1|

]
|xk|

≤ (1 + 3u)

[
φ(2 + φ)

1− (2k − 3)φ

∣∣∣∣∣
k∏

i=1

xi

∣∣∣∣∣+ |q̃k−1||xk|

]
for k ≥ 2 .

(16)

An induction argument using q̃1 = q1 = π1 and therefore |q̃1| ≤ φ|x1| together with 3u = 1.5φ2 yields

|q̃k| ≤
(2k − 1)φ

1− (2k − 1)φ

∣∣∣∣∣
k∏

i=1

xi

∣∣∣∣∣ for k ≥ 1 . (17)
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Hence the same argument as in (16) gives

|q̃k − qk| ≤
3uφ(2k − 1 + φ)

1− (2k − 3)φ

∣∣∣∣∣
k∏

i=1

xi

∣∣∣∣∣ . (18)

Hence (11) and (12) give

∆k = Pk −
k∏

i=1

xi = Pk−1xk −
k∏

i=1

xi + q̃k − qk = ∆k−1xk + q̃k − qk (19)

and therefore

|∆k| ≤ |∆k−1||xk|+ |q̃k − qk| ≤ |∆k−1||xk|+
3uφ(2k − 1 + φ)

1− (2k − 3)φ

∣∣∣∣∣
k∏

i=1

xi

∣∣∣∣∣ . (20)

An induction argument using ∆1 = P1 − x1 = p1 + π1 − x1 = 0 and (11) yield

|∆k| ≤ ψk

∣∣∣∣∣
k∏

i=1

xi

∣∣∣∣∣ ≤ ψk|∆k|+ ψkPk with ψk :=
3k2φu

1− (2k − 1)φ
for k ≥ 1 , (21)

so that finally a computation using k < 225 and thus 3k2u < 1 yields

|∆k| ≤
3k2φu

1− 2kφ
|Pk| for k ≥ 1 . (22)

By Pk = pk + q̃k we proved

k∏
i=1

xi ∈ pk + q̃k ± 3k2φ

1− 2kφ
u|pk + q̃k| (23)

and thus Theorem 1.
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