
submitted for publication March 20, 2013, accepted for

publication in Numerical Algorithms June 25, 2013

2 Siegfried M. Rump
Noname manuscript No.
(will be inserted by the editor)

Improved componentwise verified error bounds for least squares problems and

underdetermined linear systems

Siegfried M. Rump

the date of receipt and acceptance should be inserted later

Abstract Recently Miyajima presented algorithms to compute componentwise verified error bounds for the

solution of full-rank least squares problems and underdetermined linear systems. In this paper we derive

simpler and improved componentwise error bounds which are based on equalities for the error of a given

approximate solution. Equalities are not improvable, and the expressions are formulated in a way that direct

evaluation yields componentwise and rigorous estimates of good quality. The computed bounds are correct

in a mathematical sense covering all sources of errors, in particular rounding errors. Numerical results show

a gain in accuracy compared to previous results.

Mathematics Subject Classification (2000) 65F20, 65G20

Keywords Least squares problems, underdetermined linear systems, INTLAB, componentwise error

estimates, normal equations, extra-precise residual evaluation.

1 Introduction and notation

For the solution of least squares problems and underdetermined linear systems a number of (normwise)

backward stable algorithms are available [6,7], which are usually based on a QR-decomposition of the matrix.

Although numerical approximations are usually reliable, it seems desirable to provide rigorous error bounds,

taking into account all errors, in particular rounding errors.

Such mathematically rigorous error bounds are mandatory in so-called computer-assisted proofs, where

parts of a proof depend on the numerical solution of certain problems [5]. To maintain mathematical rigor,

a numerical solution is accompanied by mathematically correct error bounds.

Famous examples of computer-assisted proofs are Tucker’s paper [17], who was awarded the 2004 EMS

prize by the European Mathematical Society for “giving a rigorous proof that the Lorenz attractor exists

S. M. Rump

Institute for Reliable Computing, Hamburg University of Technology, Schwarzenbergstraße 95,

Hamburg 21071, Germany,

and Visiting Professor at Waseda University, Faculty of Science and Engineering, 3–4–1 Okubo, Shinjuku-ku,

Tokyo 169–8555, Japan.

E-mail: rump@tuhh.de

Improved componentwise verified error bounds for least squares problems and underdetermined linear systems 3

for the parameter values provided by Lorenz. This was a long standing challenge to the dynamical system

community, and was included by Smale in his list of problems for the new millennium. The proof uses

computer estimates with rigorous bounds based on higher dimensional interval arithmetics.”

As another example Sahinidis and Tawaralani [15] received the 2006 Beale-Orchard-Hays Prize for their

package BARON which (citation) “incorporates techniques from automatic differentiation, interval arith-

metic, and other areas to yield an automatic, modular, and relatively efficient solver for the very difficult

area of global optimization”.

Let A ∈ Km×n, b ∈ Km, K ∈ {R,C}. If A is rank-deficient, then the pseudoinverse does not depend

continuously on the matrix data. This case is outside the scope of our methods because rigorous bounds are

computed utilizing the speed of finite precision floating-point operations. For the moment we assume A to

have full rank. Note, however, that this fact will be verified a posteriori by our methods. If this verification

fails, then no bounds are computed. Thus computed bounds are always correct.

The 2-norm solution of the least squares problem is A+b with A+ denoting the Moore-Penrose pseudoinverse.

Similarly, for A ∈ Kn×m, b ∈ Kn, the minimum of ‖x‖2 subject to Ax = b is achieved for x = A+b. To avoid

confusion, we specify rectangular matrices always such that m ≥ n.

Mathematically, the least squares problem can be solved by an augmented linear system1(
A −I

0 AH

)(
x

w

)
=

(
b

0

)
, (1.1)

where I denotes the identity matrix and 0 denotes the zero matrix (vector) of proper dimension, respectively.

Assume in the following that ‖A‖ is of the order 1 for some norm. Then the condition number of the matrix

in (1.1) is of the order cond(A)2. As shown by Björck [2] it can be reduced to about cond(A) by scaling −I;

however, this is not used in the following.

For the least squares problem the solution vector of (1.1) satisfies AHw = 0 and x = A+b. Our verification

methods are based on an economy-size QR-decomposition of A, that is A = QR for unitary Q ∈ Km×n

and triangular R ∈ Kn×n. Assume an approximate inverse S of (an approximate factor) R is given together

with approximations x̃ of A+b and w̃ near the kernel of AH , i.e. x̃, w̃ are approximate solutions of (1.1).

Define X := AS, so that based on our assumptions X can be expected to be not too far from orthogonality.

Suppose ‖I −XTX‖p ≤ α < 1 for some p ∈ {1, 2,∞}. Then A has full rank, and bounds for A+b− x̃ based

on S, x̃, w̃ can be computed. All remarks apply, mutatis mutatandis, to underdetermined linear systems.

Previously bounds for the error A+b − x̃ were derived by a sequence of estimates [10,14,11]. All those

estimates are solely based on the approximations S, x̃, w̃. For example, (4.8) in [14] states2

‖A+b− x̃‖p ≤ ‖SXT ρx̃‖p + ‖SST ρw̃‖p +
α‖S‖p
1− α

·
(
‖XT ρx̃‖p + ‖ST ρw̃‖p

)
for p ∈ {1, 2,∞} , (1.2)

where ρx̃ := b − Ax̃ + w̃ and ρw̃ := AT w̃. Based on his paper [10], Miyajima gave in [11] the following

componentwise error estimate:

|A+b− x̃| ≤ |SST (AT %x̃ − %w̃)|+ ‖S
T (AT %x̃ − %w̃‖∞

1− α
|S||I −XTX|e , (1.3)

1 Sometimes (e.g. in [1,4]) the symmetric version of (1.1), obtained by interchanging the column blocks in the matrix, is used.

However, this may lead to less accurate results, see the appendix.
2 For a moment we restrict the attention to real problems.

4 Siegfried M. Rump

where e denotes the vector of 1′s of proper dimension, and comparison and absolute values are to be

understood componentwise. Similar estimates are given for underdetermined systems, namely (3.8) in [14]

states the normwise bound

‖A+b− x̃‖p ≤
√
m‖ρw̃‖p + ‖Y TSρx̃‖p +

α‖Y T ‖p
1− α

‖Sρx̃‖p for p ∈ {1,∞}, (1.4)

and Miyajima [11] proves the componentwise bound

|A+b− x̃| ≤ ‖%w̃‖2e + |Y TS%x̃|
‖S%x̃‖∞

1− α
|Y T | |E|e (1.5)

using ρw̃ := x̃ − AT w̃, ρx̃ := Ax̃ − b, an approximate inverse S of RT for an approximate decomposition

AT ≈ QR and Y := SA.

In this paper we derive simple expressions equal to A+b−x̃, also solely based on S, x̃, w̃. Those expressions are

formulated in a way that componentwise and rigorous estimates of good quality can be computed. Note that

mathematically S, x̃, w̃ are arbitrary quantities (of proper dimension); however, if they are of poor quality,

then the bounds are of poor quality as well or no bounds may be computed at all.

For a matrix M ∈ Km×n and 1 ≤ i ≤ m denote by Mi∗ ∈ Kn the i-th row of M . For 1 ≤ p ≤ ∞, we define

the vector of row-wise p-norms of M by

v := ‖M‖vecp ∈ Rm by vi := ‖Mi∗‖p for 1 ≤ i ≤ m . (1.6)

The following application of Hölder’s inequality is useful to obtain componentwise error bounds.

Lemma 1.1 Let M ∈ Km×n, z ∈ Kn, and 1 ≤ p, q ≤ ∞ with 1/p+ 1/q = 1. Then

|Mz| ≤ ‖z‖p · ‖M‖vecq , in particular |Mz| ≤ ‖z‖∞ · |M |e .

The most common choices for practical purposes are p ∈ {1, 2,∞}.

Let E ∈ Kn×n with ‖E‖p ≤ α < 1 be given. Then it is well-known that I − E is nonsingular,

‖(I − E)−1‖p ≤
1

1− α
(1.7)

and

(I − E)−1 = I + (I − E)−1E . (1.8)

2 Main results

We begin with the componentwise error bounds for least squares problems.

Theorem 2.1 Let A ∈ Km×n, b ∈ Km, S ∈ Kn×n with m ≥ n be given. Define X := AS ∈ Km×n and

E := I −XHX, and suppose ‖E‖∞ ≤ α < 1. Let x̃ ∈ Kn and w̃ ∈ Km be given and define

%x̃ := b−Ax̃+ w̃ and %w̃ := AHw̃ and δ := XH%x̃ − SH%w̃ . (2.1)

Then

A+b− x̃ = S(I − E)−1δ . (2.2)

Improved componentwise verified error bounds for least squares problems and underdetermined linear systems 5

Therefore

|A+b− x̃| ≤ ‖δ‖∞
1− α

· |S|e and |A+b− x̃| ≤ ‖δ‖2
1− α

· ‖S‖vec2 , (2.3)

as well as

|A+b− x̃− Sδ| ≤ ‖Eδ‖∞
1− α

· |S|e and |A+b− x̃− Sδ| ≤ ‖Eδ‖2
1− α

· ‖S‖vec2 . (2.4)

Proof. It is well-known that ‖I − XHX‖∞ < 1 implies that X, and by X = AS also A and X have full

rank. Using A+A = In, A+(A+)HAH = A+, A+ = SX+, X+ = (XHX)−1XH and (XHX)−1 = (I − E)−1

yields

A+b− x̃ = A+%x̃ −A+(A+)HAHw̃

= SX+%x̃ − SX+(X+)HSH%w̃

= S(XHX)−1XH%x̃ − S(XHX)−1SH%w̃

= S(I − E)−1δ .

(2.5)

Applying (1.7), Lemma 1.1 and (1.8) prove the left estimates in (2.3) and (2.4). Furthermore

‖(I − E)−1‖2 ≤
1

1− ‖E‖2
≤ 1

1− α
(2.6)

using ‖E‖2 ≤
√
‖E‖1‖E‖∞ = ‖E‖∞ and EH = E prove the right estimates and thus the result. �

Note that (2.2) states an equality for the error A+b− x̃ and is thus not improvable. The only overestimation

in (2.3) and (2.4) is introduced by the application of (1.7), Lemma 1.1 and (1.8). Practical experience suggest

that this overestimation is not too large.

Also note that the quantities X, %x̃, %w̃ and δ are computed using S, x̃ and w̃. Thus all estimates in Theorem

2.1, as those in [10,14,11], are solely based on S, x̃, w̃.

Practical examples suggest that the leftmost bounds are usually the best ones, in particular better than

using Lemma 1.1 with p = 1 and q = ∞. Once the left bound in (2.3) or (2.4) is computed, the additional

effort to compute the right bound is marginal. In any case the computing time is small compared to the QR-

decomposition. So it seems advisable to compute both bounds in (2.3) or (2.4) and to take the componentwise

minimum.

For S being an approximate inverse of R, the condition numbers of A and S can be expected to be of the

same order. Therefore the quality of (2.2) depends mainly on SSH%w̃, implicitly included in S(I − E)−1δ.

This seems unavoidable. But the condition number of SSH is of the order cond(A)2. Thus in double precision

and cond(A) beyond 108 bounds of good quality are only possible if %w̃ is very small. This, in turn, is only

achievable by representing the approximation w̃ in two terms w̃1 + w̃2. Similarly, for underdetermined linear

systems the approximation x̃ is represented in two terms x̃1 + x̃2. For good bounds, both x̃ and w̃ should

be improved by some residual iteration ensuring that both residuals %x̃ and %w̃ are very small, see the next

section.

The second estimate (2.4) can be interpreted as improving the approximation x̃ by some residual iteration

but leaving the approximation x̃ and correction Sδ in separate parts. The method was introduced in [12]

and became later [16] known as “staggered correction”. Both is only meaningful if an accurate dot product

is available. Note that the first summand in Miyajima’s bound (1.3) is equal to |Sδ|, but the formulation

is unfortunate for numerical evaluation. Moreover, our equality (2.2) allows to use the term Sδ without

absolute value in the left of (2.4).

6 Siegfried M. Rump

A sample Matlab/INTLAB code to compute the bounds (1.2), (1.3), (2.3) and (2.4) for least squares problems

is given in the appendix. For underdetermined linear systems we proceed similarly.

Note that the fact that A has full rank is not assumed a priori, but follows from α < 1. Despite this, there is

no further assumption, in particular not on the approximations S, x̃, w̃. Thus one might be inclined to define

w̃ := Ax̃− b so that %x̃ = 0. This is the best choice if x̃ is equal to the solution A+b. Otherwise, however, a

good approximation x̃ of A+b does not ensure that Ax̃− b is near the kernel of AH . Similarly, one might set

w̃ := 0 implying %w̃ = 0. However, then %x̃ = b−Ax̃ is in general not small.

Componentwise error estimates for underdetermined linear systems are established similar to Theorem 2.1.

Theorem 2.2 Let A ∈ Kn×m, b ∈ Kn, S ∈ Kn×n with m ≥ n be given. Define Y := SA ∈ Kn×m and

E := I − Y Y H , and suppose ‖E‖∞ ≤ α < 1. Let x̃ ∈ Km and w̃ ∈ Kn be given and define

%x̃ := b−Ax̃ and %w̃ := AHw̃ − x̃ and δ := S%x̃ − Y %w̃ . (2.7)

Then

A+b− x̃− %w̃ = Y H(I − E)−1δ (2.8)

as well as

|A+b− x̃− %w̃| ≤ min
{ ‖δ‖∞

1− α
· |Y H |e , ‖δ‖2

1− α
· ‖Y H‖vec2

}
, (2.9)

where the minimum is to be understood componentwise. Moreover,

|A+b− x̃− %w̃ − Y Hδ| ≤ min
{ ‖Eδ‖∞

1− α
· |Y H |e , ‖Eδ‖2

1− α
· ‖Y H‖vec2

}
. (2.10)

Proof. As before we conclude that A, S and Y have full rank. Using A+AAH = AH , A+ = Y +S, A+A =

Y +Y , Y + = Y H(Y Y H)−1 and (Y Y H)−1 = (I − E)−1 yields

A+b− x̃− %w̃ = A+%x̃ +A+Ax̃−AHw̃

= A+%x̃ −A+A%w̃

= Y +S%x̃ − Y +Y %w̃

= Y H(Y Y H)−1δ

= Y H(I − E)−1δ .

(2.11)

As in the proof of Theorem 2.1 we use (1.7), Lemma 1.1, (1.8) and (2.6) to prove the result. �

Again the equality (2.8) is the main part of the theorem. It is formulated in a way such that the derived

estimates (2.9) and (2.10) are of good quality. In case of underdetermined linear systems the quality can

be expected to be often better than for least squares problems: |S|e could be replaced by |Y H |e, where

cond(S) ≈ cond(A), but Y is nearly unitary.

The other remarks following Theorem 2.1 apply accordingly, where now AT ≈ QR and S is an approximate

inverse of RT . In particular, as has been mentioned before, good bounds rely on good approximations.

Improved componentwise verified error bounds for least squares problems and underdetermined linear systems 7

3 Computational results

In the following we report computational results, all performed in IEEE 754 double precision arithmetic [8]

equivalent to about 16 decimal digits precision in Matlab [9]. To obtain mathematically rigorous results, the

estimates are bounded by interval arithmetic using INTLAB [13], the Matlab toolbox for reliable computing.

For least squares problems and underdetermined linear systems we compare the bounds

[Ru12] Normwise bounds (1.2) and (1.4)
[

(4.8) and (3.8) in [14]
]
,

[Mi12] Componentwise bounds (1.3) and (1.5)
[

taken from [11]
]
,

new1 Componentwise bounds as in (2.3) and (2.9),

new2 Componentwise bounds as in (2.4) and (2.10).

(3.1)

For the new bounds always the minimum is taken of the left and the right bound in (2.3), (2.9), (2.4) and

(2.10), respectively. The new bounds (2.4) and (2.10) are implemented in the routine verifylss in Version

7 of INTLAB.

All bounds for all methods in (3.1) rely solely on x̃, w̃ and S. Based on those floating-point quantities,

interval arithmetic is used to compute rigorous bounds for the other quantities X,Y,E, α, ρx̃, ρw̃ and δ and

for computing the final bounds. Thus the prerequisites for all methods are the same. In particular all methods

succeed or fail to compute rigorous bounds depending on α being strictly less than one or not.

For all methods S is an approximate inverse (by Matlab’s inv) of the factor R or RT of the approximate

QR-factorization of A or AT , respectively, and x̃ and w̃ are improved by the residual iterations (5.7) and

(5.3) in [14], respectively. As has been mentioned earlier we improve the quality of all bounds by using x̃1+x̃2

and w̃1 + w̃2 for least squares and for underdetermined problems, respectively. Then accurate dot products

are used to compute inclusions of the residuals ρx̃ = b − Ax̃1 − Ax̃2 + w̃ and ρw̃ = AHw̃ in case of least

squares problems, and similarly for underdetermined systems. This is the common base for all methods in

(3.1).

For an interval [a, b] 6= 0 we define the “number of correct digits” by − log10[(b − a)/|a + b|]. We say an

interval with a, b being adjacent double precision floating-point numbers is of “maximum accuracy”. For

such intervals the number of correct digits is between 15.65 and 15.95, depending on the distance to the next

power of 2.

We first test random least squares problems with full matrix of different dimensions and condition numbers.

Random rectangular matrices of specified condition number are generated via singular values [7]. Since

verified lower and upper bounds for the solution vector are calculated, we can display in Table 3.1 the

minimum number and median number of correct digits of the componentwise inclusions. The median number

of correct digits of the new methods is often close to maximum accuracy, so we refrain from displaying the

maximum.

For 1000 test cases each we test the four methods. Then the minimum and median number of correct digits

of all 1000m solution components is displayed. As can be seen, Miyajima’s bounds are better than [Ru12]

for well-conditioned problems, and worse for ill-conditioned problems. The new bounds are always at least

as good as both the previous ones, often near maximum accuracy. As expected, the second new bound is

never worse than the first one.

For underdetermined linear systems the results are displayed in Table 3.2. They are, as expected, in general

better than for least squares problems. Now Miyajima’s componentwise estimates are always better than

8 Siegfried M. Rump

Table 3.1 Computational results for random least squares problems of the methods in (3.1).

min # corr. digits median # corr. digits

m n cond(A) [Ru12] [Mi12] new1 new2 [Ru12] [Mi12] new1 new2

1000 50 1e2 11.7 15.7 15.7 15.7 15.3 15.8 15.8 15.8
1000 50 1e5 10.4 15.4 15.7 15.7 15.3 15.8 15.8 15.8
1000 50 1e10 10.5 5.8 12.1 13.9 15.3 11.1 15.8 15.8
1000 50 1e11 10.3 4.2 12.1 12.7 15.3 9.2 15.8 15.8
1000 50 1e12 5.8 2.8 5.8 7.7 15.1 7.2 15.7 15.8
1000 50 1e13 0.0 0.0 0.0 0.1 8.6 5.1 8.9 10.4
1000 100 1e2 10.9 15.7 15.7 15.7 15.3 15.8 15.8 15.8
1000 100 1e5 10.2 14.8 15.7 15.7 15.3 15.8 15.8 15.8
1000 100 1e10 11.4 6.3 13.0 14.3 15.2 10.4 15.8 15.8
1000 100 1e11 10.5 3.8 12.1 12.9 15.2 8.5 15.8 15.8
1000 100 1e12 4.8 2.0 4.9 6.5 15.1 6.5 15.7 15.8
1000 100 1e13 0.0 0.0 0.0 0.0 6.9 4.4 7.2 8.4
1000 200 1e2 10.3 15.7 15.7 15.7 15.3 15.8 15.8 15.8
1000 200 1e5 10.6 14.2 15.7 15.7 15.3 15.8 15.8 15.8
1000 200 1e10 10.3 4.3 12.1 13.1 15.2 9.6 15.8 15.8
1000 200 1e11 10.2 2.4 11.4 12.0 15.2 7.7 15.8 15.8
1000 200 1e12 4.0 0.0 4.0 5.4 15.0 5.7 15.4 15.7
1000 200 1e13 0.0 0.0 0.0 0.0 4.3 3.3 4.7 5.6

Table 3.2 Computational results for random underdetermined linear systems of the methods in (3.1).

min # corr. digits median # corr. digits

n m cond(A) [Ru12] [Mi12] new1 new2 [Ru12] [Mi12] new1 new2

50 1000 1e2 7.2 8.5 15.7 15.7 12.7 14.0 15.8 15.8
50 1000 1e5 6.4 7.7 15.7 15.7 12.7 14.0 15.8 15.8
50 1000 1e10 6.9 8.2 12.2 13.1 12.6 14.0 15.8 15.8
50 1000 1e11 6.7 8.1 12.2 12.8 12.6 14.0 15.8 15.8
50 1000 1e12 6.2 7.7 10.9 11.6 12.6 14.0 15.8 15.8
50 1000 1e13 2.8 4.4 4.1 5.1 12.5 13.9 15.1 15.7

100 1000 1e2 7.3 8.5 15.7 15.7 12.8 14.0 15.8 15.8
100 1000 1e5 6.7 7.9 15.7 15.7 12.7 14.0 15.8 15.8
100 1000 1e10 6.4 7.9 12.8 13.1 12.7 14.0 15.8 15.8
100 1000 1e11 6.6 7.9 11.8 12.2 12.7 14.0 15.8 15.8
100 1000 1e12 7.6 8.9 11.5 12.1 12.7 14.0 15.8 15.8
100 1000 1e13 4.2 5.9 5.3 6.3 12.5 13.9 14.8 15.5
200 1000 1e2 7.1 8.2 15.7 15.7 12.9 14.0 15.8 15.8
200 1000 1e5 7.3 8.6 15.7 15.7 12.8 14.0 15.8 15.8
200 1000 1e10 5.9 7.3 11.8 12.1 12.7 14.0 15.8 15.8
200 1000 1e11 6.6 8.0 11.8 12.0 12.7 14.0 15.8 15.8
200 1000 1e12 6.9 8.1 10.4 10.7 12.7 14.0 15.7 15.8
200 1000 1e13 0.0 0.0 0.0 0.0 12.0 13.6 13.3 14.2

the previous bounds in [Ru12], and with three exceptions the first new bound is better than Miyajima’s,

whereas the second new bound is again never worse than the first.

Finally we display results for larger sparse problems. Note that R and also S are of size n × n, however,

X = AS and Y = SA for over- and underdetermined systems, respectively, are of size m × n and usually

full. The direct computation of these full matrices can be avoided as described in [14, Section 6]. Sparse test

matrices are taken from the Florida sparse matrix collection [3]. We use examples for least squares problems

and for underdetermined linear systems for both tests by treating A and AT , respectively. For the sparse

problems we display only the minimum number of correct digits. As can be seen in Tables 3.3 and 3.4 the

new methods compute in all examples inclusions of full accuracy. For least squares problems there is no

difference to Miyajima’s bounds as in (1.3), for underdetermined problems our bounds are better.

The computing time of all methods is essentially proportional to the time to compute the economy-size

QR-decomposition, which requires O(mn2) floating-point operations. Note this is significantly better than

the O((m+ n)3) flops to solve (1.1), in particular if m� n.

Improved componentwise verified error bounds for least squares problems and underdetermined linear systems 9

Table 3.3 Computational results for sparse least squares problems of the methods in (3.1).

min # corr. digits

m n density[%] Matrix [Ru12] [Mi12] new1 new2

37932 331 1.09 JGD_Taha/abtaha2 13.4 15.7 15.7 15.7
14596 209 1.68 JGD_Taha/abtaha1 11.6 15.7 15.7 15.7
29493 11822 0.03 Sumner/graphics 10.5 15.2 15.7 15.7
10595 4929 0.09 HB/gemat1 7.8 15.7 15.7 15.7
12061 2262 0.09 LPnetlib/lp_80bau3b 9.2 15.7 15.7 15.7
13525 3000 0.12 LPnetlib/lp_fit2p 11.6 15.7 15.7 15.7
25067 1118 0.52 LPnetlib/lp_osa_07 11.7 15.7 15.7 15.7
54797 2337 0.25 LPnetlib/lp_osa_14 11.1 15.7 15.7 15.7
63516 507 1.27 Mittelmann/rail507 11.2 15.7 15.7 15.7
10757 124 6.82 Meszaros/air03 12.8 15.7 15.7 15.7
16819 4400 0.20 Meszaros/model10 8.6 15.7 15.7 15.7

123409 73 10.04 Meszaros/nw14 12.4 15.7 15.7 15.7
61521 4050 0.11 Meszaros/rlfddd 10.2 15.7 15.7 15.7
63076 3173 0.25 Meszaros/stat96v4 8.7 15.7 15.7 15.7

184756 190 23.68 JGD_BIBD/bibd_20_10 12.6 15.7 15.7 15.7
319770 231 12.12 JGD_BIBD/bibd_22_8 12.0 15.7 15.7 15.7

Table 3.4 Computational results for sparse underdetermined linear systems of the methods in (3.1).

min # corr. digits

n m density[%] Matrix [Ru12] [Mi12] new1 new2

331 37932 1.09 JGD_Taha/abtaha2 8.9 9.8 15.7 15.7
209 14596 1.68 JGD_Taha/abtaha1 7.3 8.5 15.7 15.7

11822 29493 0.03 Sumner/graphics 6.9 8.1 15.7 15.7
4929 10595 0.09 HB/gemat1 6.5 8.2 15.7 15.7
2262 12061 0.09 LPnetlib/lp_80bau3b 9.5 10.5 15.7 15.7
3000 13525 0.12 LPnetlib/lp_fit2p 9.8 10.5 15.7 15.7
1118 25067 0.52 LPnetlib/lp_osa_07 7.5 9.2 15.7 15.7
2337 54797 0.25 LPnetlib/lp_osa_14 7.4 9.0 15.7 15.7
507 63516 1.27 Mittelmann/rail507 6.4 8.2 15.7 15.7
124 10757 6.82 Meszaros/air03 6.1 7.6 15.7 15.7

4400 16819 0.20 Meszaros/model10 7.0 8.4 15.7 15.7
73 123409 10.04 Meszaros/nw14 3.8 6.1 15.7 15.7

4050 61521 0.11 Meszaros/rlfddd 5.1 6.4 15.7 15.7
3173 63076 0.25 Meszaros/stat96v4 7.5 8.2 15.7 15.7
190 184756 23.68 JGD_BIBD/bibd_20_10 7.6 8.2 15.7 15.7
231 319770 12.12 JGD_BIBD/bibd_22_8 6.9 7.7 15.7 15.7

4 Appendix

We try to explain a phenomenon which has been noted in [14, Section 7, in particular Figure 7.1]. Sometimes,

as in [1,4], the augmented linear system (1.1) is symmetrized into(
−I A

AH 0

)(
w

x

)
=

(
b

0

)
, (4.1)

Suppose the condition number of a matrix C is 10k, and an approximate solution x̃ of a linear system

Cx = c is obtained in double precision by Gaussian elimination with partial pivoting. Then, according to the

well-known rule of thumb in numerical analysis, the number of correct digits of x̃ should be about 16 − k.

Practical evidence suggests that this is indeed true for the augmented system (4.1).

The matrix of the augmented system (1.1) exchanges the two block columns of the matrix, so the condition

number does not change. However, practical experience suggests that the solution of (1.1) has significantly

more than 16− k correct digits, contradicting the mentioned rule of thumb.

As a typical example, we generate a random 500 × 100 matrix A with condition number cond2(A) =

σmax(A)/σmin(A) = 1010 with right hand side b = e. The true condition number of both the matrix in

10 Siegfried M. Rump

Table 4.1 Sample code to test the augmented linear systems (1.1) and (4.1).

X = verifylss(A,b); % verified inclusion of the true solution

disp(’ ’)

accX = max(relerr(X))

disp(’ ’)

disp(’symmetric augmented matrix’)

B = [-eye(m) A;A’ zeros(n)];

xsym = B\[b;zeros(n,1)];

x = xsym(m+1:end);

relerrsym = min(relerr(x,X))

disp(’ ’)

disp(’unsymmetric augmented matrix’)

B = [A -eye(m);zeros(n) A’];

xunsym = B\[b;zeros(n,1)];

x = xunsym(1:n);

relerrunsym = median(relerr(x,X))

Table 4.2 Sample result of the code in Table 4.1 testing the augmented linear systems (1.1) and (4.1).

accX =

2.2076e-016

symmetric augmented matrix

relerrsym =

1

unsymmetric augmented matrix

relerrunsym =

1.5538e-004

the symmetric (4.1) and the unsymmetric system (1.1) is 1020, computed by some multiple-precision pack-

age, so that an approximate solution is expected to have no correct digit.

Algorithm verifylss in INTLAB implements our new methods and computes an inclusion X of the true

solution (see the code in Table 4.1). Note that this includes the proof that A has full rank. As can be seen in

the displayed results, the maximum relative error 2 · 10−16 of the inclusion X implies that all components of

the inclusion X are correct to the last digit. Next (cf. Table 4.1) the symmetric linear system (4.1) is generated

and solved, producing the approximate solution xsym. The median relative error relerrsym (see Table 4.2)

of the relevant components against the inclusion is 1, which means that, as expected, in the median the

approximate solution of the symmetric system (4.1) has no correct digit.

Finally, the unsymmetric linear system (1.1) is generated and solved, producing the approximate solution

xunsym. The median relative error relerrunsym of the relevant components against the inclusion is about

10−4, which means that in the median the approximate solution of the unsymmetric system has about 4

correct digits. This contradicts the mentioned rule of thumb.

The reason seems to be the following. Suppose that A is equilibrated with a norm of order 1. The backslash

operator in Matlab uses Gaussian elimination with partial pivoting. Thus in the first elimination block in

(1.1) only pivots of the matrix A are used, whereas in the symmetric system (4.1) pivots out of the identity

are used. Seemingly this destroys the structure, so that the ill-conditioning of the symmetric system appears.

Improved componentwise verified error bounds for least squares problems and underdetermined linear systems 11

Table 4.3 Sample Matlab/INTLAB code to compute the bounds (1.2), (1.3), (2.3) and (2.4) for least squares problems.

function D = test_lsqr(A,b)

% output number of correct digits for [Ru12], [Mi12], new1 (2.3) and new2 (2.4)

n = min(size(A));

% Generation of input data. All bounds are based on the same data.

R = qr(A,0); % economy-size qr-decomposition

R = triu(R(1:n,:)); % choose upper part

S = inv(full(R)); % approximate inverse of R

X = A*intval(S); % inclusion of AS

E = eye(n)-X’*X; % inclusion of I-X’*X

alpha = norm(E,inf); % bound for ||I-X’X||_inf

if ~(alpha<1) % no inclusion possible

D = NaN(n,4);

return

end

[xs1,xs2,ws] = resid_iter_lsqr(A,b,S,mid(X)); % residual correction to produce xs and ws

res_ws = Dot_(A’,ws,-2); % inclusion of residuals

res_xs = Dot_(1,b,A,-xs1,A,-xs2,1,ws,-2);

% first bound [Ru12]

t1 = norm(S*(X’*res_xs),inf); % inclusions of terms

t2 = norm(S*(S’*res_ws),inf);

t31 = alpha*norm(intval(S),inf)/(1-alpha);

t32 = norm(X’*res_xs,inf) + norm(S’*res_ws,inf);

BoundRu12 = xs1 + (intval(xs2) + midrad(0 , mag(t1 + t2 + t31*t32)));

% second bound [Mi12]

t1 = abs(S*(S’*(A’*res_xs-res_ws))); % inclusions of terms

t21 = norm(S’*(A’*res_xs-res_ws),inf)/(1-alpha);

t22 = abs(S) * (abs(E)*ones(n,1));

BoundMi12 = xs1 + (intval(xs2) + midrad(0 , mag(t1 + t21.*t22)));

% new bound (2.3)

delta = X’*res_xs - S’*res_ws; % inclusions of terms

b1 = mag(norm(delta,inf)/(1-alpha) * (abs(S)*intval(ones(n,1))));

b2 = mag(norm(delta,2)/(1-alpha) * sqrt(sum(S.*intval(S),2)));

Boundnew1 = xs1 + (intval(xs2) + midrad(0,min(b1,b2)));

% new bound (2.4)

delta = X’*res_xs - S’*res_ws; % inclusions of terms

b1 = mag(norm(E*delta,inf)/(1-alpha) * (abs(S)*intval(ones(n,1))));

b2 = mag(norm(E*delta,2)/(1-alpha) * sqrt(sum(S.*intval(S),2)));

Boundnew2 = xs1 + (intval(xs2) + (S*delta + midrad(0,min(b1,b2))));

% number of correct digits of bounds

D = [BoundRu12 BoundMi12 Boundnew1 Boundnew2];

D = -log10(relerr(D));

Another statement, which is generally true, also proves to have exceptions. Usually total pivoting produces

more accurate results than partial pivoting. More precisely, vast practical experience shows that Gaussian

elimination with partial pivoting is in most cases a stable algorithm, but theoretically it is highly unstable

due to the possibility of exponential pivot growth.3

In our example, Gaussian elimination with total pivoting produces for both the unsymmetric system (1.1) and

the symmetric system (4.1) the same result because the matrices are permutations of each other. However,

it is likely that the result with total pivoting is the same as for partial pivoting of the symmetric system.

3 As is known, there are instances where this happens in practice as well [19].

12 Siegfried M. Rump

Thus the approximation produced by total pivoting has no correct digit, in contrast to partial pivoting with

about 4 correct digits.

These statements seem to be true in general, not just for the displayed example. Note that the condition

number of the least squares problem [18] is basically cond(A)2 times the norm of the residual Ax̃−b; the point

here was to show that the general rule of thumb for linear systems does not necessarily apply to structured

matrices, so that using the unsymmetric system (1.1) is preferable to the symmetrized system (4.1).

Table 4.3 shows the sample Matlab/INTLAB code to compute the bounds (1.2), (1.3), (2.3) and (2.4) for

least squares problems. The routine resid iter lsqr implements the residual iteration (5.7) in [14], Dot is

an INTLAB routine to compute accurate approximations or inclusions of dot product expressions.

Acknowledgment

The author thanks Florian Bünger for his fruitful comments on a preliminary version of this manuscript,

and two anonymous referees for their thorough reading and stimulating remarks.

References

1. M. Arioli, I.S. Duff, and P.P.M. de Rijk. On the augmented system approach to sparse least-squares problems. Numerische

Mathematik, 55(6):667–687, 1989.

2. Å. Björck. Iterative refinement of linear least squares solutions I. BIT, 7:257–278, 1967.

3. T.A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM Transactions on Mathematical Software,

38(1):1:1–1:25, 2011.

4. J.B. Demmel, Y. Hida, W. Kahan, X.S. Li, S. Mukherjee, and E.J. Riedy. Error Bounds from Extra Precise Iterative

Refinement. ACM Transactions on Mathematical Software (TOMS), 32(2):325–351, 2006.

5. A. Frommer. Proving Conjectures by Use of Interval Arithmetic. In U. Kulisch et al., editor, Perspectives on enclosure

methods. SCAN 2000, GAMM-IMACS international symposium on scientific computing, computer arithmetic and validated

numerics, Univ. Karlsruhe, Germany, September 19-22, 2000, Wien, 2001. Springer.

6. G.H. Golub and Ch. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, third edition, 1996.

7. N. J. Higham. Accuracy and stability of numerical algorithms. SIAM Publications, Philadelphia, 2nd edition, 2002.

8. ANSI/IEEE 754-2008: IEEE Standard for Floating-Point Arithmetic. New York, 2008.

9. MATLAB. User’s Guide, Version 7, the MathWorks Inc., 2004.

10. S. Miyajima. Fast enclosure for solutions in underdetermined systems. Journal of Computational and Applied Mathematics

(JCAM), 234:3436–3444, 2010.

11. S. Miyajima. Componentwise enclosure for solutions in least squares problems and underdetermined linear systems. SCAN

conference Novosibirsk, 2012.

12. S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe, 1980.

13. S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages

77–104. Kluwer Academic Publishers, Dordrecht, 1999.

14. S.M. Rump. Verified Bounds for Least Squares Problems and Underdetermined Linear Systems. SIAM J. Matrix Anal.

Appl. (SIMAX), 33(1):130–148, 2012.

15. N.V. Sahinidis and M. Tawaralani. A polyhedral branch-and-cut approach to global optimization. Math. Programming,

B103:225–249, 2005.

16. H.J. Stetter. Sequential Defect Correction in High-Accuracy Floating-Point Arithmetics. Numerical Analysis, 1066:186–202,

1984. Proceedings, Dundee 1983.

17. W. Tucker. The Lorenz attractor exists. C. R. Acad. Sci., Paris, Sér. I, Math., 328(12):1197–1202, 1999.

18. P.Å. Wedin. Perturbation theory for pseudo-inverses. BIT, 13:217–232, 1973.

19. S.J. Wright. A collection of problems for which Gaussian elimination with partial pivoting is unstable. SIAM J. Sci.

Comput. (SISC), 14(1):231–238, 1993.

