
submitted August 12, 2011, revised August 22, 2012, accepted for

publication in J. Comp. Appl. Math. (JCAM) September 18, 2012

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS PART II:

ALGORITHMS USING DIRECTED ROUNDING

SIEGFRIED M. RUMP ∗

Abstract. In Part I and this Part II of our paper we investigate how extra-precise evaluation of dot products can be used

to solve ill-conditioned linear systems rigorously and accurately. In Part I only rounding to nearest is used. In this Part II we

improve the results significantly by permitting directed rounding. Linear systems with tolerances in the data are treated, and

a comfortable way is described to compute error bounds for extremely ill-conditioned linear systems with condition number

up to about u−2/n, where u denotes the relative rounding error unit in a given working precision. We improve a method by

Hansen/Bliek/Rohn/Ning/Kearfott/Neumaier. Of the known methods by Krawczyk, Rump, Hansen et al., Ogita and Nguyen

we show that our presented Algorithm LssErrBnd seems the best compromise between accuracy and speed. Moreover, for input

data with tolerances, a new method to compute componentwise inner bounds is presented. For not too wide input data they

demonstrate that the computed inclusions are often almost optimal. All algorithms are given in executable Matlab code and

are available from my homepage.

Key words. Linear systems, Matlab, rounding to nearest, data with tolerances, inner bounds, preconditioning, (extremely)

ill-conditioned, extra-precise accumulation of dot products, Gaussian elimination, BLAS, LAPACK, error-free transformation,

error analysis, rigorous error bounds.

AMS subject classifications. 65F05, 65G20

1. Introduction and notation. The paper divides into two parts: In Part I all algorithms use only the

four basic floating-point operations in rounding to nearest, in the present Part II we use directed rounding

and methods different from Part I to obtain superior results. All algorithms in both parts are presented in

executable Matlab code.

The methods in Part I are based on norm estimates, verifying convergence of some residual matrix by

approximating its Perron vector. In this Part II we verify the H-property of some matrix and demonstrate

how this can be used to effectively compute verified error bounds of the solution of a linear system. Moreover,

we show an efficient method to compute so-called “inner” inclusions of a linear system the data of which is

afflicted with tolerances.

Dividing the paper into two parts serves also didactical purposes. In Part I we demonstrate that using only

rounding to nearest allows to give simple algorithms to produce rigorous results. The algorithms presented

in Part II can still be formulated in rounding to nearest, however, at the cost of easy readability.

All algorithms are given in executable Matlab code for which we reserve the “verbatim”-font. For instance,

C=A*B means that C is the result of the floating-point multiplication A*B, where A and B are compatible

quantities (scalar, vector, matrix). For analyzing the error we use ordinary mathematical notation, for

example in P = A · B the verbatim-font is used for floating-point quantities so that P is the exact (real)

product of A and B. For A, B ∈ Fn×n this implies |P − C| ∼ u|A| · |B|.

Comparison between vectors and matrices is always to be understood entrywise, for example x ≤ y for

x, y ∈ Rn means xi ≤ yi for 1 ≤ i ≤ n. For A ∈ Rn×n, the Ostrowski’s comparison matrix ⟨A⟩ ∈ Rn×n is

∗Institute for Reliable Computing, Hamburg University of Technology, Schwarzenbergstraße 95, Hamburg 21071, Germany,

and Visiting Professor at Waseda University, Faculty of Science and Engineering, 3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555,

Japan (rump@tu-harburg.de).

1

2 S. M. RUMP

defined by

⟨A⟩ii := |Aii| and ⟨A⟩ij := −|Aij | for i ̸= j .(1.1)

If ⟨A⟩ is anM -matrix, thenA is calledH-matrix. In that caseA and ⟨A⟩ are non-singular, and |A−1| ≤ ⟨A⟩−1.

Finally, ϱ(A) denotes the spectral radius of A.

This part II of the paper is organized as follows. In the next section we discuss several methods to obtain

rigorous error bounds for linear systems based on H-matrices. In particular an efficient and best way is

shown how to verify the H-property. In Section 3 we discuss how to implement these methods for rigorous

error bounds using directed rounding.

Up to this point, standard Matlab suffices. From Section 4 on the algorithms become too involved and

we use INTLAB [36], the Matlab toolbox for reliable computing. The toolbox INTLAB is entirely written

in Matlab and thus portable on many environments. The only feature of INTLAB we need are the basic

interval operations, so other libraries such as Intlib [9], Profil/Bias [10, 11] or b4m [39] may be used as well.

In Section 4 linear systems the data of which are afflicted with tolerances are treated. Using interval

operations the code becomes easier to read without sacrificing performance and/or accuracy. Now the floor

is prepared to discuss alternative approaches to compute rigorous error bounds in Section 5. In particular a

method originated by Hansen is discussed and improved. In Section 6 we show how to obtain inclusions for

extremely ill-conditioned matrices, i.e. with condition number up to u−2, and finally we show a new method

to calculate inner inclusions, even if only one entry of the matrix and/or the right hand side is afflicted

with a tolerance. This allows to judge the quality of outer inclusions. Detailed computational results and a

conclusion finish the paper.

2. Rigorous error bounds for linear systems. Let a linear system Ax = b with A ∈ Rn×n and

b ∈ Rn be given. As in Part I let R ∈ Rn×n be an approximate inverse of A, for example computed by the

Matlab command inv. Note that there are no a priori assumptions on A and R, in particular no accuracy

requirement on R. For the following explanation assume the matrices A and R to be non-singular; in the

following theorems this will be verified a posteriori by the methods.

Define C := RA. For an approximation x̃ to the solution A−1b we show several ways how to estimate

∆ := x̃−A−1b = C−1R(Ax̃− b) = C−1c with c := R(b−Ax̃) .(2.1)

In Part I of this paper we used normwise error estimates. Define T := diag(t) for a positive vector t ∈ Rn.

Defining F := I − C and exploring

C−1c = c+ C−1Fc = c+ T (I − T−1FT)−1T−1Fc(2.2)

and using |Ex| ≤ ∥x∥∞ · |E|e for E ∈ Rn×n, x ∈ Rn and e := (1, . . . , 1) ∈ Rn we obtain

|x̃−A−1b| ≤ |c|+ ∥(I − T−1FT)−1T−1Fc∥∞ · Te
≤ |c|+ ∥T−1Fc∥∞

1−∥T−1FT∥∞
· t ,

(2.3)

provided ∥T−1FT∥∞ < 1 (see Theorem 4.14 in Part I). Note that this true for any 0 < t ∈ Rn. Since

∥T−1FT∥∞ = ∥T−1|F |T∥∞ = ∥T−1|F |Te∥∞, the obvious choice for Te is the Perron vector t of |F |. Then
|F |t = ϱt implies T−1|F |Te = ϱe, minimizing ∥T−1FT∥∞. For very ill-conditioned matrices, the choice

t = e may fail due to ∥F∥∞ ≥ 1, see Figure 4.1 in Part I; otherwise, however, due to rounding errors in finite

precision, sometimes the choice t = e is superior to the Perron vector.

The previous result is based on the Neumann expansion C−1 = (I − F)−1 = I + C−1F . If A is not too

ill-conditioned, then C = RA is not too far from the identity matrix and likely to be an H-matrix, which

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 3

means that ⟨C⟩ is am M -matrix. The matrix C is an H-matrix, also called generalized diagonally dominant,

if and only if there exists some positive v ∈ Rn such that u := ⟨C⟩v > 0. For the moment assume such a

vector v to be given.

Then C = RA is an H-matrix, so that A and R are non-singular. Denote by

⟨C⟩ := D − E with D > 0, E ≥ 0(2.4)

the splitting of ⟨C⟩ into diagonal and off-diagonal part. Note that u = ⟨C⟩v > 0 implies D > 0. Set

G := I − ⟨C⟩D−1 = ED−1 ≥ 0 .(2.5)

Following [19] define

wk := max
i

Gik

ui
for 1 ≤ k ≤ n ,(2.6)

so that 0 ≤ w ∈ Rn and G ≤ uwT . Multiplying I − ⟨C⟩D−1 ≤ uwT from the left by ⟨C⟩−1 ≥ 0 and using

|C−1| ≤ ⟨C⟩−1, which is true [6] for any matrix C, implies

|C−1| ≤ ⟨C⟩−1 ≤ D−1 + vwT .(2.7)

Direct application of (2.7) to (2.1) gives

|x̃−A−1b| ≤ (D−1 + vwT)|c| .(2.8)

In contrast to the previous approach we use an implicit preconditioning of the matrix ⟨C⟩ to ensure

[D−1⟨C⟩]ii ≡ 1. For the splitting C := D̃ − Ẽ into diagonal and off-diagonal part we have |D̃| = D

and |Ẽ| = E, so that the identity C−1 = D̃−1(I + ẼC−1), |C−1| ≤ ⟨C⟩−1 and x̃−A−1b = C−1c yield

|x̃−A−1b| ≤ ϵ ⇒ |x̃−A−1b| ≤ D−1
(
|c|+ Eϵ

)
.(2.9)

As in (2.2) we may apply C−1 = (I − F)−1 = I + C−1F to ∆ = C−1c to obtain

|x̃− c−A−1b| ≤
(
D−1 + vwT

)
|Fc| .(2.10)

Finally expanding the Neumann-series one more term gives C−1 = I + F + C−1F 2, and therefore

|x̃− c− Fc−A−1b| ≤
(
D−1 + vwT

)
|F 2c| .(2.11)

All the established bounds have to be estimated covering rounding errors which will be discussed in the

next section. When relaxing the bounds (2.10) and (2.11) using |Fc| ≤ |F ||c| etc., the estimates become

particulary simple because the products are just computed in rounding to upwards. Extensive tests suggest

that this weakens the computed bounds marginally.

We compared the normwise bounds (2.3) choosing e = (1, . . . , 1)T and the Perron vector of |F | for t with

(2.8), (2.9) applied to (2.8), (2.10) and (2.11) for various types of matrices with various right hand sides.

We used in particular the matrices in Table 5.2 in Part I of this paper, and also ill-conditioned matrices up

to dimension 1000.

In this test, (2.11) was almost always the best bound and (2.10) was a little weaker. The bound (2.8) was

usually worse than (2.11) by a factor between 1.5 and 2, in few cases up to a factor 15. Hence the results

are as expected.

The normwise bound (2.3) often failed for ill-conditioned matrices and t = e because of ∥F∥∞ ≥ 1. When

choosing the Perron vector for t, the bound (2.3) was usually worse than (2.11) by a factor around 2,

4 S. M. RUMP

sometimes up to a factor 20. The mentioned factors occur only for very ill-conditioned matrices, not too far

from u−1. For matrices with moderate condition number all bounds are almost identical.

Besides (2.9) we may use C−1 = I + FC−1 to deduce that |∆| = |C−1c| ≤ ϵ implies |∆| ≤ |c|+ |F |ϵ, which
means |∆| ≤ min

(
ϵ, |c|+ |F |ϵ

)
. Applying this a few times to the discussed bounds, all final bounds were not

too far apart. Since this improvement costs only some O(n2) operations, a good choice seems to use (2.8),

which computes in O(n) operations, and to improve it as mentioned.

Theorem 2.1. Let A,R ∈ Rn×n and b, x̃ ∈ Rn be given. Let 0 < v ∈ Rn be such that u := ⟨RA⟩v > 0.

Denote by ⟨RA⟩ := D − E the splitting of ⟨RA⟩ into diagonal and off-diagonal part, and define w ∈ Rn by

(2.6). Then A and R are non-singular, and

|A−1b− x̃| ≤ (D−1 + vwT)|c| for c := R(b−Ax̃) .(2.12)

Moreover, |A−1b− x̃| ≤ ϵ implies

|A−1b− x̃| ≤ D−1
(
|c|+ Eϵ

)
and |A−1b− x̃| ≤ |c|+ |I −RA|ϵ .(2.13)

2.1. Verification of H-property. It remains to find a positive vector v with u := ⟨C⟩v > 0, which

means to prove that C = RA is an H-matrix. There is a vast amount of literature on this problem, see, for

example, [14] and the references therein. The optimal choice of v can be seen as follows.

Since RA is not too far from the identity matrix, the vector e := (1, . . . , 1)T ∈ Rn seems a proper choice

for v and is often used, for example in [19]. However, this means that ⟨C⟩ = D − E is strictly diagonally

dominant, which need not be the case due to corruption of R by rounding errors. A better choice is D−1e,

but even then for ill-conditioned matrices RA it may happen that RA is an H-matrix, whereas this fact

cannot be verified by both choices of the vector v. This is not uncommon, see Figure 3.1 in Subsection 3.2.

After spending considerable effort to compute RA, it is particularly annoying to fail to prove RA to be an

H-matrix only because of some standard choice of v.

Therefore it is worth to spend a few vector iterations to adapt the vector v to the particular circumstances.

The matrix ⟨C⟩ = D−E is anM -matrix if and only if r := ϱ(D−1E) < 1. ButD−1E is a nonnegative matrix,

thus its spectral radius corresponds to an eigenvalue, the Perron root. Usually D−1E is at least nonnegative

irreducible if not positive, so that the corresponding eigenvector is positive, and a power iteration

v(k+1) := D−1Ev(k) for v(0) := D−1e(2.14)

implies that maxi v
(k+1)
i /v

(k)
i decreases monotonically to the Perron root [38]. Assume D−1Ev(k) ≈ rv(k)

for r < 1, then

⟨C⟩v(k) = D(I −D−1E)v(k) ≈ (1− r)Dv(k) > 0 .(2.15)

Therefore, starting with v := D−1e, we perform a few power iterations to find a positive vector v satisfying

⟨C⟩v > 0. The computational cost for one iteration is one matrix-vector multiplication plus O(n) operations.

The resulting vector v is required to be positive, which is not true if a row of E is identically zero. This

is taken care of by adding some small positive constant ε to the iterates. The Matlab code needs directed

rounding, therefore it is deferred to Section 3, see Algorithm 3.2 (MVector).

The vector u determines the size of w in (2.6), and hence the quality of the upper bounds of ⟨C⟩−1 used in

(2.11) and also in (2.3). Therefore we add in practice another one or two iterations if the vector u is too

small in magnitude. It adds few operations, but may improve the bounds significantly. To the optimality of

the choice of v consider the following lemma.

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 5

Lemma 2.2. Let a matrix C ∈ Cn×n be given, and denote by N ∈ Rn×n an arbitrary irreducible non-negative

matrix. If Cνν = 0 for some 1 ≤ ν ≤ n, then C is not an H-matrix. Suppose Cνν ̸= 0 for all 1 ≤ ν ≤ n.

Then for small enough positive ε the following is true.

For the splitting D − E := ⟨C⟩ − ϵN into diagonal and off-diagonal part, the matrix M := D−1E has a

(unique) positive eigenvector v to its spectral radius, and C is an H-matrix if and only if ⟨C⟩v is positive.

If the off-diagonal part of ⟨C⟩ is irreducible, then the above is true for ε = 0. In that case, for any positive

vector w, ⟨C⟩w > 0 implies

min
1≤i≤n

[⟨C⟩w]i
wi

< min
1≤i≤n

[⟨C⟩v]i
vi

.(2.16)

Proof. If C is an H-matrix, then ⟨C⟩w > 0 for some positive w, and therefore Cνν ̸= 0 for all 1 ≤ ν ≤ n.

For small enough positive ε, the matrix C is an H-matrix if and only ⟨C⟩ − ϵN is an M -matrix. Assume

such an ε be given and Cνν ̸= 0 for all 1 ≤ ν ≤ n, so that D is invertible.

The off-diagonal part of ⟨C⟩ is non-positive by definition, so that E is non-negative irreducible, and so is

M = D−1E. By Perron-Frobenius theory [38] there is a unique positive eigenvector v of M corresponding to

its spectral radius. If ⟨C⟩v > 0, then C is anH-matrix. If conversely C is anH-matrix, thenD−E = ⟨C⟩−ϵN

is an M -matrix and λ := ϱ(D−1E) < 1, so that

⟨C⟩v = D(I −D−1E)v + εNv = D(1− λ)v + εNv > 0 .(2.17)

If E is irreducible, then the assertions are valid for ε = 0. In that case Perron-Frobenius Theory implies

min
1≤i≤n

[
D−1Ew

]
i

wi
< λ < max

1≤i≤n

[
D−1Ew

]
i

wi

for any positive vector w ̸= v. Hence there an index k with
[
D−1Ew

]
k
> λwk. Using ⟨C⟩ = D(I −D−1E)

and (2.17) with ε = 0 we conclude

[⟨C⟩w]k
wk

<
[D(1− λ)w]k

wk
= (1− λ)Dkk =

[⟨C⟩v]k
vk

=
[⟨C⟩v]i

vi

with the last equality being valid for all i ∈ {1, . . . , n}. The lemma is proved. �

In practice, a choice for N is the matrix of all 1’s. The ϵ-perturbation may be avoided by using the usual

splitting D−E := ⟨C⟩ and applying the theorem to the irreducible normal form of D−1E. For our purposes,

however, Algorithm 3.2 (MVector) is sufficient.

3. Rigorous error bounds using directed rounding. In Part I of this paper we discussed the

computation of rigorous bounds using solely floating-point arithmetic in rounding to nearest. Special care

was necessary to cover all rounding errors, in particular for results in the underflow range.

This is simpler when using directed rounding. Denote by F a set of p-bit binary floating-point numbers

including infinity and NaN, i.e.

F = { M · 2e−p+1 | M, e ∈ Z, |M | ≤ 2p − 1, emin ≤ e ≤ emax} ∪ {−∞,+∞,NaN} .(3.1)

For details see [15] and Part I of this paper. We consider three different ways to round real numbers into

floating-point numbers: Rounding to nearest fl�, rounding to downwards fl∇ and rounding to upwards fl∆.

For x ∈ R they are defined by

|fl�(x)− x| = min{ |f − x| : f ∈ F } ,

fl∇(x) := max{ f ≤ x : f ∈ F } ,

fl∆(x) := min{ f ≥ x : f ∈ F } ,

(3.2)

6 S. M. RUMP

where the ambiguity in the definition of fl� is resolved by rounding ties to even. For a, b ∈ F and ◦ ∈
{+,−, ·, /} these rounding functions define floating-point operations fl�(a ◦ b), fl∇(a ◦ b) and fl∆(a ◦ b),

respectively, mapping F × F into F. All those operations are mandatory in the IEEE 754 floating-point

standard [7, 8], and most computers comply with this standard. For a, b ∈ F it follows

fl∇(a ◦ b) ≤ a ◦ b ≤ fl∆(a ◦ b) and fl∇(a ◦ b) = fl∆(a ◦ b) ⇔ a ◦ b ∈ F .(3.3)

The default in Matlab is rounding to nearest. Fortunately, directed rounding is accessible in Matlab through

INTLAB [36], the Matlab toolbox for reliable computing. As has been mentioned, the toolbox INTLAB is

entirely written in Matlab and thus portable on many environments. The command setround(i) changes

the rounding mode according to the following table:

Matlab command effect

setround(0) rounding to nearest

setround(−1) rounding to downwards

setround(1) rounding to upwards

(3.4)

The setround command changes the control word of the processor so that henceforth all floating-point

operations are executed in the specified rounding mode until the next setround command. This implies

that for given floating-point numbers a,b,c the code

setround(-1)

pinf = a*b-c;

setround(1)

psup = a*b-c;

(3.5)

computes floating-point numbers pinf, psup satisfying

pinf ≤ a · b− c ≤ psup ,(3.6)

where a · b− c ∈ R denotes the true real result. Note that (3.5) always implies (3.6), also in the presence of

overflow or underflow (if overflow occurs the bounds are, however, infinite or NaN). With a little thinking it

becomes clear that the same code (3.5) is also working for vectors and matrices of compatible size, in which

case pinf, psup are quantities of the corresponding dimension satisfying (3.6). Note that for c − a · b this

approach would not work correctly.

Directed rounding is accessible in standard Matlab on many architectures using the undocumented com-

mand feature(’setround’,rnd) with values 0.5, −∞ and ∞ of rnd for switching the rounding to nearest,

downwards and upwards, respectively.

3.1. Executable code implementing Theorem 2.1 using directed rounding. The following

Algorithm 3.1 computes an approximate solution xs together with an error bound err such that |A−1b−xs| ≤
err, and proves non-singularity of the input matrix A. It is based on Theorem 2.1. The exposition would

become easier and more readable when using the interval operations as provided by INTLAB [36]. We avoid

this dependency for the moment and present the algorithm using only directed rounding, i.e. pure Matlab

code. From the next Section 4 on we use interval operations because the algorithms become more involved

and would become difficult to read when using only directed rounding.

Algorithm 3.1. Approximate solution xs of Ax = b with error bound err such that |A−1b − xs| ≤ err is

rigorously satisfied (together with the proof of non-singularity of A).

1 function [xs,err] = LssErrBndDirRdg(A,b)

2 setround(0) % rounding to nearest

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 7

3 err = repmat(NaN,size(b)); n = size(A,2); % initialization

4 R = inv(A); % approximate inverse of A

5 xs = ResidIter(A,b,R); % improved approximate solution

6 [rinf,rsup] = Dot2DirRdg([A b],[xs;-1],1); % inclusion of A*xs-b

7 setround(+1) % rounding to upwards

8 rmid = rinf + 0.5*(rsup-rinf); % rmid >= (rinf+rsup)/2

9 delta = abs(R)*(rmid-rinf); % delta >= |R|r with r:=(rsup-rinf)/2

10 csup = R*rmid + delta; % upper bound of R(A*xs-b)

11 Csup = R*A; % upper bound of RA

12 setround(-1) % rounding to downwards

13 cinf = R*rmid - delta; % [cinf,csup] inclusion of R(A*xs-b)

14 Cinf = R*A; % [Cinf,Csup] inclusion of RA

15 c = max(abs(cinf),abs(csup)); % upper bound of |R(A*xs-b)|

16 d = diag(Cinf); % lower bound of diag(RA)

17 if any(d<=0), return, end % C not H-matrix, no inclusion

18 E = max(abs(Cinf),abs(Csup)); E(1:n+1:n^2) = 0; % <C>=D-E with D,E>=0, D:=diag(d)

19 [u,v] = MVector(E,d); % vector iteration to verify M-property

20 if any(u<=0) || any(v<=0), return, end % verification of M-property failed

21 setround(1) % rounding to upwards

22 w = max(E./(u*d’)); % upper bound u*w >= E*D^-1 (w row)

23 dinv = 1./d; % upper bound of diag(D^-1)

24 err = dinv.*c + v*(w*c); % error bound for xs

25 N = inf; % initialize constant

26 for iter=1:15 % at most 15 improvements of error bound

27 err = min(err, dinv.*(c + E*err)); % improved error bound

28 Nold = N; N = max(err); % norm of correction

29 if N >= 0.99*Nold, break, end % stop iteration if no improvement

30 end

31 setround(0) % rounding to nearest

3.2. Proof of correctness of Algorithm 3.1 (LssErrBndDirRdg). Let an n× n matrix A and right

hand side b ∈ Fn with floating-point entries be given. Algorithm 3.1 is executable Matlab/INTLAB code, so

all operations are floating-point operations with floating-point result. In contrast, all of the operations in the

following analysis are the exact real operations. For example, using R as computed in line 4, C := R·A ∈ Rn×n

denotes the true matrix product of the (floating-point) matrices R and A. In general, C /∈ Fn×n.

After making sure that the rounding is set to nearest in line 2, an approximate inverse R of A and an

approximate solution xs is computed in lines 4 and 5, the latter improved by a residual iteration using

Algorithm 4.13 in Part I of this paper. Nothing is required on the quality of R and xs for the following

theoretical analysis. Assume for the moment that the quantities rinf, rsup ∈ Fn computed in line 6 satisfy

rinf ≤ A · xs− b ≤ rsup .(3.7)

We come to that at the end of this section. We split the computation of delta in line 9 into

rrad = rmid-rinf; delta = abs(R)*rrad;

both computed in rounding to upwards as specified in line 7. Then using line 8

(rinf+ rsup)/2 = rinf+ (rsup− rinf)/2 ≤ rmid and rmid− rinf ≤ rrad ,

8 S. M. RUMP

so that

rmid− rrad ≤ rinf and rsup ≤ 2 · rmid− rinf ≤ rmid+ rrad .(3.8)

Define µ := rmid and ρ := rrad, then (3.7) implies A · xs − b = µ + r for |r| ≤ ρ. We use the idea in (3.5)

and (3.6) and rounding to upwards to conclude

R · r ≤ |R · r| ≤ |R| · rrad ≤ delta

R · (A · xs− b) = R · (µ+ r) ≤ R · rmid+ delta ≤ csup

R · A ≤ Csup .

(3.9)

After switching the rounding to downwards in line 12 we obtain from lines 13 and 14

cinf ≤ R · rmid− delta ≤ R · (µ+ r) = R · (A · xs− b)

Cinf ≤ R · A .
(3.10)

This nice implicit transformation of infimum-supremum into midpoint-radius is due to Oishi [27]. The

operations in lines 15 and 16 cause no rounding error, so that after line 17

|R · (A · xs− b)| ≤ c and diag(R · A) ≥ d > 0(3.11)

is satisfied. After extracting the diagonal of E in line 18 we have

⟨R · A⟩ ≥ diag(d)− E with d > 0 and E ≥ 0 .(3.12)

For the true splitting ⟨R · A⟩ = D − E this implies

D ≥ diag(d) and E ≤ E ,(3.13)

so that the error bounds in Theorem 2.1 remain valid when replacing D and E by the computed quantities

diag(d) and E, respectively.

The computation of the vectors u and v in line 19 is based on the described Perron iteration for D−1E using

the computed quantities d and E. The corresponding Algorithm 3.2 (MVector) is given after the proof. It

computes vectors u and v satisfying (diag(d)− E) · v ≥ u, so that ⟨R · A⟩ = D − E implies

⟨R · A⟩ · v ≥ (diag(d)− E) · v ≥ u .(3.14)

Thus arriving in line 21 means u > 0 and v > 0, so that R·A is an H-matrix, and A (and R) are proved to

be non-singular. Using (3.13) we see that the (row) vector w computed in rounding to upwards in line 22

satisfies

wk ≥ max
i

Eik

uidk
≥ max

i

(
ED−1

)
ik

ui
for all 1 ≤ k ≤ n ,(3.15)

so that

uiwk ≥
(
ED−1

)
ik

for all 1 ≤ i, k ≤ n .(3.16)

It follows that err computed in line 24 in rounding to upwards is an upper bound of the right hand side

of (2.12), so that indeed |A−1b − xs| ≤ err. The correctness of the final bound follows by (2.13) and the

rounding to upwards.

The Perron iteration based on Subsection 2.1 is performed by the following algorithm MVector.

Algorithm 3.2. Perron vector iteration to find the optimal vector v > 0 proving ⟨C⟩ = D − E to be an

M -matrix by ⟨C⟩v > 0. To save memory, D is represented by its diagonal.

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 9

Fig. 3.1. Percentage that ⟨R · A⟩x > 0 is satisfied for choosing the Perron vector computed by Algorithm 3.2 (Mvector) for

x, but not satisfied for x := (1, . . . , 1)T . Graphs for random matrices of dimensions n = 100 (o), n = 200 (∗), n = 500 (+)

and n = 1000 (×) and condition numbers ranging from 1013 to 1016 are shown.

function [u,v] = MVector(E,d)

% Vector iteration on M=D-E, D,E>=0, D:=diag(d), to verify M-property

setround(-1) % Vector iteration in rounding downwards

vnew = 1./d; % first guess

minu = -inf; % initialization

for iter=1:15 % at most 15 iterations

v = vnew; minuold = minu; % update

w = E*(-v);

u = d.*v + w; % vector iteration, u <= M*v

minu = min(u); % new minimum of M*v

vnew = -w./d + eps; % update of guess of H-vector

r = vnew./v; % ratio new and old Perron vector

if (max(r)<1.001*min(r)) && ((minu>0) || (minu<minuold))

return % sufficiently accurate

end

end

If successful, the output are two positive vectors u and v with (D−E) ·v ≥ u > 0, so that D−E is an H-matrix

provided E ≥ 0. This is true because the entire iteration is performed in rounding to downwards, so that

always w ≤ E · (−v) = −E · v and

u ≤ D · v+ w ≤ (D− E) · v ≤ ⟨R · A⟩v .

As has been mentioned, it may happen for ill-conditioned matrices that ⟨R·A⟩x > 0 is satisfied for choosing an

approximation of the Perron vector ofD−1E for x, but is not satisfied for the standard choice x := (1, . . . , 1)T .

The percentage of such cases for random matrices of different dimensions and condition numbers is displayed

in Figure 3.1.

10 S. M. RUMP

It remains to specify Algorithm Dot2DirRdg and to prove the correctness of (3.7). Using directed rounding

it is easy to rewrite Algorithm 3.4 (Dot2Near) from Part I:

Algorithm 3.3. Approximation of the matrix product A · B for A ∈ Fm×k, B ∈ Fk×n “as if” accumulated in

twice the working precision and rounded into working precision with rigorous error term.

1 function [res,ressup] = Dot2DirRdg(A,B,Incl)

2 setround(0) % rounding to nearest

3 [p,e] = TwoProduct(A(:,1),B(1,:)); % error-free transformation of first product

4 if Incl, einf = e; esup = e; end % (underflow is taken care of later)

5 k = size(A,2); % inner dimension

6 for i=2:k % matrix product by rank-1 updates

7 [h,r] = TwoProduct(A(:,i),B(i,:)); % error-free transformation of i-th product

8 [p,q] = TwoSum(p,h); % error-free transformation of accumulated sum

9 if Incl % rigorous error bounds to be computed

10 setround(-1); einf = einf+(q+r); % lower bound of sum of errors

11 setround(+1); esup = esup+(q+r); % upper bound of sum of errors

12 setround(0) % rounding to nearest

13 else % approximation to be computed

14 e = e + (q + r); % approximate accumulation of errors

15 end

16 end

17 if Incl % output inclusion [res,ressup]

18 setround(+1) % rounding to upwards

19 delta = max(1.5*k*eps,1)*realmin; % cover possible underflow

20 ressup = p + (esup + delta); % upper bound of A*B

21 setround(-1); % rounding to downwards

22 res = p + (einf - delta); % lower bound of A*B

23 setround(0) % rounding to nearest

24 else % output approximation res

25 res = p + e; % extra-precise approximation

26 end

We claim that the call res = Dot2DirRdg(A,B,0) computes an approximation res of the product A ·B with

extra-precise accumulation of the dot products, and after the call [res,err] = Dot2DirRdg(A,B,1) the

computed quantities res and ressup satisfy

res ≤ A · B ≤ ressup .(3.17)

For Incl = 0, the approximation res is computed as in Algorithm 3.4 (Dot2Near). For the computation of

the rigorous error bounds, assume for the moment that no underflow occurs. Then both TwoProduct and

TwoSum in lines 3, 7 and 8 are error-free transformations, see (3.1) in Part I of this paper. If in line 14 there

would be no rounding error, then after line ending the loop in line 16 the true sum p+ e would be equal to

the true product A · B. But in lines 10, 11, 20 and 22 the summations are performed with directed rounding,

and the result (3.17) follows. Possible underflow is covered in line 19 according to (3.1) in Part I of this

paper, so that (3.17) is always true. Note that setting the rounding to nearest in line 12 is necessary to

ensure that TwoProduct and TwoSum are indeed error-free transformations.

We proved the following result.

Theorem 3.4. Let xs and err be the results of Algorithm 3.1 (LssErrBndDirRdg) applied to A ∈ Fn×n

and b ∈ Fn. If Algorithm 3.1 ends successfully, i.e. err is not a vector of NaN’s, then the input matrix A is

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 11

non-singular and

|A−1b− xs| ≤ err .(3.18)

3.3. Improvement of Algorithm 3.1. In this subsection we discuss an algorithmic improvement of

Algorithm 3.1 which - for simplicity - was not mentioned before. Theorem 2.1, which is implemented by

Algorithm 3.1, is based on the splitting ⟨RA⟩ = D−E so that error bounds for the matrix product RA are

necessary. The standard error estimate [5] for a dot product xT y for x, y ∈ Rk evaluated in floating-point is∣∣fl(xT y)− xT y
∣∣ ≤ γk|xT ||y|+ keta/2(3.19)

using γk := ku/(1 − ku), where the extra term keta/2 covers underflow; in IEEE 754 double precision

(binary64) we have u = 2−53 and eta = 2−1074. For R,A ∈ Fn×n it follows immediately

|fl(RA)−RA| ≤ γn|R||A|+ neta/2 · eeT .(3.20)

However, two matrix multiplications are necessary to bound RA, the same as for calculating RA in rounding

downwards and upwards. But the application of Theorem 2.1 requires only a lower bound of the diagonal

of |RA| and an upper bound of the off-diagonal elements of |RA|. More precisely, the off-diagonal elements

in E are only needed for the Perron iteration in Algorithm 3.2 (MVector) and the rigorous computation of

w satisfying (2.6). Both can be covered by the following code requiring only one matrix multiplication:

1 setround(-1); % rounding to downwards

2 Cinf = R*A; % lower bound Cinf <= RA

3 d = diag(Cinf); % lower bound of diag(RA)

4 if all(d>0) % C may be H-matrix

5 setround(1); % rounding to upwards

6 e = ones(n,1); % vector (1,...,1)^T

7 g = n*eps/(-(n*eps-1)); % upper bound for gamma_2n

8 Ee = (abs(Cinf)*e-d) + (g*(abs(R)*(abs(A)*e)-d) + max(n^2*eps,1)*realmin*e);

The rounding mode in line 1 implies Cinf ≤ RA, so that 0 < d ≤ diag(RA) in line 5. Rounding to

downwards defines floating-point operations with relative rounding error unit 2u and maximum error eta in

the underflow range rather than eta/2. Therefore (3.20) and ⟨RA⟩ = D − E imply

E = |E| ≤ |Cinf| −D +
2nu

1− 2nu
(|R||A| −D) + neta · eeT .(3.21)

Thus observing the definition eps := 2−52 = 2u in Matlab, realmin = 1
2u

−1eta = eps−1eta, the rounding

mode and a little thinking proves

0 < d ≤ D = diag(RA) and Ee ≤ Ee .(3.22)

Up to now only one matrix multiplication Cinf = R ∗ A was necessary by avoiding to calculate |R||A| explic-
itly. This is also possible in the further calculations. The only occurrence of E in Algorithm 3.2 (MVector) is

w = E*(-v) in line 8. Replacing this line by w = (-max(v))*Ee, setting µ := maxi(vi), observing E, v ≥ 0

and the rounding to downwards ensures w ≤ −µ · Ee ≤ −E · (µe) ≤ −Ev as desired. Furthermore E is only

used in lines 22 and 27 of Algorithm 3.1 (LssErrBndDirRdg). Replace line 22 by

uinv = 1./u; % upper bound of u_i^-1

w = max(uinv(:,ones(1,n)).*abs(Cinf)).*dinv’ - uinv’ ;

w = w + (g*(((uinv’*abs(R))*abs(A)).*dinv’) + max(n*eps*max(uinv)*max(dinv),1)*realmin);

12 S. M. RUMP

Here uinv(:,ones(1,n)) is the n×n-matrix with columns uinv, so that uinv(:,ones(1,n)).*abs(Cinf)

is an upper bound of D̃|Cinf| for D̃ denoting the diagonal matrix with entries u−1
ν . The maximum in the first

computation of w is the (row) vector of the maxima of columns, so that by u−1
ν ≤ uinvν and D−1

νν ≤ dinvν

the first computed w satisfies

wk ≥ max
i

|Cinf|ik
uiDkk

− u−1
k = max

i

(|Cinf| −D)ik
uiDkk

= max
i

(
(|Cinf| −D)D−1

)
ik

ui

for 1 ≤ k ≤ n. For the error term we have

γ2n ·max
i

(|R||A| −D)ik
uiDkk

+max
i

neta

uiDkk
≤
[
uinvT |R||A|D−1]

]
k
+ n(max

ν
uinvν)(max

ν
dinvν) · eta .

Hence, putting things together, (3.21) implies

wk ≥ max
i

(ED−1)ik
ui

for 1 ≤ k ≤ n ,

so that (ED−1)ik ≤ uiwk is satisfied as required in the analysis following (2.6). Finally, replacing E*err in

line 27 by Ee*max(err), an upper bound of the estimate in (2.13) is computed. This shows that with only

one matrix multiplication Cinf=R*A verified bounds can be computed.

The quality of the bounds is almost identical to those by the original Algorithm 3.1 (LssErrBndDirRdg)

provided that Algorithm 3.2 (MVector) succeeds to compute vectors u, v ∈ Fn with ⟨RA⟩v ≥ u > 0. This

may fail due to the relaxed estimate of the upper bound of E in (3.21). In that case Csup=R*A is computed

as in Algorithm 3.1, a new Perron vector is computed by MVector based on the improved E, and we continue

as before.

The advantage is that for not too ill-conditioned problems one matrix multiplication can be saved. In any

case, whether the approach succeeds or not, only few additional O(n2) operations are necessary. Asymptoti-

cally, if successful, the computing time decreases by about one third. In practice, as has been mentioned, the

performance of matrix multiplications is better than that of matrix inversion, and also some interpretation

overhead is added. For timing results see Figure 8.2.

4. Linear systems with data afflicted with tolerances. Denote by IR be the set of non-empty

closed and bounded intervals

x = [x1, x2] = {x ∈ R : x1 ≤ x ≤ x2} .(4.1)

Operations ◦ : IR× IR → IR for ◦ ∈ {+,−, ·, /} are defined by

x,y ∈ IR : x ◦ y :=
∩

{z ∈ IR : Z ⊆ z} for Z := {x ◦ y : x ∈ x, y ∈ y}(4.2)

provided 0 /∈ y in case of division. For these scalar operations always x ◦ y = Z, i.e. there is no difference to

the power set operation, and obviously the inclusion property

x ∈ x, y ∈ y ⇒ x ◦ y ∈ x ◦ y(4.3)

holds true. Intervals with equal endpoints define the natural embedding of R into IR. Using the partial

ordering we define the sets IRn and IRm×n of non-empty and compact interval vectors and matrices similar

to (4.1), respectively, with the natural embedding as before. The same definition (4.2) is used for operations

between compatible vector and matrix quantities. The sets IF, IFn and IFm×n are defined in the same way

except that the bounds are floating-point quantities, for example

A = [A1, A2] = {A ∈ Rm×n : A1 ≤ A ≤ A2} ∈ IFm×n for A1, A2 ∈ Fm×n .(4.4)

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 13

Note that although the bounds are floating-point quantities, the intervals comprise of all real quantities

within the bounds. Obviously, IFm×n ⊆ IRm×n. Again, operations on IF, IFn and IFm×n can be defined as

in (4.2), and again the important inclusion property (4.3) is true. For more details see [18].

In view of practical applications it not necessary and usually not wise to insist on narrowest inclusions as in

(4.2). In the vast majority of applications (as in this paper) only the inclusion property (4.3) is used. This

allows the design of fast interval operations based on BLAS libraries (cf. [35]). Based on that, all interval

operations are available in INTLAB [36]. As an example, for matrices A, B ∈ Fn×n, an inclusion [Cinf, Csup]

of A · B is computed by

setround(-1); Cinf = A*B;

setround(+1); Csup = A*B;

This inclusion is not best possible, but satisfies the inclusion property (4.3). This approach was used in lines

14 and 11 of Algorithm 3.1 (LssErrBndDirRdg). Real quantities may be replaced by an including interval

with floating-point endpoints, so that interval operations allow rigorous error bounds for operations with

real numbers.

INTLAB makes use of the operator concept in Matlab by defining a data type intval. For a floating-point

(scalar, vector or matrix) quantity x, the type cast intval(x) is a variable of type intval with left and right

bound x. Moreover, infsup(xinf,xsup) checks xinf ≤ xsup and defines an interval with the left and right

bounds xinf and xsup, respectively, whereas x=midrad(xmid,xrad) checks xrad ≥ 0 and defines an interval

x containing [xmid − xrad, xmid + xrad]. In this case x may be a superset of [xmid − xrad, xmid + xrad]

because real intervals are stored in INTLAB by their left and right bound. The type cast and initializations

of interval quantities may be applied to vector and matrix quantities xinf, xsup, xmid and xrad as well.

If at least one operand in a Matlab/INTLAB operation is of type intval, then the corresponding interval

operation is executed, possibly using the natural embedding for the other operand. For example, after line

5 in Algorithm 3.1 (LssErrBndDirRdg) the statement r=R*(A*intval(xs)-b) would calculate a rigorous

inclusion r ∈ IFn of R · (A · xs − b). This is not necessarily true for rs=intval(R)*(A*xs-b) because the

residual res=A*xs-b is calculated in floating-point with res ∈ Fn. For all INTLAB operators the rounding

mode before and after execution is the same.

As a first example we rewrite Algorithm 3.3 (Dot2DirRdg) in INTLAB using interval operations:

Algorithm 4.1. Matrix product A · B for A ∈ Fm×k, B ∈ Fk×n “as if” accumulated in twice the working

precision with approximate result C ∈ Fm×n for Incl = 0, and rigorous inclusion C ∈ IFm×n for Incl = 1.

function C = Dot2(A,B,Incl)

if nargin==2, Incl=0; end % no error term if "Incl" not specified

[p,e] = TwoProduct(A(:,1),B(1,:)); % error-free transformation of first product

k = size(A,2); % inner dimension

for i=2:k % matrix product by rank-1 updates

[h,r] = TwoProduct(A(:,i),B(i,:)); % error-free transformation of i-th product

[p,q] = TwoSum(p,h); % error-free transformation of accumulated sum

if Incl % rigorous error bounds to be computed

t = q + intval(r); % inclusion of sum of errors

else % approximation to be computed

t = q + r; % approximation of sum of errors

end

e = e + t; % approximate accumulation of errors

end

if Incl, e=e+midrad(0,max(1.5*k*eps,1)*realmin); end % cover possible underflow

14 S. M. RUMP

C = p + e; % extra-precise result

In view of Dot2DirRdg the algorithm seems self-explaining, only shorter and simpler. Note that only t, e

and C are interval quantities for Incl = 1; for Incl = 0 only floating-point quantities occur in the algorithm.

Also note that the multiplications 1.5*k*eps*realmin do not cause a rounding error and may safely be

executed in rounding to nearest.

Next we rewrite Algorithm 3.1 (LssErrBndDirRdg) for linear systems the data of which may be afflicted

with tolerances. In this case the set of all A−1b for A and b within the tolerances is included together with

the proof of non-singularity of all such matrices A.

Algorithm 4.2. Rigorous inclusion x ∈ IFn of the solution of the linear systems Ax = b. If the matrix

and/or right hand side are afflicted with tolerances, i.e. A ∈ IFn×n and/or b ∈ IFn, then the inclusion covers

all linear systems within the given data (together with the proof of non-singularity of all matrices in A).

1 function x = LssErrBnd(A,b,Illco)

2 setround(0) % rounding to nearest

3 x = intval(NaN(size(b))); n = size(A,2); % initialization

4 R = inv(mid(A)); % approximate inverse of mid(A)

5 xs = ResidIter(mid(A),mid(b),R); % approximate solution of midpoint system

6 tol = (any(rad(A(:))>0)) || (any(rad(b)>0)); % check tolerances

7 if tol % input data with tolerances

8 c = mag(R*(A*intval(xs)-b)); % upper bound of |R(A*xs-b)|

9 else % extra-precise accumulation

10 c = mag(R*Dot2([A b],[xs;-1],1)); % upper bound of |R(A*xs-b)|

11 end

12 C = R*intval(A); % inclusion of RA

13 d = diag(C.inf); % lower bound of diag(RA)

14 if all(d>0) % C may be H-matrix

15 E = mag(C); E(1:n+1:n^2) = 0; % <C>=D-E with D,E>=0, D:=diag(d)

16 [u,v] = MVector(E,d); % vector iteration to verify M-property

17 if all(u>0) && all(v>0) % C proved to be H-matrix

18 setround(1) % rounding to upwards

19 w = max(E./(u*d’)); % upper bound (u*w)_ik >= (E*D^-1)_ik

20 dinv = 1./d; % upper bound of diag(D^-1)

21 err = dinv.*c + v*(w*c); % error bound for xs

22 N = inf; % initialize constant

23 for iter=1:15 % at most 15 improvements of error bound

24 err = min(err, dinv.*(c + E*err)); % improved error bound

25 Nold = N; N = max(err); % norm of correction

26 if N >= 0.99*Nold, break, end % stop iteration if no improvement

27 if max(abs(err)./abs(xs))<=eps, break, end % already maximally accurate

28 end

29 x = xs + midrad(0,err); % final inclusion

30 setround(0) % rounding to nearest

31 return

32 end

33 end

34 if (nargin>2) && Illco && (~tol) % solution by phase II

35 x = LssErrBnd(Dot2(R,A,1),Dot2(R,b,1),0);

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 15

36 end

37 setround(0) % rounding to nearest

In the remainder of this section Algorithm LssErrBnd is analyzed and proved to be correct for the call

x = LssErrBnd(A, b, Illco) with Illco = 0 ,(4.5)

in particular for input data with tolerances. Despite the type cast intval the functions mid, rad and mag

are used. For a floating-point number x ∈ F or interval x ∈ IF they are defined as in Table 4.1.

Table 4.1

Definition of mid, rad and mag for non-interval and interval input x.

x ∈ F x ∈ IF

mid(x)

rad(x)

x

0

mx := mid(x) ∈ F

rx := rad(x) ∈ F

}
such that x ⊆ [mx− rx, mx+ rx]

mag(x) |x| max{|x| : x ∈ x} ∈ F

Note that the quantities mx := mid(x) and rx := rad(x) are computed such that x ⊆ [mx− rx, mx+ rx]; they

are not necessarily equal to the true midpoint and radius, respectively, because those do not need to be in

F. All definitions apply to vector and matrix quantities entrywise.

First assume A ∈ Fn×n and b ∈ Fn is given. Then mathematically there is no difference to Algorithm 3.1

(LssErrBndDirRdg): By definition mid(A) = A, mid(b) = b, and tol = 0, so that R and xs are identical,

and c as computed in line 10 as well. No matter how the inclusion C of R · A in line 12 is computed,

all assertions remain valid as long as R · A ⊆ C (in fact, INTLAB computes C in line 10 exactly as in

Algorithm LssErrBndDirRdg). The rest of Algorithm LssErrBnd up to line 33 computes the same quantities

as Algorithm LssErrBndDirRdg, only the final result is stored in an interval vector x ∈ Fn rather than in an

approximation with separate error term. The simple check in line 27 for already achieved maximum accuracy

is fast and proves to be useful. Since Illco = 0, line 35 is not executed.

Next assume A ∈ IFn×n or b ∈ IFn, or both. In lines 4 and 5 an approximate inverse of mid(A) and an

approximate solution xs of the midpoint linear system is computed. Mathematically the concrete values

are irrelevant, all assertions are valid for any R ∈ Fn×n and xs ∈ Fn. The extra-precise evaluation of the

correction R(Ax̃− b) does not gain accuracy because interval quantities are involved in A or b. This would

change if only few entries in A or b have nonzero diameter, however, this seems untypical. Therefore an

upper bound c ∈ Fn of |R · (A · xs− b)| is computed by standard interval arithmetic in line 8 using mag as in

Table 4.1.

Now let fixed but arbitrary A ∈ Rn×n and b ∈ Rn with A ∈ A and b ∈ b be given (in case A or b is a

non-interval quantity, we use the natural embedding). Note that A and b are arbitrary real quantities within

the interval bounds. Then the inclusion property (4.3) implies C := R ·A ∈ C for C as computed in line 12.

Let C = D − E the splitting of C into diagonal and off-diagonal part. The left, i.e. lower bound of the

diagonal of C is stored in d, and d > 0 implies D ≥ diag(d) > 0. Moreover, C ∈ C implies |C| ≤ mag(C), so

that |E| ≤ E after execution of line 15. When arriving in line 18, vectors u, v > 0 have been computed by

MVector(E,d) in line 16 satisfying (diag(d)− E) · v ≥ u > 0. Using D ≥ 0 this implies

⟨C⟩ · v = (D − |E|) · v ≥ (diag(d)− E) · v > 0 ,

so that ⟨C⟩ is an M -matrix. Next an upper bound of ⟨diag(d) − E⟩−1 is computed as in Algorithm 3.1

(LssErrBndDirRdg). Hence a standard result from the theory of M -matrices (Theorem 2.5.4 in [6]) implies

C−1 ≤ ⟨C⟩−1 ≤ ⟨diag(d)− E⟩−1 ,

16 S. M. RUMP

so that |R · (A · xs− b)| ≤ c and the rounding to upwards as set in line 18 prove that A is non-singular and

that x is an inclusion of A−1b. Since A and b were chosen arbitrarily within A and b, this proves the following

result.

Theorem 4.3. Let a matrix A ∈ Fn×n and a right hand side b ∈ Fn be given, and let x ∈ Fn be the result

of Algorithm 4.2 (LssErrBnd) computed by the call x = LssErrBnd(A,b,0). Then

A is non-singular and A−1b ∈ x(4.6)

for A = A and b = b. If A ∈ IFn×n and/or b ∈ IFn, then (4.6) is true for all A ∈ A and b ∈ b.

The computational effort for A ∈ Fn×n is 3n3 + O(n2) operations, and for A ∈ IFn×n it is 4n3 + O(n2)

operations.

5. Alternative approaches to calculate rigorous error bounds for linear systems. Given A ∈
Rn×n and b ∈ Rn, we discuss in this section alternative approaches to prove A to be non-singular and to

calculate rigorous error bounds for A−1b.

5.1. The Krawczyk-operator. Let A ∈ Rn×n and b ∈ Rn be given together with some approximate

inverse R of A, an approximate solution x̃, and some interval vector x ∈ IRn. Suppose

x̃+R(b−Ax̃) + (I −RA)(x− x̃) ⊆ x ,(5.1)

where for simplicity of exposition all operations are power set operations. Then Krawczyk [12] showed that,

if ∥I − RA∥ < 1 for some norm, A is non-singular and A−1b ∈ x. The left hand side of (5.1) is called the

Krawczyk-operator. This has been simplified and improved by Rump [32] as follows. Suppose

R(b−Ax̃) + (I −RA)x ⊆ int(x) ,(5.2)

where int(·) denotes the topological interior. Then A is non-singular and A−1b ∈ x̃+ x. No assumption on

a norm of I −RA is necessary. It is often superior to compute an inclusion of the error with respect to the

approximation x̃.

Moreover, Krawczyk did not provide a method how to find a suitable x except the obvious choice x̃± ε. In

[32] we introduced and analyzed the “so-called” epsilon-inflation to construct a suitable x. The method is

implemented as algorithm verifylss(A,b) in INTLAB. Although the method is more than 30 years old, it

seems to be the state of the art for computing rigorous inclusions for general dense matrices [4].

A successful application of (5.2) requires the necessary condition ϱ(|I − RA|) < 1 to hold true. Under

reasonable assumptions and using the epsilon-inflation, this condition is also sufficient [32], i.e. the interval-

iteration ends successfully. For small enough positive δ and E = eeT this condition implies r := ϱ(δE + |I −
RA|) < 1, and by Perron-Frobenius Theory the existence of some 0 < u ∈ Rn with(

δE + |I −RA|
)
u = ru with r < 1 .(5.3)

Hence, adapting the proof of Proposition 3.7.2 in [18],

ru > |I −RA|u ≥ (⟨I⟩ − ⟨RA⟩)u = u− ⟨RA⟩u ,(5.4)

so that ⟨RA⟩u > (1− r)u > 0 proves RA to be an H-matrix. Conversely, such as for RA = −I, RA may be

an H-matrix without ϱ(|I −RA|) < 1 being true.

As a consequence, Theorem 2.1 is always applicable whenever the Krawczyk-operator or (5.2) is. If R is scaled

so that all diagonal elements of RA are equal to 1, then D = I and |I − RA| = E, so that ϱ(|I − RA|) < 1

is equivalent to RA being an H-matrix, and (5.2) and Algorithm 4.2 (LssErrBnd) have the same scope of

applicability.

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 17

The mentioned interval-iteration has the same effect as a Perron iteration. Therefore we did not find a case

where Theorem 2.1 succeeds to compute an inclusion but (5.2) fails, see the computational results presented

in Section 8.

5.2. The theorem by Hansen/Bliek/Rohn/Ning/Kearfott/Neumaier. The theoretical back-

ground for linear systems with tolerances, which we used implicitly in the previous section, is as follows.

The mignitude and magnitude of a (scalar) interval x ∈ IR is defined by

mig(x) := min{|x| : x ∈ x} ∈ R and mag(x) := max{|x| : x ∈ x} ∈ R .(5.5)

The definition, like for midpoint and radius, extends to interval vectors and matrices entrywise. For the

magnitude we use also the intuitive notation |x|. For an interval matrix A ∈ IRn×n, Ostrowski’s comparison

matrix ⟨A⟩ ∈ Rn×n is, similar to (1.1), defined by [18]

⟨A⟩ii := mig(Aii) and ⟨A⟩ij := −mag(Aij) for i ̸= j ,(5.6)

If C := ⟨A⟩ ∈ Rn×n is an M -matrix, then A is called H-matrix. In that case every A ∈ A is non-singular,

and |A−1| ≤ C−1 (cf. [18]). The hull of a set X ⊆ Rn is defined to be the smallest interval vector containing

X, i.e.

hull(X) :=
∩

{x ∈ IRn : X ⊆ x} .(5.7)

We use interval operations as defined in (4.2). For given A ∈ IRn×n,b ∈ IRn define

Σ(A,b) := {x ∈ Rn : ∃A ∈ A,∃b ∈ b, Ax = b} .(5.8)

Theorem 4.3 shows that Algorithm 4.2 (LssErrBnd) computes some x with hull
(
Σ(A,b)

)
⊆ x. This in-

clusion, however, may be an overestimation due to data dependencies. In Section 7 we will discuss how to

measure this. Much work has been invested to reduce this overestimation [18]. It was hoped that a clue

would be the theorem to be discussed in this subsection: For certain matrices the exact hull of the solution

set Σ(A,b) can be computed efficiently. In general, the problem is NP-hard.

For given A ∈ IRn×n one may use, as in Algorithm 4.2 (LssErrBnd), an approximate inverse R of the

midpoint matrix as a preconditioner. Define C := R ·A ∈ IRn×n and C := ⟨C⟩ ∈ Rn×n. If the tolerances in

A are not too wide and the matrices in A not too ill-conditioned, it is not unlikely that C is an H-matrix. In

that case the following theorem is applicable. As the number of authors suggests, the theorem has a history

[3, 1, 30, 24, 19, 20]. We state the version by Neumaier [19, 20], who presented a short and nice proof. Over

there also historical remarks appear.

Theorem 5.1. Let C ∈ IRn×n be an H-matrix, c ∈ IRn a right hand side,

r = ⟨C⟩−1|c|, δi = (⟨C⟩−1)ii, αi = ⟨C⟩ii − 1/δi, βi = ri/δi − |ci| .(5.9)

Then hull
(
Σ(C, c)

)
is contained in the vector x ∈ IRn with the components

xi =
ci + [−βi, βi]

Cii + [−αi, αi]
.(5.10)

Moreover, if the midpoint of C is diagonal, then hull
(
Σ(C, c)

)
= x.

The astonishing part of this theorem is the last sentence: If all off-diagonal entries of C are centered around

zero, then x is equal to the true hull of the solution set hull
(
Σ(A,b)

)
.

For the practical application of Theorem 5.1, the quantities in (5.9) have to be estimated. Following we

discuss and improve Neumaier’s approach [19]. The critical part is an upper bound for the inverse of ⟨C⟩,
where for the diagonal δ a lower bound is required as well.

18 S. M. RUMP

Since ⟨C⟩ ∈ Rn×n, we split ⟨C⟩ = D −E into diagonal and off-diagonal part as in (2.4). Then the estimate

(2.7) of ⟨C⟩−1 requires a positive vector v ∈ Rn with u = ⟨C⟩v > 0. Neumaier [19] proposes to compute an

approximate inverse B of the midpoint of ⟨C⟩ and uses the natural choice v := Be with e := (1, · · · , 1)T , for
which one can expect that ⟨C⟩v is not too far from e. Then he computes a nonnegative vector w similar to

in (2.6) satisfying I − ⟨C⟩B ≤ uwT . By uwT ≥ 0 also ⟨C⟩B − I ≤ uwT , and multiplying from the left by

⟨C⟩−1 ≥ 0 and using u = ⟨C⟩v he concludes

B − vwT ≤ ⟨C⟩−1 ≤ B + vwT .(5.11)

This is used by Neumaier [19, 20] to estimate α and β in (5.10).

Neumaier [21] was not interested in giving a most efficient algorithm but in a nice and simple proof of

Theorem 5.1. Choosing B to be an approximate inverse of (the midpoint of) ⟨C⟩ can be interpreted as an

extra preconditioning1 which requires extra matrix multiplications, so that the total computational effort to

compute bounds for A−1b is more than doubled.

Another common choice for v is v = e resulting in B = I. However this may result in failure to verify ⟨C⟩
to be an M -matrix as has been discussed earlier.

But the choices of B and v are independent: B ∈ Rn×n can be chosen arbitrarily, only u = ⟨C⟩v > 0 must

be satisfied for some positive v. As has been discussed in Subsection 2.1, the Perron vector computed by

Algorithm 3.2 (MVector) is the best choice for v, and a simple preconditioning matrix B for ⟨C⟩ suffices.

Theorem 5.2. Let C ∈ IRn×n and c ∈ IRn together with a positive vector v with u := ⟨C⟩v > 0 be given.

Let D−E = ⟨C⟩ ∈ Rn×n be the splitting of ⟨C⟩ into diagonal and off-diagonal part, and let w ∈ Rn be such

that I − ⟨C⟩B ≤ uwT . Then C is an H-matrix and D is invertible. Abbreviating di := Dii = ⟨C⟩ii, the
quantities α, β ∈ Rn defined in Theorem 5.1 satisfy

αi ≤
di

1 + 1/((Ev)wT)ii
and βi ≤ wT |c| · divi ,(5.12)

and hull
(
Σ(C, c)

)
is contained in the vector x ∈ IRn defined by (5.10). Moreover,

βi ≤
[
E(D−1 + vwT)|c|

]
i
−Ni|c|i

1 +Ni
,(5.13)

where Ni :=
[
(ED−1)2

]
ii
.

Remark 1. Note that only the diagonal of (ED−1)2 is needed for Ni, so the computational effort is O(n2).

Remark 2. If C := R ·A for some given interval matrix A ∈ IRn×n and an approximate midpoint inverse

R as preconditioner, then the off-diagonal elements E in ⟨C⟩ can expected to be small.

Proof. First we proceed as in (2.5) and (2.6) to see

D−1 ≤ ⟨C⟩−1 ≤ D−1 + vwT ,(5.14)

where the lower bound follows by (D − E)−1 = ⟨C⟩−1 = D−1(I − ED−1)−1, the Neumann expansion and

D,E ≥ 0. As has been mentioned in Section 2, the expansion D−1(I − ED−1)−1 = D−1
(
I + ED−1(I −

ED−1)−1
)
yields

⟨C⟩−1 ≤ D−1
(
I + E(D−1 + vwT)

)
.(5.15)

Expanding the Neumann series one more term and observing that the diagonal of E is zero, we obtain

diag
(
D−1(I + (ED−1)2)

)
≤ diag

(
⟨C⟩−1

)
≤ diag

(
D−1(I + (Ev)wT)

)
,(5.16)

1Note that a right inverse is necessary or B=inv(C’)’ in Matlab notation.

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 19

and using (5.16) and δi = (⟨C⟩−1)ii yields

αi = di − 1/δi ≤ di
(
1− 1

1 + ((Ev)wT)ii

)
=

di
1 + 1/((Ev)wT)ii

.(5.17)

The upper bound for β uses δi ≥ d−1
i as by (5.14) to conclude

βi =
(
⟨C⟩−1|c|

)
i
/δi − |c|i ≤

d−1
i |c|i + (vwT |c|)i

d−1
i

− |c|i ,(5.18)

so that (5.12) follows. A little computation using (5.16) shows (5.13) and completes the proof. �

Unfortunately, according to our numerical evidence, also these improved estimates on the quantities used

in Theorem 5.1 do not lead to better bounds than our methods presented in the previous section, see the

computational results in Section 8. This seems surprising because the bound given in Theorem 5.1 is provably

optimal under reasonable assumptions.

However, the optimality is only true if the entries in C are independent, which is not true for C = R ·A.

There is hardly an efficient remedy for this because the computation of the hull of the solution set Σ(A,b),

even of an approximation to a certain degree, is an NP-hard problem (see [28, 13, 29, 2]).

5.3. Ogita’s method. Let A ∈ Rn×n and b ∈ Rn together with an approximate inverse R of A be

given. In [26] Ogita et al. assumes ∥I −RA∥ < 1 and uses the standard estimate

∥A−1∥ = ∥
(
I − (I −RA)

)−1
R∥ ≤ ∥R∥

1− ∥I −RA∥

to conclude2

∥x̃−A−1b∥ = ∥z̃ −A−1(Az̃ − r)∥ ≤ ∥z̃∥+ ∥R(Az̃ − r)∥
1− ∥I −RA∥

,(5.19)

where r = Ax̃ − b is the residual of some approximate solution x̃ of the original system Ax = b, and z̃ is

an approximate solution of the residual equation Az = r. The authors use ∥ · ∥∞. Since ∥I − RA∥∞ =

∥ |I − RA|e ∥, the scope of applicability could be increased to that of LssErrBnd by choosing the Perron

vector v instead of e to verify ∥D−1
v |I −RA|Dv∥ < 1.

The residual is computed using some extra-precise dot product accumulation, so there is some similarity to

(4.1) in Part I. The idea is that the residual r is small, so that the residual Az̃ − r of the residual equation

Az = r is extra small.

The verification in [26] is carried out in rounding to nearest and estimation of rounding errors. In the Matlab

code we received by Ogita he uses interval operations and INTLAB, so this method may safely be compared

with our algorithms. Computational results are presented in Section 8.

Moreover, a method for inverse monotone matrices, i.e. A is non-singular and A−1 ≥ 0, is presented in [25].

Given a monotone matrix C and an approximate solution ỹ of Cy = e with e = (1, . . . , 1)T , they use

∥A−1∥∞ = ∥A−1e∥∞ = ∥A−1(e−Ay) + y∥∞ ≤ ∥A−1∥∞∥Ay − e∥∞ + ∥y∥∞

to conclude

∥A−1∥∞ ≤ ∥y∥∞
1− ∥Ay − e∥∞

.(5.20)

If inverse monotonicity is known a priori from some given application, then (5.20) gives a fast estimate of

∥A−1∥∞. This method is also applicable to the matrix C = RA using C−1 ≤ ⟨C⟩−1 after verifying inverse

2In [26] the numerator in the last term in (5.19) was given as ∥R∥ · ∥Az̃ − r∥, which can obviously be improved into

∥R(Az̃ − r)∥; in the numerical tests, (5.19) was used.

20 S. M. RUMP

monotonicity of ⟨C⟩ by ⟨C⟩v > 0 for positive v. Note, however, that (2.7) yields a componentwise estimate

of C−1 in contrast to the normwise estimate (5.20).

Numerical tests suggest that usually (2.7) is better than (5.20), but sometimes worse. However, we are

interested in estimating |C−1c| for c denoting the correction R(Ax̃ − b). In (2.8) we could estimate the

absolute value of this product, whereas using (5.20) only ∥C−1∥∞∥c∥∞ is estimated. The latter is always

worse than (2.8).

5.4. Nguyen’s method. Let A ∈ Rn×n together with an approximate inverse R of A be given. Then

Nguyen [23, 22] discusses another method based on verifying that RA is an H-matrix. Rather than the

obvious choice v = e := (1, . . . , 1)T for checking ⟨RA⟩v > 0 he also uses an iteration on v. His iteration is

based on some Jacobi-iteration. In our notation D − E = C := ⟨RA⟩ he uses

Algorithm 5.3. Nguyen’s vector iteration to find v with ⟨RA⟩v > 0.

v = e

for i = 1 : imax

v = D−1(e+ Ev)

u = Cv

if u > 0, break, end if

end for

This iteration is almost as good as the Perron iteration presented in Subsection 2.1; however, it happens

for ill-conditioned matrices that it fails to verify RA to be an H-matrix, whereas Algorithm 3.2 (MVector)

based on the Perron iteration succeeds, see Section 8. This confirms the analysis in Subsection 2.1.

Suppose v > 0 is given with u := ⟨RA⟩v > 0. Then for b, x̃ ∈ Rn, r := Ax̃ − b, c := R(Ax̃ − b) and

Du := diag(u), Proposition 4.1.9 in [18] gives

|x̃−A−1b| ≤ ∥D−1
u c∥∞v .(5.21)

This is true by observing C−1 = ⟨RA⟩−1 ≥ 0 and |x̃ − A−1b| = |C−1c| ≤ C−1 · ∥D−1
u c∥∞u = ∥D−1

u c∥∞v.

Nguyen uses this to obtain an error bound similar to (2.8). But rather than improving the initial value

x̃ := Rb by an a priori residual iteration, he combines this with an inclusion by (5.21) as follows:

Compute an inclusion r of Ax̃− b using extra-precise dot product accumulation

Compute an inclusion of z of Rr

Initial error bound e := ∥D−1
u r∥∞v

While (not converged)

Apply five Gauss-Seidel iterations

If accurate enough, break

Update x̃ by x̃+ e

Update e by e−mid(e)

Recompute r and z

End while

Nguyen discusses three basic ideas to speed up the inclusion method. First, the iteration can be stopped if

the already achieved inclusion is sufficiently accurate. To decide this he uses two stopping criteria, namely

− log2

(
max

i

rad(e)

|x̃i|

)
≥ 52 or max

i

|rad(e′i)− rad(ei)|
|x̃i|

< u ,

where e′ denotes the error bound in the previous iteration. This trick may avoid unnecessary iterations by

utilizing the knowledge of an inclusion. Since Gauss-Seidel iterations suffer significantly from interpretation

overhead, he uses a Jacobi-iteration instead.

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 21

Second, rather than improving an approximate solution x̃ a priori by a (floating-point) residual iteration and

then to start the verification process, Nguyen uses an initial approximation and combines the verification

process with the interval residual iteration process. If the computed inclusion is not accurate enough, he

uses the midpoint of the interval correction z to improve the approximate solution x̃. Then he proceeds to

compute the next inclusion.

This trick is working fine if the matrix A is not too ill-conditioned; otherwise, however, the inclusion r of the

residual is multiplied by R. Although r is very narrow due to the extra-precise evaluation, the (small) radii

are amplified by the ill-conditioned matrix R resulting in relatively wide intervals of the product z. Hence

the midpoint of z, which is an inclusion of the correction R(Ax̃− b), is often not as good a correction for x̃

as R(Ax̃ − b) computed in floating-point. As a consequence, more residual and/or Gauss/Seidel or Jacobi

iterations are necessary, see the computational results in Section 8.

Third, he uses that ⟨RA⟩ is close to the identity matrix and proposes a relaxed version, where certain interval

operations are replaced by floating-point operations in rounding to upwards. We received the Matlab code

from Nguyen using INTLAB for his method, so this method may also safely be compared with our algorithms.

Computational results are presented in Section 8.

5.5. Sparse matrices. We briefly mention yet another approach [34] for symmetric positive definite

matrices. Let two n × n matrices AT = A and G be given and assume ∥A − αI − GTG∥2 ≤ τ for some

positive α and τ . Then for all i,

λi(A) = α+ λi(A− αI) ≥ α+ λi(G
TG)− τ ≥ α− τ ,(5.22)

so that α > τ implies that A is symmetric positive definite and σmin(A) ≥ α−τ . Note that A is not assumed

a priori to be positive definite. An error bound for an approximate solution x̃ follows by

∥x̃−A−1b∥2 ≤ ∥A−1∥2 · ∥Ax̃− b∥2 ≤ (α− τ)−1∥Ax̃− b∥2 .(5.23)

Apparently this still the only efficient method to compute rigorous error bounds for sparse matrices; an

efficient method for general or even symmetric indefinite matrices is still to be found. We mention this

method for completeness; it is designed for sparse matrices and not competitive for full matrices to the

methods presented in this paper. On the other hand, the latter use an approximate inverse and are thus not

suited for sparse matrices.

6. Inclusion of extremely ill-conditioned linear systems. In Part I of this paper we presented

a method to compute verified error bounds for the solution of a linear system Ax = b with extremely

ill-conditioned matrix, i.e. cond(A) & u−1. We gave Algorithm 4.20 (LssIllcoErrBndNear) in Part I in

executable code using only rounding to nearest.

If directed rounding is available and the possibility to compute an inclusion of the solution set Σ(A,b) of a

linear system the data of which is afflicted with tolerances, then we may proceed in a much simpler way.

Let A ∈ Fn×n and b ∈ Fn be given. For R ∈ Fn×n let C ∈ IFn×n and c ∈ IFn be such that

RA ∈ C and Rb ∈ c .(6.1)

If one of our algorithms applied to C and c succeeds to compute an inclusion x of Σ(C, c), then we know

that 1) all matrices C ∈ C are non-singular, and 2) that C−1c ∈ x is true for all C ∈ C and c ∈ c. This is

in particular true for C := RA ∈ C and c := Rb ∈ c, which implies that A (and R) is non-singular, and that

(RA)−1Rb = A−1b ∈ x .(6.2)

Thus we may apply Algorithm 4.2 (LssErrBnd) to an interval matrix and vector including RA and Rb,

respectively. This is done in line 35 of Algorithm LssErrBnd by the call LssErrBnd(A,b,1).

22 S. M. RUMP

This approach is not applicable if the original matrix A is already afflicted with tolerances and the midpoint

matrix, say, is extremely ill-conditioned. The weighted 2-norm distance to the nearest singular matrix is

cond(A), so that for cond(A) & u−1 it is likely that small tolerances on A produce a singular matrix.

It is important to calculate RA and Rb using extra-precise dot products. Suppose an inclusion C of RA is

computed in working precision. Then standard rounding error analysis tells that the radius of C is of the

order u|R||A|. Even for a perfect approximate inverse R this is of the order u · cond(A) or larger, so that

for extremely ill-conditioned matrices C contains singular matrices. We obtain the following result.

Theorem 6.1. Let a matrix A ∈ Fn×n and a right hand side b ∈ Fn be given, and let x ∈ Fn be the result

of Algorithm 4.2 (LssErrBnd) computed by the call x = LssErrBnd(A,b,1). Then

A is non-singular and A−1b ∈ x .(6.3)

The computational effort is 7n3+O(n2) operations plus 4n2 extra-precise dot product evaluations. Numerical

evidence suggests that an inclusion is obtained up to cond(A) . u−2.

7. Inner inclusions for linear systems with tolerances. Consider the interval matrix A and

interval vector b

A =

(
2 [0.25, 1]

[1, 2] [−3,−2.5]

)
and b =

(
[−1, 0.5]

[0, 0.5]

)
.(7.1)

Application of Algorithm 4.2 (LssErrBnd) computes the inclusion (rounded to two decimals)

x =

(
[−0.56, 0.40]

[−0.57, 0.30]

)
(7.2)

together with the proof that each matrix A ∈ A is non-singular. The question arises how conservative these

error bounds are. An answer to that can be provided by a so-called inner inclusion. For given A ∈ IRn×n

and b ∈ IRn, Algorithm LssErrBnd computes x ∈ IFn with Σ(A,b) ⊆ x. An interval vector y ∈ Rn is called

“inner inclusion” if y ⊆ hull(Σ(A,b)). It follows that

∀ i ∈ {1, . . . , n} ∃A1, A2 ∈ A ∃b1, b2 ∈ b : (A−1
1 b1)i ≤

(
inf(y)

)
i
and

(
sup(y)

)
i
≤ (A−1

2 b2)i .(7.3)

This does not imply that for y ∈ y there exist A ∈ A and b ∈ b with Ay = b (see Figure 7.1). Nevertheless

the quality of an (outer) inclusion can be judged to be close to optimal if there is not too much difference

between this outer and an inner inclusion.

Inner inclusions were introduced by Neumaier [16, 17]. In [33] I showed how to compute inner inclusions

with practically no additional computational effort. There is the drawback that the inner inclusion was

often empty if not all entries of the matrix and right hand side were intervals of nonzero diameter. However,

even if only one entry of the right hand side is an interval of nonzero diameter, the solution set Σ(A,b) has

nonzero diameter in all entries except when A−1 has certain zero entries. If entries of A are intervals with

nonzero diameter, then this is true except when all matrices A−1 for A ∈ A have certain zero entries. Both

is highly unlikely. An example with only one entry of the matrix afflicted with a tolerance is given at the

end of this section, results for only b being afflicted with tolerances are given in Section 8.

To show how to compute inner inclusions we use two representations of intervals simultaneously. For an

interval x ∈ IR we use both the infimum-supremum and midpoint-radius representation

x = [xinf , xsup] = {x ∈ R : xinf ≤ x ≤ xsup} = ⟨mx, rx⟩ = {x ∈ R : |x−mx| ≤ rx} .(7.4)

The same notation applies to interval vectors and matrices using entrywise comparison and absolute value.

Note that the notation implies xinf ≤ xsup in case of [xinf , xsup], and rx ≥ 0 in case of ⟨mx, rx⟩. Define

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 23

Sn := {S ∈ Rn×n : |S| ≤ I} and Emn := {E ∈ Rm×n : |Eij | ≤ 1 for all i, j}. We omit the indices when the

dimension of S and E is clear from the context. Note that the signature matrices diag(±1, . . . ,±1) are the

vertices of S. Then

x = ⟨mx, rx⟩ ∈ Rn ⇔ x = {mx+ S · rx : S ∈ S} = {mx+ E ◦ rx : E ∈ En1}

A = ⟨mA, rA⟩ ∈ Rm×n ⇔ A = {mA+ E ◦ rA : E ∈ Emn} ,
(7.5)

where ◦ denotes the Kronecker product (entrywise multiplication).

Lemma 7.1. Let y = ⟨my, ry⟩ ∈ IRm×n be given. Suppose µ, ρ ∈ Rm×n satisfy

my − ry ≤ µ− ρ and µ+ ρ ≤ my + ry ,(7.6)

where entries ρij may be negative. Define the splitting ρ+ := (|ρ| + ρ)/2 and ρ− := (|ρ| − ρ)/2, so that

ρ = ρ+ − ρ− with 0 ≤ ρ−, ρ+ ∈ Rm×n and ρ+ ◦ ρ− = 0. Then there exists σ ∈ Rm×n with |σ| ≤ ρ− and

µ− E ◦ ρ+ − σ ∈ ⟨my, ry⟩ for all E ∈ E .(7.7)

Proof. Define σ ∈ Rm×n entrywise by

σij :=


µij − (my + ry)ij if ρ−ij > 0 and µij > (my + ry)ij ,

0 if ρ−ij = 0 or (my − ry)ij ≤ µij ≤ (my + ry)ij ,

µij − (my − ry)ij if ρ−ij > 0 and µij < (my − ry)ij .

(7.8)

Let i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} and s ∈ R with |s| ≤ 1 be fixed but arbitrary. Then (7.6) and ρ+ijρ
−
ij =

0 = ρ+ijσij imply

µij + s · ρ+ij − σij :=


s · ρ+ij + (my + ry)ij = (my + ry)ij

µij + s · ρ+ij = µij + s · ρij
s · ρ+ij + (my − ry)ij = (my − ry)ij

(7.9)

for the three cases as in (7.8). With (7.6) always µij + s · ρ+ij − σij ∈ ⟨myij , ryij⟩, and therefore (7.7).

Moreover (7.6) yields

|σij | =


µij − (my + ry)ij ≤ −ρij = ρ−ij if ρ−ij > 0 and µij > (my + ry)ij ,

0 if ρ−ij = 0 or (my − ry)ij ≤ µij ≤ (my + ry)ij ,

(my − ry)ij − µij ≤ −ρij = ρ−ij if ρ−ij > 0 and µij < (my − ry)ij .

This completes the proof. �

Let A ∈ IRn×n and b ∈ IRn be given with

A = [Ainf , Asup] = ⟨mA, rA⟩ and b = [binf , bsup] = ⟨mb, rb⟩(7.10)

for suitable Ainf , Asup,mA, rA ∈ Rn×n and binf , bsup,mb, rb ∈ Rn, where rA, rb ≥ 0. Given x̃ ∈ Rn define

y = ⟨my, ry⟩ :=
[
binf −mA · x̃− rA · |x̃| , bsup −mA · x̃+ rA · |x̃|

]
∈ IRn .(7.11)

Let fixed but arbitrary y ∈ y be given, and define a signature matrix T such that T x̃ = |x̃|. Using (7.5)

implies y = my + S · ry for some S ∈ S, so that

y = my + S · ry = mb−mA · x̃+ S · (rb+ rA · |x̃|) = mb+ S · rb− (mA− S · rA · T)x̃ .

Hence mb+ S · rb ∈ b and mA− S · rA · T ∈ A yield

my − ry ≤ y ≤ my + ry ⇔ ∃A ∈ A ∃b ∈ b : y = b−Ax̃ ,(7.12)

24 S. M. RUMP

where the reverse implication follows by the definition (7.11). This is the basis to compute an inner inclusion

by the following code.

Algorithm 7.2. Rigorous inner bounds yinf, ysup ∈ Fn of the solution of the linear systems Ax = b the

data of which are afflicted with tolerances.

1 if tol && ((nargin==2) || (~Illco)) % compute inner inclusion

2 mA = -(-inf_(A)-sup(A))/2; rA = -(inf_(A)-mA); % inner inclusion of A

3 resinf = inf_(b) + mA*(-xs) + rA*(-abs(xs)); % lower inner bound

4 setround(-1) % rounding to downwards

5 ressup = sup(b) + mA*(-xs) + rA*abs(xs); % upper inner bound

6 mu = resinf + 0.5*(ressup-resinf); % inner midpoint

7 rho = mu - resinf; % inner radius, maybe negative

8 csup = R*mu + abs(R)*rho; % upper inner bound correction

9 setround(1) % rounding to upwards

10 cinf = R*mu + abs(R)*(-rho); % lower inner bound correction

11 e = mag(speye(n)-C)*err; % inner correction

12 yinf = xs + cinf + e; % inner lower bound

13 ysup = -(e - csup - xs); % inner upper bound

14 end

Theorem 7.3. Let A ∈ IFn×n and b ∈ IFn be given. Suppose Algorithm 4.2 (LssErrBnd) arrives at line 30

after the call x = LssErrBnd(A,b,0). Then, as by Theorem 4.3, x ∈ IFn computed in line 29 is an inclusion

of the solution set Σ(A, b), and all A ∈ A are non-singular. Suppose the code in Algorithm 7.2 is inserted

and executed between lines 29 and 30 in Algorithm 4.2 (LssErrBnd). Then for all i ∈ {1, . . . , n} there exist

A1, A2 ∈ A and b1, b2 ∈ b with

(A−1
1 b1)i ≤ yinfi and ysupi ≤ (A−1

2 b2)i .(7.13)

The additional computational effort to compute inner inclusions is 17n2 +O(n) floating-point operations.

Remark 1. Note that the code in Algorithm 7.2 is only executed if the matrix and/or the right hand

side contain data with tolerances, and not the option Illco=1 for extremely ill-conditioned matrices was

chosen. This is because otherwise the solution set has empty interior, or the sensitivity does not permit the

computation of an inner inclusion, respectively.

Remark 2. Also note that (7.13) is valid even if yinfi > ysupi. In that case the inner inclusion is empty

for the i-th component of Σ(A, b). However, at least some information is provided on the lower and upper

bound of any x̂i with x̂ ∈ Σ(A, b). An example is given in (7.30).

Proof of Theorem 7.3. We refer to the line numbering in Algorithm 7.2, and we use the midpoint-radius

representation A =: A = ⟨mA, rA⟩ ∈ IRn×n and b =: b = ⟨mb, rb⟩ ∈ IRn as in (7.10). Note that inf_(x)3

and sup(x) for a (real) interval quantity x in INTLAB is only accessing the lower and upper bound, re-

spectively, so that inf(A) = Ainf and so forth without rounding error. We split the computations in line 2

into

mA1 = (-inf_(A)-sup(A))/2; mA = -mA1;

rA1 = inf_(A)-mA; rA = -rA1;

The rounding mode in line 2 is still to upwards as set in line 18 in Algorithm 4.2 (LssErrBnd), so that

mA1 ≥ (−Ainf −Asup)/2 and rA1 ≥ Ainf − mA .

3For syntactical reasons, inf(x) cannot be used in Matlab/INTLAB because inf is reserved for the constant ∞.

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 25

Negation is error-free, so that

mA ≤ (Ainf +Asup)/2 = mA and rA ≤ mA−Ainf ≤ mA−Ainf = rA .(7.14)

Hence

mA− rA = Ainf ≤ mA− rA and mA+ rA ≤ mA+ rA .(7.15)

Therefore (7.6) is satisfied for y := ⟨mA, rA⟩, µ := mA and ρ := rA. Splitting rA = rA+ − rA− and using

Lemma 7.1 there exists Σ ∈ Rn×n with |Σ| ≤ rA− and

mA− rA+ · S − Σ ∈ ⟨mA, rA⟩ for all S ∈ S .(7.16)

Setting x̃ := xs and using S ∈ S such that Sx̃ = −|x̃|, rounding to upwards and line 3 in Algorithm 7.2

imply

resinf ≥ binf + mA · (−x̃) + rA · (−|x̃|) = binf − mA · x̃+ rA+Sx̃+ rA−|x̃| .(7.17)

By (7.16) and Σ ≤ |Σ| ≤ rA− there exist A1 ∈ A and b1 ∈ b with

resinf ≥ binf − (mA− rA+S − Σ) · x̃ = b1 −A1x̃ .(7.18)

Similarly, using rounding to downwards, we conclude for S ∈ S with Sx̃ = |x̃| and line 5 in Algorithm 7.2

that

ressup ≤ bsup + mA · (−x̃) + rA · |x̃| = bsup − mA · x̃+ rA+Sx̃− rA−|x̃| ,(7.19)

so that using −rA− ≤ −|Σ| ≤ Σ there exist A2 ∈ A and b2 ∈ b with

ressup ≤ bsup − (mA− rA+S − Σ) · x̃ = b2 −A2x̃ .(7.20)

Lines 6 and 7 and rounding to downwards imply

mu ≤ resinf+ (ressup− resinf)/2 = (resinf+ ressup)/2

rho ≤ mu− resinf ,

so that (7.18) and (7.20) yield

b1 −A1x̃ ≤ resinf ≤ mu− rho and mu+ rho ≤ 2mu− resinf ≤ ressup ≤ b2 −A2x̃ .(7.21)

Hence for y = ⟨my, ry⟩ defined in (7.11) we use (7.12) to conclude

my − ry ≤ b1 −A1x̃ ≤ mu− rho and mu+ rho ≤ b2 −A2x̃ ≤ my + ry .(7.22)

Abbreviating µ := mu and ρ := rho, Lemma 7.1 implies for the splitting ρ = ρ+ − ρ− that there exist some

σ ∈ Rn with |σ| ≤ ρ− and µ− S · ρ+ − σ ∈ ⟨my, ry⟩ for all S ∈ S, and (7.12) gives

∀S ∈ S ∃A ∈ A ∃b ∈ b : b−Ax̃ = µ− S · ρ+ − σ .(7.23)

For the remainder of the proof let i ∈ {1, . . . , n} be fixed but arbitrary. For R ∈ Rn×n define signature

matrices |S1| = |S2| = I such that (RS1)ik ≥ 0 and (RS2)ik ≤ 0 for all k ∈ {1, . . . , n}. By (7.23) there exist

A1, A2 ∈ A and b1, b2 ∈ b with bν −Aν x̃ = µ− Sνρ
+ − σ for ν ∈ {1, 2}. Then[

R(b1 −A1x̃)
]
i
=
[
Rµ− |R|ρ+ −Rσ

]
i
≤
[
Rµ− |R|ρ+ + |R|ρ−

]
i
=
[
Rµ− |R|ρ

]
i

and[
R(b2 −A2x̃)

]
i
=
[
Rµ+ |R|ρ+ −Rσ

]
i
≥
[
Rµ+ |R|ρ+ − |R|ρ−

]
i
=
[
Rµ+ |R|ρ

]
i
.

(7.24)

26 S. M. RUMP

For R := R the computation of csup and cinf in lines 8 and 10 and the rounding modes in use imply

R · mu− |R| · rho ≤ cinf and csup ≤ R · mu+ |R| · rho ,

so that by (7.24) and the definition of µ and ρ[
R(b1 −A1x̃)

]
i
≤ cinfi and csupi ≤

[
R(b2 −A2x̃)

]
i
.(7.25)

For fixed but arbitrary A ∈ A, b ∈ b define C := RA and c := R(Ax̃− b), so that, as in (2.1) and (2.2),

A−1b = x̃− C−1c = x̃− c− (I − C)C−1c .(7.26)

For the quantities xs and err computed before line 29 in Algorithm 4.2 (LssErrBnd) we know by Theorem

4.3 that |A−1b− xs| ≤ err for all A ∈ A and b ∈ b. This is in particular true for A1, A2 ∈ A and b1, b2 ∈ b

as in (7.25). Moreover, RA ∈ C for all A ∈ A for C as computed in line 12 in Algorithm 4.2, so that the

computation of e in line 11 of Algorithm 7.2 in rounding to upwards and mag as defined in Table 4.1 imply

|I−RA||C−1c| ≤ e. By (7.26) and xs = x̃ it follows that yinf computed in line 12 of Algorithm 7.2 satisfies[
A−1

1 b1
]
i
= x̃i +

[
R(b1 −A1x̃)

]
i
−
[
(I −RA1)(x̃−A−1

1 b1)
]
i
≤ xsi + cinfi + e ≤ yinfi .(7.27)

Now ysup is computed by z=e-csup-xs and ysup=-z in rounding to upwards. Therefore z ≥ e− csup− xs

and ysup ≤ xs+ csup− e, so that similar to the previous conclusion we obtain[
A−1

2 b2
]
i
= x̃i +

[
R(b2 −A2x̃)

]
i
−
[
(I −RA2)(x̃−A−1

2 b2)
]
i
≥ xsi + csupi − e ≥ ysupi .(7.28)

This completes the proof because i was chosen fixed but arbitrary in {1,n}. �

Coming back to our toy example (7.1), Algorithm 4.2 (LssErrBnd) together with Algorithm 7.2 compute

outer and inner bounds as follows, rounded to 2 decimals:(
[−0.35, 0.18]

[−0.27, 0.00]

)
⊆ hull

(
Σ(A,b)

)
⊆

(
[−0.56, 0.40]

[−0.57, 0.30]

)
(7.29)

The situation is depicted in Figure 7.1. As can be seen there is some distance between the inner and outer

inclusion. In this case the latter is in fact not far from the optimal inclusion:

hull
(
Σ(A,b)

)
=

(
[−0.48, 0.30]

[−0.55, 0.19]

)
to 2 decimal places.

In this toy example it is not difficult to compute the (optimal) interval hull of the solution set. Note that

in general this is an NP-hard problem, and it is NP-complete to decide that an interval matrix contains a

singular matrix [28].

For wider input data, some or all of the entries of the inner inclusion may become empty. If, for instance,

A11 in (7.1) is changed from [2, 2] to [1, 1.75], then the second entry of the inner inclusion becomes empty

(all data rounded to 2 decimal places):(
[−0.15,−0.07]

−−−

)
⊆ hull

(
Σ(A,b)

)
=

(
[−0.93, 0.50]

[−0.84, 0.34]

)
⊆

(
[−1.2, 0.93]

[−0.96, 0.65]

)
(7.30)

Although the inner inclusion for the second component of Σ(A,b) is empty because yinf2 = −0.09 and

ysup2 = −0.21, at least the information

inf
(
hull

(
Σ(A,b)

)
2

)
≤ −0.09 and − 0.21 ≤ sup

(
hull

(
Σ(A,b)

)
2

)
(7.31)

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 27

Fig. 7.1. Outer and inner inclusions for A and b as in (7.1).

is obtained. Note that nevertheless there is not too much difference between the optimal inclusion and the

bounds computed by Algorithm 4.2 (LssErrBnd). For narrow input intervals this is typical and can be

explained as follows. Up to rounding errors, [resinf, ressup] is equal to y as defined in (7.11), and also up

to rounding errors [cinf, csup] is equal to the hull of {R · r : r ∈ [resinf, ressup]}. Hence the difference

of the inner and outer inclusion is determined by the size of e, which estimates |(I − C)C−1c| as by (7.26).

This in turn is the product of I − R · A and the maximum difference of A−1b and x̃ for A ∈ A and b ∈ b. If

the tolerances of the matrix entries are not too large, then this is the product of two small quantities. In

particular it almost vanishes if the input matrix A has no tolerances at all.

This implies that the inner and outer inclusion are almost identical if there are only tolerances in the right

hand side. As an example, we generate random matrices of different dimensions and condition number, and

some random right hand side by b with entries from a normal distribution with mean zero and standard

deviation one. Then each entry bi is afflicted with a tolerance bi ± ri, where ri is taken from a uniform

distribution in [0, 1]. Note that this implies that the radius of the solution set is roughly of the order of

the condition number. The ratio of the median of the radii of the inner and outer inclusion for different

dimensions and condition numbers is displayed in Figure 7.2. A ratio close to 1 means that the inner and

outer inclusions are almost identical. As can be seen the ratio becomes less than one only for large condition

numbers, reflecting the increasing influence of accumulated rounding errors.

As has been mentioned, the previous approaches in [16, 17, 33] basically compute inner inclusions only if

all entries in the matrix A and the right hand side b are intervals with non-empty interior. Theorem 7.3

is applicable if only one entry in the matrix or the right hand side is a proper interval. A typical example

is as follows. We generate a random matrix A ∈ R1000×1000 with random right hand side and replace some

random entry like A529,386 by [−|A529,386|, |A529,386|]. Then a typical outer and inner inclusion of any solution

component may be as follows:

[0.5158, 0.5564] ⊆ hull
(
Σ(A,b)

)
817

⊆ [0.5143, 0.5579] .

In many test examples the result were similar or better, i.e. less difference between the inner and outer

inclusion. For smaller uncertainties like replacing A913,209 by A913,209 · (1± 0.1) instead, there is almost no

28 S. M. RUMP

Fig. 7.2. Median ratio of radii of inner and outer inclusion for perturbations in the right hand side, dimensions n=100

(o), n=200 (x), n=500 (*) and n=1000 (+).

difference between the outer and inner inclusion. This allows, for example, to prove

hull
(
Σ(A,b)

)
308

= [−0.9731,−0.9687]

up to four decimal digits. The results for the other components are completely similar.

8. Computational results. Following we report computational results. All algorithms are tested in

Matlab version 7.11.0.584 (R2010b) on an Intel Core i7 CPU M640 with 2.8 GHz, INTLAB version 6 and

Windows 7 operating system. We discuss the numerical behavior for the following algorithms:

method

I Algorithm 4.2 (LssErrBnd) with the improvement described in Subsection 3.3

II Algorithm 4.16 (LssErrBndNear) from Part I of this paper

III verifylss in INTLAB (see Subsection 5.1)

IV Nguyen’s method (see Subsection 5.4)

V Ogita’s method (see Subsection 5.3)

VI Theorem 5.2

(8.1)

To allow a fair comparison, all algorithms are written in Matlab/INTLAB, and all algorithm use the same

extra-precise dot product accumulation. For the vector residuals all algorithms use Dot_ as provided in

INTLAB rather than Dot2. Mathematically Dot_ is identical to Algorithm 4.1 (Dot2) but suffers less from

interpretation overhead due to a tricky vectorization of operations. Dot_ is only suited for vector residuals;

for the matrix residual in LssErrBnd for extremely ill-conditioned problems, Dot2 is used.

We use the source code of LssErrBnd and LssErrBndNear as presented in Part II and Part I of this paper,

respectively; only LssErrBnd is improved as described in Subsection 3.3. This gains some computing time

for not too ill-conditioned problems. Nguyen and Ogita kindly provided the Matlab/INTLAB source code of

their routines certifylss_relaxed [22] and vlssr [26], respectively. The improved version of Neumaier’s

algorithm based on Hansen’s method in Theorem 5.2 using (5.12) and (5.13) we implemented ourselves.

Algorithm 3.1 (LssErrBndDirRdg) was presented to display an algorithm using only rounding to nearest

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 29

Table 8.1

Median relative error of the bounds computed by Algorithm 4.2 (LssErrBnd) [I], Algorithm 4.16 (LssErrBndNear) from

Part I of this paper [II], verifylss in INTLAB [III], Nguyen’s method [IV], Ogita’s method [V], and Theorem 5.2 [VI] for the

matrices from Table 5.1 in Part I and right hand side b=A*randn(n,1).

matrix n cond(A) I II III IV V VI

Pascal 17 2.2 · 1016 1.5 · 10−16 2.8 · 10−16 1.5 · 10−16 1.5 · 10−16 7.0 · 10−16 1.5 · 10−16

18 2.5 · 1017 2.0 · 10−16 - 2.0 · 10−16 2.0 · 10−16 − 2.0 · 10−16

Hilbert 11 2.5 · 1014 1.8 · 10−16 1.8 · 10−16 1.6 · 10−16 1.6 · 10−16 4.0 · 10−16 1.8 · 10−16

12 8.8 · 1015 1.0 · 10−14 - 1.8 · 10−12 4.5 · 10−14 − 4.9 · 10−15

ScHilbert 11 3.0 · 1014 1.8 · 10−16 1.8 · 10−16 1.8 · 10−16 1.8 · 10−16 1.1 · 10−15 1.8 · 10−16

12 7.8 · 1015 3.2 · 10−16 - 2.0 · 10−16 3.6 · 10−14 − 2.6 · 10−16

InvHilbert 11 2.9 · 1014 1.4 · 10−16 1.4 · 10−16 1.4 · 10−16 1.4 · 10−16 6.3 · 10−16 1.4 · 10−16

12 1.0 · 1016 2.0 · 10−16 - 2.0 · 10−16 3.5 · 10−13 1.7 · 10−13 2.0 · 10−16

Boothroyd 11 1.9 · 1015 1.5 · 10−16 1.9 · 10−16 1.5 · 10−16 1.5 · 10−16 3.5 · 10−15 1.5 · 10−16

12 8.5 · 1016 2.7 · 10−15 - 1.7 · 10−16 8.9 · 10−14 − 2.2 · 10−15

Vander 12 3.0 · 1014 1.5 · 10−16 1.5 · 10−16 1.5 · 10−16 1.5 · 10−16 2.0 · 10−16 1.5 · 10−16

13 1.3 · 1016 1.9 · 10−16 3.1 · 10−16 1.9 · 10−16 1.6 · 10−16 2.1 · 10−16 1.9 · 10−16

and avoiding interval operations. Since the results are identical to those of LssErrBnd, they need not to be

discussed separately.

To our knowledge the only other Matlab codes for computing rigorous bounds for the solution of linear

systems are by Hargreaves [4] and Rohn [31]. The first author admits that verifylss is superior to his

routine; the second author provides a library for computing rigorous error bounds for a number of basic

problems in linear algebra. However, for square linear systems he uses verifylss.

To begin with, we display in Table 8.1 the results for the “usual suspects” of ill-conditioned matrices as

listed in Table 5.1 in Part I4. Almost always in the following the results for right hand side b=randn(n,1)

and b=A*randn(n,1) are practically identical, thus we mostly display only one of them. Recall that the

Matlab function rand generates pseudo-random values drawn from a uniform distribution on the unit in-

terval, whereas randn produces pseudo-random values drawn from a normal distribution with mean zero

and standard deviation one. In Table 8.1 we use b=A*randn(n,1). The largest dimensions are displayed

for which at least one of the Algorithms I-VI succeeds. Here and in the following always the median of the

relative error of the inclusions is displayed.

As can be seen, LssErrBnd [I] and Theorem 5.2 [VI] are almost always maximally accurate, verifylss [III]

and Nguyen’s method [IV] are sometimes slightly less accurate. Those four methods have all the same scope

of applicability (which is clear for methods [I] and [VI] because they use the same Perron vector) of about

cond(A) . u−1. LssErrBndNear [II] and Ogita’s method [V] fail for some ill-conditioned test matrices. For

LssErrBndNear this is because all error estimations are performed in rounding to nearest, whereas Ogita’s

method could be improved by using a Perron vector to scale I−RA. We did not do this but used the original

algorithm provided by the author.

For condition numbers up to u−1, matrices are generated by randsvd(n,cnd) from the Matlab matrix

gallery. Here some random orthogonal transformation is applied from the left and right to a diagonal matrix

with specified singular values. In Figure 8.1 the median of the relative errors of the inclusion computed

4For a discussion of those “well-known suspects” of ill-conditioned matrices A and alternative ways to solve Ax = b see the

beginning of Section 5 in Part I.

30 S. M. RUMP

Fig. 8.1. Results of Algorithm 4.2 (LssErrBnd) for ill-conditioned random matrices of dimension n=100 (o), n=200 (∗),
n=500 (+) and n=1000 (×).

Fig. 8.2. Time ratio between Algorithm 4.2 (LssErrBnd) and the standard Matlab call A\b, the former with extra-precise

evaluation of dot products (dotted line, (*)) and with dot products in working precision (solid line, (o)).

by Algorithm 4.2 (LssErrBnd) [I] is displayed for 100 test cases for each dimension, for different condition

numbers, and for right hand sides b=randn(n,1) and b=A*randn(n,1). Only results for condition number

larger than 1011 are displayed; for smaller condition numbers the results are always of maximum accuracy.

Compared to Figure 5.4 in Part I for LssErrBndNear the curves are shifted to the right and show the

advantage of using directed rounding.

For n = 100, n = 200, n = 500 and n = 1000, LssErrBnd did not fail in all test cases for cond(A) ≤ 1.0 ·1015,

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 31

Fig. 8.3. Results of Algorithm 4.2 (LssErrBnd) for extremely ill-conditioned random matrices of dimension n=100 (o),

n=200 (∗), n=500 (+) and n=1000 (×).

1.0 · 1014, 1.6 · 1014 and 7.9 · 1013, which is better than u−1/n. Recall that the applicability of Algorithm

4.16 (LssErrBndNear) in Part I was roughly limited to condition numbers up to u−1/n2.

The computing time of LssErrBnd [I] is similar to LssErrBndNear [II] (see subsequent tables). In Figure

8.2 the time ratio between Algorithm 4.2 (LssErrBnd) and the Matlab command A\b is displayed for 100

random matrices of dimensions from 100 to 2000. Here apples and oranges are compared for two reasons:

First, A\b computes an approximation compared to rigorous error bounds by LssErrBnd, and second A\b
uses plain Gaussian elimination without residual iteration in contrast to LssErrBnd. To make it a little

more fair, Figure 8.2 shows the ratio for LssErrBnd as specified in Algorithm 4.2 with extra-precise residual

correction in the upper curve (*), and with only one residual correction in working precision (ensuring

backward stability [37]) in the lower curve (o). The latter inclusions are less accurate, as is A\b.

With extra-precise residual corrections, the factor in computing time between LssErrBnd and A\b is about

6 to 7, whereas without the factor improves to about 5. Note that by Theorem 4.3 the theoretical ratio is 9

for LssErrBnd as stated, and 6 with the improvement discussed in Subsection 3.3.

In Figure 8.3 results of Algorithm 4.2 (LssErrBnd) for extremely ill-conditioned matrices are shown. We

use the methods as described in Part I to generate extremely ill-conditioned matrices. Comparing Figure

5.6 in Part I and Figure 8.3 in this part, an improvement of applicability of LssErrBnd over Algorithm 4.16

(LssIllcoErrBndNear) in Part I, similar to Table 8.1 for small dimension, is observed. The latter succeeds

to compute rigorous inclusions for condition numbers up to about u−2/n2, whereas LssErrBnd succeeds up

to about u−2/n. Otherwise the graphs in Figure 8.3 are similar to those in Figure 5.6 in Part I but shifted

to the right. Again it shows the improvement by using directed rounding.

In our examples, LssErrBnd succeeded for dimension n = 100, n = 200, n = 500 and n = 1000 in all test

cases for cond(A) ≤ 1.6 ·1029, 6.6 ·1027, 6.1 ·1025 and 3.5 ·1026, respectively (the value for n = 500 is smaller

than for n = 1000 by the randomness of the examples).

Next we give detailed comparisons between the six methods listed in (8.1). First, for dimension n = 100

matrices with different condition numbers are generated 100 each. Then the methods [I] to [VI] are applied

32 S. M. RUMP

Table 8.2

Results of Algorithm 4.2 (LssErrBnd) [I], Algorithm 4.16 (LssErrBndNear) from Part I of this paper [II], verifylss in

INTLAB [III], Nguyen’s method [IV], Ogita’s method [V], and Theorem 5.2 [VI], dimension n = 100, r.h.s. randn(n,1),

K = 100 test cases.

median(median rel. error) percentage of success

cond(A) I II/I III/I IV/I V/I VI/I I II III IV V VI

101 1.6 · 10−16 1.00 1.00 1.00 12.82 1.00 100 100 100 100 100 100

104 1.6 · 10−16 1.00 1.00 1.00 1.00 1.00 100 100 100 100 100 100

107 1.6 · 10−16 1.00 1.00 1.00 1.00 1.00 100 100 100 100 100 100

1010 1.6 · 10−16 1.00 1.00 1.00 18.06 1.00 100 100 100 100 100 100

1012 1.6 · 10−16 1.01 1.00 1.00 1.64 1.00 100 100 100 100 100 100

1013 1.6 · 10−16 1.09 1.00 1.00 15.26 1.00 100 100 100 100 100 100

1014 1.6 · 10−16 92.38 1.00 0.96 20.24 1.00 100 33 100 100 100 100

5 · 1014 2.4 · 10−16 - 0.99 0.69 13.24 1.05 100 0 100 100 92 100

6 · 1014 3.0 · 10−16 - 1.00 0.57 12.75 1.09 100 0 100 100 84 100

7 · 1014 3.6 · 10−16 - 1.00 1.00 18.08 1.15 100 0 100 100 69 100

8 · 1014 4.9 · 10−16 - 1.00 9 · 1016 34.33 1.23 100 0 100 100 34 100

9 · 1014 7.0 · 10−16 - 0.99 9 · 1016 19.71 1.38 98 0 98 98 26 98

1015 1.1 · 10−15 - 0.98 9 · 1016 45.47 1.42 96 0 96 94 21 96

2 · 1015 1.1 · 10−14 - 0.93 9 · 1016 - 1.76 30 0 30 23 0 30

3 · 1015 1.4 · 10−14 - 0.83 9 · 1016 - 1.98 4 0 4 2 0 4

4 · 1015 2.1 · 10−15 - 0.93 9 · 1016 - 1.98 2 0 2 2 0 2

to a linear system with right hand side b=randn(n,1). Denote by µk the median over the 100 test cases of

the median relative errors of the result of algorithm k. Then in Table 8.2 we display µ1 for LssErrBnd [I]

in column 2, and in columns 3 to 7 the ratio µk/µ1 for 2 ≤ k ≤ 6. Furthermore, in columns 8 to 13 the

percentage of success out of the 100 test cases is displayed.

LssErrBnd [I] shows a slight decrease of accuracy with increasing condition number, but results guarantee at

least 14 correct digits. For larger condition numbers, the inclusions of verifylss [III] are a little better (up

to 17%), those of Theorem 5.2 [VI] a little weaker, and those by Ogita’s method [V] provide about 1 decimal

digit less accuracy. Nguyen’s method [IV] is better for condition numbers around 1014 and significantly

weaker for condition numbers up to u−1. Here the ratio 9 · 1016 indicates that at least half of the inclusion

components are intervals containing 0.

As expected, LssErrBndNear fails for condition numbers approaching u−1/n. The scope of applicability of

methods [I] (and of course of [VI]) and [III] is the same, that of Nguyen’s and Ogita’s a little less. Although

in favor of LssErrBnd, we do not display computing times for small dimensions because the measurement

error is to high.

For n = 100 we also display the results for right hand side A*randn(n,1) in Table 8.3 because the behavior

of verifylss is a little different. Now for condition numbers close to u−1 the result is less accurate than

LssErrBnd, the other results are similar. However, the difference is on a high level: both routines verify

some 14 correct figures of the solution. For all accuracy ratios µk/µ1 between 0.5 and 2 the results can be

considered to be of similar quality.

Next we come to dimension n = 1000 in Table 8.4. Here the results for right hand side randn(n,1) are

displayed; those for A*randn(n,1) are very similar. Now we display the computing time of Algorithms

[II]-[VI] relative to that of Algorithm [I] in columns 8 to 12. As expected the maximally treatable condition

number decreases compared to n = 100. Algorithm LssErrBnd verifies at least 13 correct digits of the

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 33

Table 8.3

Results of Algorithm 4.2 (LssErrBnd) [I], Algorithm 4.16 (LssErrBndNear) from Part I of this paper [II], verifylss in

INTLAB [III], Nguyen’s method [IV], Ogita’s method [V], and Theorem 5.2 [VI], dimension n = 100, r.h.s. A*randn(n,1),

K = 100 test cases.

median(median rel. error) percentage of success

cond(A) I II/I III/I IV/I V/I VI/I I II III IV V VI

101 1.6 · 10−16 1.00 1.00 1.00 16.43 1.00 100 100 100 100 100 100

104 1.6 · 10−16 1.00 1.00 1.00 1.00 1.00 100 100 100 100 100 100

107 1.6 · 10−16 1.00 1.00 1.00 1.00 1.00 100 100 100 100 100 100

1010 1.6 · 10−16 1.00 1.00 1.00 26.34 1.00 100 100 100 100 100 100

1012 1.6 · 10−16 1.01 1.00 1.00 5.11 1.00 100 100 100 100 100 100

1013 1.6 · 10−16 1.19 1.00 0.99 2.87 1.00 100 100 100 100 100 100

1014 1.7 · 10−16 110 1.03 0.94 4.13 1.00 100 30 100 100 100 100

5 · 1014 2.9 · 10−16 - 1.25 0.60 9.91 1.06 100 0 100 100 96 100

6 · 1014 3.9 · 10−16 - 1.24 3.04 14.85 1.11 100 0 100 100 81 100

7 · 1014 4.2 · 10−16 - 1.30 0.42 12.34 1.14 100 0 100 100 65 100

8 · 1014 5.6 · 10−16 - 1.34 1.8 · 106 20.01 1.23 100 0 100 100 37 100

9 · 1014 8.2 · 10−16 - 1.34 2.3 · 1013 16.13 1.31 100 0 100 99 31 100

1015 1.1 · 10−15 - 1.34 2.5 · 1014 22.09 1.44 96 0 96 96 17 96

2 · 1015 6.9 · 10−15 - 1.33 1.1 · 1015 - 1.85 37 0 37 28 0 37

3 · 1015 3.4 · 10−15 - 1.42 2.4 · 1014 - 2.01 6 0 6 5 0 6

4 · 1015 1.1 · 10−14 - 1.56 - - 2.08 1 0 1 0 0 1

Table 8.4

Results of Algorithm 4.2 (LssErrBnd) [I], Algorithm 4.16 (LssErrBndNear) from Part I of this paper [II], verifylss in

INTLAB [III], Nguyen’s method [IV], Ogita’s method [V], and Theorem 5.2 [VI], dimension n = 1000, r.h.s. randn(n,1),

K = 100 test cases. An asterisk at the time ratio indicates that not for all 100 test cases inclusions were computed successfully.

median(median rel. error) relative comp. time

cond(A) I II/I III/I IV/I V/I VI/I II/I III/I IV/I V/I VI/I

101 1.6 · 10−16 1.00 1.00 1.00 1.00 1.00 1.21 1.17 1.75 1.57 1.57

104 1.6 · 10−16 1.00 1.00 1.00 1.00 1.00 1.21 1.17 1.79 1.59 1.58

107 1.6 · 10−16 1.00 1.00 1.00 1.00 1.00 1.19 1.16 2.25 1.48 1.57

1010 1.6 · 10−16 1.01 1.02 0.98 0.98 0.98 1.17 1.05 2.66 1.58 1.42

1012 1.6 · 10−16 160 10.5 0.96 1.01 1.00 0.90∗ 0.88 2.75 1.55 1.22

4 · 1013 1.4 · 10−15 - 75.1 0.11 1.65 1.29 - 1.00 4.26 2.26 1.21

5 · 1013 2.1 · 10−15 - 77.4 0.08 2.31 1.50 - 1.04 4.51 2.44∗ 1.20

6 · 1013 3.1 · 10−15 - 76.6 0.05 5.17 1.80 - 1.18 4.92 2.50∗ 1.20

7 · 1013 5.4 · 10−15 - 73.8 0.05 7.73 2.21 - 1.51 4.96∗ 2.59∗ 1.19

8 · 1013 1.0 · 10−14 - 67.5 3 · 108 34.5 2.53 - 1.54∗ 4.13∗ 2.48∗ 1.17∗

9 · 1013 2.5 · 10−14 - 61.1 2 · 1014 - 2.59 - 1.62∗ 3.09∗ - 1.17∗

1014 5.1 · 10−14 - 50.4 3 · 1014 - 2.45 - 1.58∗ 2.76∗ - 1.17∗

2 · 1014 - - - - - - - - - - -

solution, verifylss is weaker. Again Theorem 5.2 [VI] is a little weaker, Ogita’s method [V] about one

decimal digit less accurate, whereas, similar to dimension n = 100, Nguyen’s method [IV] is superior for

condition numbers around 4 · 1013, but computes a number of zero intervals for larger condition numbers.

The performance of the algorithms depends on the computing time spend to improve the accuracy of the final

result. It is not surprising that LssErrBndNear is sometimes faster than LssErrBnd because all computations

34 S. M. RUMP

Table 8.5

Results of Algorithm 4.2 (LssErrBnd) [I], Algorithm 4.16 (LssErrBndNear) from Part I of this paper [II], verifylss in

INTLAB [III], Nguyen’s method [IV], Ogita’s method [V], and Theorem 5.2 [VI], dimension n = 1000, r.h.s. randn(n,1),

K = 100 test cases.

median(median rel. error) percentage of success

cond(A) I II/I III/I IV/I V/I VI/I I II III IV V VI

101 1.6 · 10−16 1.00 1.00 1.00 1.00 1.00 100 100 100 100 100 100

104 1.6 · 10−16 1.00 1.00 1.00 1.00 1.00 100 100 100 100 100 100

107 1.6 · 10−16 1.00 1.00 1.00 1.00 1.00 100 100 100 100 100 100

1010 1.6 · 10−16 1.01 1.02 0.98 0.98 0.98 100 100 100 100 100 100

1012 1.6 · 10−16 160 10.50 0.96 1.01 1.00 100 91 100 100 100 100

4 · 1013 1.4 · 10−15 - 75.1 0.11 1.65 1.29 100 0 100 100 100 100

5 · 1013 2.1 · 10−15 - 77.4 0.08 2.31 1.50 100 0 100 100 97 100

6 · 1013 3.1 · 10−15 - 76.6 0.05 5.17 1.80 100 0 100 100 55 100

7 · 1013 5.4 · 10−15 - 73.8 0.05 7.73 2.21 100 0 100 99 9 100

8 · 1013 1.0 · 10−14 - 67.5 3 · 108 34.5 2.53 87 0 87 80 5 87

9 · 1013 2.5 · 10−14 - 61.1 2 · 1014 - 2.59 54 0 54 43 0 54

1014 5.1 · 10−14 - 50.4 2 · 1014 - 2.45 26 0 26 15 0 26

2 · 1014 - - - - - - 0 0 0 0 0 0

are performed in rounding to nearest and no interpretation overhead for operations with interval data types

occur. But this happens only for moderately ill-conditioned examples: For well-conditioned matrices the

improvements discussed in Subsection 3.3 accelerate LssErrBnd to be faster than LssErrBndNear, and for

more ill-conditioned examples LssErrBndNear fails.

In the design of LssErrBnd we compromised between speed and accuracy, where we did not iterate further if

an accuracy of about 13 correct decimal digits is achieved. In particular we tried to maintain this compromise

over a large range of dimensions and condition numbers. Other methods like Nguyen’s [IV] compute better

inclusions for certain condition numbers at the price of increasing computing time; for large condition

numbers the inclusions are much weaker.

We did not compromise on the applicability of LssErrBnd but tried with high priority to compute an

inclusion whenever possible. In our examples, the range of applicability of LssErrBnd [I], verifylss [III]

and Theorem 5.2 [VI] is the same, whereas the other methods failed in cases where the afore mentioned

succeeded. This is indicated in Table 8.4 with an asterisk at the relative computing times in columns 8 to

12, i.e. the corresponding method was successful in a smaller number of cases than methods [I], [III] and

[VI]. The exact percentage of success for the same set of examples as in Table 8.4 is displayed in Table 8.5.

Finally we consider data with tolerances. Only LssErrBnd [I], verifylss [III] and our implementation of

Theorem 5.2 [VI] accept input data with tolerances. Again there is not much difference between a right hand

side randn(n,1) and A*randn(n), so one of them is chosen in the following. Results for linear systems with

only the right hand side afflicted with tolerances were already shown in Section 7, in particular Figure 7.2.

Matrices with condition number beyond u−1 the data of which is afflicted with tolerances likely contain a

singular matrix. To save space we consider only condition numbers 1013 and 103.

We first generate a random matrix A of dimension n = 1000 with specified condition number and a right

hand side b = randn(n, 1). Then, using midpoint-radius notation, algorithms [I], [III] and [VI] are applied

to the matrix A and right hand side b with Aij := ⟨Aij , r|Aij |⟩ and bj := ⟨bj , r|bj |⟩ for 1 ≤ i, j ≤ n. It

means that all entries in A and b are afflicted with a relative tolerance r. It can be expected that A contains

singular matrices for r & cond(A)−1.

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 35

Table 8.6

Results of Algorithm 4.2 (LssErrBnd) [I], verifylss in INTLAB [III], and Theorem 5.2 [VI], matrix and right hand side

with relative radius r/cond(A), dimension n = 1000, r.h.s. A*randn(n,1), condition number 1013, K = 100 test cases.

median(median radius) relative comp. time percentage of success

r III/I VI/I III/I VI/I I III VI

5 · 10−16 1.01 1.03 0.96 1.05 100 100 100

6 · 10−16 1.01 1.03 0.96 1.05 100 100 100

7 · 10−16 1.01 1.03 0.96 1.04 100 100 100

8 · 10−16 1.01 1.04 0.96 1.05 100 100 100

9 · 10−16 1.01 1.04 0.96 1.04 100 100 100

10−15 1.01 1.04 0.96 1.05 100 100 100

2 · 10−15 1.01 1.08 0.96 1.04 100 100 100

3 · 10−15 1.01 1.16 0.99 1.06 100 100 100

4 · 10−15 1.00 1.27 1.01 1.04 100 100 100

5 · 10−15 0.99 1.41 1.13 1.05 100 100 100

6 · 10−15 0.96 1.55 1.24 1.05 100 100 100

7 · 10−15 0.92 1.72 1.30 1.06 85 85 85

8 · 10−15 0.91 1.80 1.33 1.07 53 53 53

9 · 10−15 0.91 1.82 1.32 1.06 16 16 16

Table 8.7

Results of Algorithm 4.2 (LssErrBnd) [I], verifylss in INTLAB [III], and Theorem 5.2 [VI], matrix and right hand side

with relative radius r/cond(A), dimension n = 1000, r.h.s. randn(n,1), condition number 103, K = 100 test cases.

median(median radius) relative comp. time percentage of success

r III/I VI/I III/I VI/I I III VI

5 · 10−6 1.01 1.06 1.15 1.08 100 100 100

6 · 10−6 1.00 1.08 1.15 1.07 100 100 100

7 · 10−6 1.02 1.11 1.19 1.10 100 100 100

8 · 10−6 1.01 1.14 1.18 1.07 100 100 100

9 · 10−6 1.01 1.18 1.18 1.08 100 100 100

10−5 1.01 1.22 1.21 1.10 100 100 100

2 · 10−5 0.96 1.84 1.71 1.08 95 95 95

3 · 10−5 - - - - 0 0 0

In Table 8.6 results are shown for 100 test cases each with cond(A) = 1013 and different values of r. For

µk denoting the median over the 100 test cases of the median relative errors of the result of algorithm k,

the ratio µk/µ1 for k ∈ {3, 6} is displayed in columns 2 and 3. Next the ratio of computing times between

Algorithm k and LssErrBnd is shown, and in the last three columns the percentage of success.

As can be seen the range of applicability is the same for all examples. The quality of verifylss [III] is

better for larger radii requiring more computing time; for small radius better inclusions are achieved in less

time. The inclusions by Theorem 5.2 is always weaker than LssErrBnd requiring more computing time. This

is in particular interesting because of the optimality of the inclusion if there would be no dependencies in

RA as by Theorem 5.1.

Finally we show In Table 8.7 similar results for condition number 103 allowing for larger radii. Again the

scope of applicability of all three methods Algorithm 4.2 (LssErrBnd) [I], verifylss in INTLAB [III], and

Theorem 5.2 [VI] is the same in the examples. Now LssErrBnd delivers almost always the best bounds

requiring less computing time than the other methods. The results for other dimensions are similar and

36 S. M. RUMP

therefore omitted.

Note that both for condition number 1013 and 103 the maximal relative radius for which inclusions are

achieved is not too far from cond(A)−1. Also note that success of an algorithm proves all matrices within

A to be non-singular, but failure does not mean that there exists a singular matrix within the tolerances; it

means that the problem is too difficult to solve by the given means. It is possible to prove that an interval

matrix contains a singular matrix by using some heuristic to “move” into the right direction within A to

find matrices A1, A2 ∈ A with det(A1) det(A2) ≤ 0. A gap remains where nothing can be said by an efficient

algorithm because of the NP-hardness of the problem.

9. Conclusion. In this Part II of the paper directed rounding is used to obtain algorithms with a

wider range of applicability. Interval notation increases readability substantially without sacrificing accuracy

and/or speed. In particular extremely ill-conditioned linear systems with condition number up to u−2 are

easily treated by solving the corresponding preconditioned interval linear system. The only additional tool

other than directed rounding is the extra-precise accumulation of dot products, which in turn is implemented

using solely floating-point operations in working precision.

A new method to compute so-called “inner inclusion” verifies the quality of the computed bounds in case

of input data afflicted with tolerances. It is applicable even if only a single entry in the matrix and/or

right hand side is afflicted with a tolerance. If tolerances are not too wide, there is not too much difference

between the outer and inner inclusion, indicating that the inclusions are almost optimal.

Acknowledgement. My thanks to Florian Bünger and an anonymous referee for helpful comments.

REFERENCES

[1] C. Bliek. Computer methods for design automation. Ph.D. dissertation, Massachusetts Institute of Technology MIT, 1992.

[2] G.E. Coxson. Computing Exact Bounds on Elements of an Inverse Interval Matrix is NP-Hard. Reliable Computing,

5(2):137–142, 1999.

[3] E.R. Hansen. Bounding the Solution Set of Interval Linear Systems. SIAM Journal on Numerical Analysis (SINUM),

29:1493–1503, 1992.

[4] G. Hargreaves. Interval Analysis in MATLAB. Master’s thesis, University of Manchester, 2002. http://www.manchester.

ac.uk/mims/eprints.

[5] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM Publications, Philadelphia, 2nd edition, 2002.

[6] R.A. Horn and Ch. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.

[7] ANSI/IEEE 754-1985: IEEE Standard for Binary Floating-Point Arithmetic. New York, 1985.

[8] ANSI/IEEE 754-2008: IEEE Standard for Floating-Point Arithmetic. New York, 2008.

[9] R.B. Kearfott, M. Dawande, and C. Hu. Intlib: A portable Fortran-77 interval standard function library. ACM Trans.

Math. Software, 20:447–459, 1994.

[10] O. Knüppel. PROFIL / BIAS — A Fast Interval Library. Computing, 53:277–287, 1994.

[11] O. Knüppel and T. Simenec. PROFIL/BIAS extensions. Technical Report 93.5, Forschungsschwerpunkt Informations-

und Kommunikationstechnik, Technische Universität Hamburg-Harburg, 1993.

[12] R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing, 4:187–201, 1969.

[13] V. Kreinovich, A.V. Lakeyev, and S.I. Noskov. Optimal Solution of Interval Linear Systems Is Intractable (NP-Hard).

Interval Computations, 1:6–14, 1993.

[14] Lei Li. On the iterative criterion for generalized diagonally dominant matrices. SIAM Journal Matrix Anal. Appl.

(SIMAX), 24(1):17–24, 2002.

[15] J.M. Muller, N. Brisebarre, F. de Dinechin, C.P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres.

Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010.

[16] A. Neumaier. Overestimation in Linear Interval Equations. SIAM J. Numer. Anal. (SINUM), 24(1):207–214, 1987.

[17] A. Neumaier. Rigorous Sensitivity Analysis for Parameter-Dependent Systems of Equations. J. Math. Anal. Appl. 144,

1989.

[18] A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics and its Applications. Cambridge

University Press, 1990.

[19] A. Neumaier. A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclosure for linear interval equations. Reliable

Computing, 5:131–136, 1999.

ACCURATE SOLUTION OF DENSE LINEAR SYSTEMS II 37

[20] A. Neumaier. Erratum to: A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclosure for linear interval

equations. Reliable Computing, 6:227, 1999.

[21] A. Neumaier. private communication, 2010.

[22] H.D. Nguyen. Efficient algorithms for verified scientific computing: numerical linear algebra using interval arithmetic.

Dissertation, Laboratoire LIP, INRIA ENS Lyon, 2011.

[23] H.D. Nguyen and N. Revol. Accuracy issues in linear algebra using interval arithmetic. SCAN conference Lyon, 2010.

[24] S. Ning and R.B. Kearfott. A Comparison of some Methods for Solving Linear Interval Equations. SIAM J. Numer. Anal.

(SINUM), 34(4):1289–1305, 1997.

[25] T. Ogita, S. Oishi, and Y. Ushiro. Fast verification of solutions for sparse monotone matrix equations. volume 15 of

Comput. Suppl., pages 175–187. Springer, Wien, 2001.

[26] T. Ogita, S. Oishi, and Y. Ushiro. Fast inclusion and residual iteration for solutions of matrix equations. 16:171–184,

2002.

[27] S. Oishi and S.M. Rump. Fast verification of solutions of matrix equations. Numer. Math., 90(4):755–773, 2002.

[28] S. Poljak and J. Rohn. Checking Robust Nonsingularity Is NP-Hard. Math. of Control, Signals, and Systems 6, pages

1–9, 1993.

[29] J. Rohn. Linear Interval Equations: Computing Enclosures with Bounded Relative or Absolute Overestimation is NP-hard.

In R.B. Kearfott and V. Kreinovich, editors, Applications of Interval Computations, pages 81–89. Kluwer Academic

Publisher, 1991.

[30] J. Rohn. Stability of the Optimal Basis of a Linear Program under Uncertainty. Operations Research Letters 13, pages

9–12, 1993.

[31] J. Rohn. VERSOFT: Verification software in MATLAB/INTLAB. 2009.

[32] S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe, 1980.

[33] S.M. Rump. Rigorous Sensitivity Analysis for Systems of Linear and Nonlinear Equations. Math. Comput., 54(10):721–736,

1990.

[34] S.M. Rump. Verification Methods for Dense and Sparse Systems of Equations. In J. Herzberger, editor, Topics in Validated

Computations — Studies in Computational Mathematics, pages 63–136, Elsevier, Amsterdam, 1994.

[35] S.M. Rump. Fast and parallel interval arithmetic. BIT Numerical Mathematics, 39(3):539–560, 1999.

[36] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages

77–104. Kluwer Academic Publishers, Dordrecht, 1999.

[37] R. Skeel. Iterative Refinement Implies Numerical Stability for Gaussian Elimination. Math. Comp., 35(151):817–832,

1980.

[38] R.S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1962.

[39] J. Zemke. b4m - BIAS for Matlab. Technical report, Inst. f. Informatik III, Technische Universität Hamburg-Harburg,

1998.

