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INTERVAL ARITHMETIC OVER FINITELY MANY ENDPOINTS

SIEGFRIED M. RUMP ∗

Abstract. To my knowledge all definitions of interval arithmetic start with real endpoints and prove properties.
Then, for practical use, the definition is specialized to finitely many endpoints, where many of the mathematical
properties are no longer valid. There seems no treatment how to choose this finite set of endpoints to preserve as
many mathematical properties as possible.

Here we define interval endpoints directly using a finite set which, for example, may be based on the IEEE 754
floating-point standard. The corresponding interval operations emerge naturally from the corresponding power set
operations. We present necessary and sufficient conditions on this finite set to ensure desirable mathematical proper-
ties, many of which are not satisfied by other definitions. For example, an interval product contains zero if and only
if one of the factors does.

The key feature of the theoretical foundation is that “endpoints” of intervals are not points but non-overlapping
closed, half-open or open intervals, each of which can be regarded as an atomic object. By using non-closed intervals
among its “endpoints”, intervals containing “arbitrarily large” and “arbitrarily close to but not equal to” a real number
can be handled. The latter may be zero defining “tiny” numbers, but also any other quantity including transcendental
numbers.

Our scheme can be implemented straightforwardly using the IEEE 754 floating-point standard.
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1. Introduction. We assume that the reader is familiar with basic concepts of interval
arithmetic as can be found, for example, in [5, 7, 11]. The aim of this paper is to define an
interval arithmetic over a finite set of possible endpoints preserving as much mathematical
properties as possible. There are natural limitations due to the finiteness of the set of possible
bounds which, in general, do not permit associativity of interval addition and multiplication
(see Section 3). Nevertheless we can preserve properties which are not satisfied by any other
definition including interval arithmetics with infinitely many endpoints.

Usually (cf. [5, 7, 11]) intervals [α,β ] are defined in a first step with endpoints α,β ∈R,
and interval operations are defined to be the narrowest (interval) inclusion of the correspond-
ing power set operation. This is often called the inclusion principle [11]. To be applicable
on digital computers, only endpoints out of a finite set, e.g. of floating-point numbers can be
allowed. The definitions are then adapted such that the inclusion principle is not sacrificed.

Unbounded intervals and thus infinite bounds are mandatory [10] to ensure that interval
operations are closed. However, it is preferable to define intervals to be always subsets of R,
so that unbounded intervals are restricted to half-open intervals (−∞,α] and [α,∞), and to
(−∞,∞). Hence the appealing mathematical property 0 ·A = 0 is true for all intervals A. This
principle is pursued in the proposal of an IEEE interval arithmetic standard [6].

For an arbitrarily large number there is always an interval containing it, and an arbitrarily
small positive number is bounded below by zero. In normal interval arithmetic this implies
the drawback that B := 1/A is well-defined for A := [1,∞), but the left bound of B is zero, so
that 1/(1/A) contains 1/0. It seems natural to allow for intervals being half-open at zero, so
that, for example, 1/A = (0,1] and 1/(1/A) = [1,∞) = A.

Although zero is the commonest case, a similar problem occurs for the inverse hyperbolic
tangent of tanh[0,∞) = [0,1) at ξ = 1, or for the tangent of arctan[0,∞) = [0,π/2) at ξ = π/2.
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Therefore we aim to address this problem by allowing intervals being half-open at a general,
even transcendental point ξ ∈R.

In the following we do not restrict ourselves to such specific examples, but present a
general scheme to define an interval arithmetic over a finite set of interval bounds. Necessary
and sufficient conditions are developed under which desirable mathematical properties are
true, for example A⊆ 1/(1/A) for any interval A not containing zero.

Rather than defining intervals first using the infinite set of real endpoints, we define in-
tervals directly over a finite set of endpoints. Exactly speaking our intervals are the convex
union of two intervals, so that the endpoints of our intervals are formally defined to be in-
tervals themselves. As we will see this formalism resolves the mentioned shortcomings of
normal interval arithmetic.

One particular choice of interval endpoints is based on floating-point numbers, for in-
stance according to the IEEE 754 floating-point standard (cf. [1, 2]). Although most of the
interval computations can be performed using floating-point operations with directed round-
ing, some care is necessary concerning infinite bounds. For example, IEEE 754 defines
0 ·∞ = NaN, so that multiplication of an interval bound by zero results not necessarily in
zero. Note that there are other definitions; for example, sometimes (but not always) 0 ·∞ = 0
is used in measure theory [3].

A problem of conventional definitions [6] is that an infinite bound is not a member of its
own interval. In particular, the intersection of the interval A := [+∞,+∞] with R is empty.
By defining A to be empty, seemingly natural properties such as

[α,β ] = hull(interval(α), interval(β )) or α ∈ interval(α) (1.1)

are not valid any more. There are circumventions in [6] by defining other access functions
to interval bounds. Nevertheless, I think it is hazardous to define an interval arithmetic with
bounds out of a set B for which there are elements in B not belonging to any interval.

A solution is to interpret an infinite bound as “huge”, not infinity but in a way larger than
any real number. Examples for a rigorous treatment of such ideas are surreal numbers [4] or
nonstandard analysis [9]. This, however, is far too much for our purposes.

To start with a finite set B of endpoints and then to define an interval arithmetic directly
over B rather than first over R avoids not only the mentioned problems but makes it also
directly suitable for a computer implementation. We give necessary and sufficient conditions
on B so that the new interval arithmetic preserves mathematical properties such as

0 ∈ A−B ⇔ A∩B 6= /0
0 ∈ A ·B ⇔ 0 ∈ A∪B
A⊆ B/(B/A) if 0 /∈ A∪B

avoiding problems with underflow, and

0 ·A = [0,0]
α ∈ interval(α)

[α,β ] = hull(interval(α), interval(β ))

avoiding problems with overflow and infinity mentioned before. Other desirable properties
such as

A⊆ log(exp(A)) for any interval A (1.2)

are valid as well. Basically, it is necessary and sufficient to introduce quantities “huge” and
“tiny” to be endpoints, but avoiding infinity to be an endpoint or element of an interval.
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We do not know of another interval arithmetic with the above properties. Consider, for
example, the set of intervals {x ∈R : a≤ x ≤ b} for a,b ∈R∪{−∞,∞} as in [6]. Note that
the bounds are real numbers. If an interval A is unbounded to the left, then in normal interval
arithmetic the best lower bound for B := exp(A) is zero, so that log(B) is not defined for all
b ∈ B. Hence even for intervals with real endpoints, (1.2) is not satisfied for the standard
definitions [5, 7, 6, 11] of interval arithmetic.1

Rather than defining a specific interval arithmetic, we develop and investigate a general
scheme and analyze it. This covers in particular the above mentioned, but allows much more.

2. Notation and definitions. We start with a theoretical treatment which will turn out
to be directly suitable for a practical implementation.

The purpose of this paper is to define intervals over finitely many endpoints, such as
floating-point numbers, and an interval arithmetic. To avoid confusion with ordinary intervals
such as [α,β ], [α,β ) etc. over real numbers, we call the latter R-intervals. Thus, the set IR
of R-intervals is the set of non-empty and connected subsets of R. This covers in particular
unbounded R-intervals.

The following definition identifiesR-intervals to be the bounds of our to-be-defined new
intervals. Seemingly strange at first sight, this formalizes what we want to do. In a practical
implementation those R-intervals would basically consist of the set of degenerated intervals
[ f , f ] for all floating-point numbers f plus some extra bounds to be specified.

DEFINITION 2.1. A finite set B = {b1, . . . ,bk} is called a weakly admissible set of
interval bounds if bi ∈ IR for all 1≤ i≤ k and

α ∈ bi, β ∈ bi+1 ⇒ α < β for 1≤ i < k . (2.1)

If, in addition, k > 1 and

inf b1 =−∞ and sup bk =+∞ , (2.2)

then B is called an admissible set of interval bounds.
REMARK 2.2. The condition k > 1 excludes the trivial case B= {b1} with b1 =R to be

an admissible set of interval bounds.
EXAMPLE 2.3. Let F = { f1, . . . , fn} ⊂ R be a finite set of real numbers, let µ ∈ R be

such that | f | ≤ µ for all f ∈ F, and define H := {α ∈ R : µ < α}. Then B := {{ f} : f ∈
F}∪{−H,H} is an admissible set of interval bounds. Note that this is also true for replacing
H by {α ∈R : µ +1≤ α}.

An individual element b ∈B may be a set consisting of a single real number, or may be
an open, a half-open or a closed R-interval. In particular, b1 and bk may be unbounded. Note
that the bi ∈B are mutually disjoint R-intervals, but will serve as bounds for our intervals to
be defined.

We define a total ordering � on B by

bi � b j for 1≤ i≤ j ≤ k . (2.3)

Furthermore a≺ b means a� b and a 6= b,

min�(a,b) :=
{

a if a� b
b otherwise (2.4)

1Another definition of interval arithmetic by Hansen and Walster with theoretical foundation by Pryce, cf. [8],
uses containment sets (cset), basically “ignoring input out of range”, see Section 5. In that case (1.2) is satisfied.
However, B * exp(log(B)) for B = [−1,1] because logB = (−∞,0] in that arithmetic.
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for a,b ∈B, and similarly max�(a,b).
DEFINITION 2.4. The set IB of proper intervals over a weakly admissible set of interval

bounds B is the empty set and the set of all pairs (a,b) ∈ B×B with a � b. To avoid
confusion with R-intervals we use the notation Ja,bK, so that

IB= {Ja,bK : a,b ∈B, a� b} ∪ { /0} . (2.5)

Note that the notation implies that a proper interval Ja,bK is non-empty, and that a� b.
DEFINITION 2.5. We call the convex union a∪b of a and b the range of the proper

interval Ja,bK ∈ IB, i.e. range(Ja,bK) := a∪b ⊆ R. Moreover, range( /0) := /0. We use an
auxiliary quantity NaI (Not an Interval) to define the set IB of intervals by

IB= IB ∪ {NaI} . (2.6)

For B= {b1, . . . ,bk}, the quantity⋃
{b : b ∈B}= b1∪bk ⊆R (2.7)

is called the range of intervals.
The range of intervals isR if and only ifB is admissible. The range of NaI is not defined.

The quantity NaI will serve as the default result of an interval operation if one operand is
NaI, or if some input is out of range (such as division by zero). Thus we concentrate in the
following on the definition of interval operations on proper interval. There are other ways to
handle such exceptions, see Section 5.

Set operations on proper intervals are defined by identifying the interval with its range,
for example

ξ ∈ Ja,bK :⇔ ξ ∈ a∪b for ξ ∈R (2.8)

and

a = range(Ja,aK) for a ∈B . (2.9)

Moreover,

Ja,bK⊆ Jc,dK :⇔ a∪b ⊆ c∪d for Ja,bK, Jc,dK ∈ IB . (2.10)

Note that, although the endpoints are out of a finite set B, a proper interval covers all real
numbers in its range.

If the intersection of two proper intervals Ja,bK and Jc,dK is not empty, then

Ja,bK ∩ Jc,dK = Jmax�(a,c),min�(b,d)K , (2.11)

whence IB is closed under intersection. The hull always satisfies

hull(Ja,bK,Jc,dK) = Jmin�(a,c),max�(b,d)K . (2.12)

In particular for all a,b ∈B,

Jmin�(a,b),max�(a,b)K = hull(Ja,aK,Jb,bK) with range a∪b . (2.13)

COROLLARY 2.6. The set IB of proper intervals over a weakly admissible set of interval
bounds B forms a complete lattice.
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DEFINITION 2.7. Interval operations ◦ : IB× IB→ IB for ◦ ∈ {+,−, ·,/} on proper
intervals are defined by

A◦B :=
⋂
{C ∈ IB : α ◦β ∈C for all α ∈ A,β ∈ B} ∈ IB (2.14)

provided 0 /∈C in case of division. This extends to operations ◦ : IB×IB→ IB on intervals
by

A◦B := NaI if A = NaI or B = NaI or 0 ∈ B in case of division . (2.15)

The intersection in (2.14) is taken over a finite set of proper intervals. It is thus well-defined
and again a proper interval. Note that α,β in (2.14) run over all real α ∈ A and β ∈ B, so that
α ◦β ∈R is the real operation between α and β . The result of an interval operation may be
empty for weakly admissible B, but, as we will see, not for admissible B.

EXAMPLE 2.8. Define F := {m/1000 : m ∈ Z,−1012 < m < 1012}. Then B := {{ f} :
f ∈ F} is a weakly admissible set of interval bounds. Identifying f ∈ F with { f} one has
J2,2K/J3,3K = J0.666,0.667K, but J106,106K · J106,106K = /0.

In order to allow interval operations with real numbers we define the mapping ♦ :R→
IB by

♦(ξ ) :=
⋂
{C ∈ IB : ξ ∈C} . (2.16)

Note that ♦ is defined for all ξ ∈R, and x ∈♦(x) if and only if ξ ∈ b1∪bk. If ξ is not in the
range of intervals, then♦(ξ ) = /0. Using this embedding, operations ◦ ∈ {+,−, ·,/} between
a real number ξ and an interval A are defined by

ξ ◦A :=♦(ξ )◦A and A◦ξ := A◦♦(ξ ) . (2.17)

One of the most important properties of any interval arithmetic is the inclusion principle, i.e.
to cover the range of the power set operations. This applies not only to operations on intervals
but also between real numbers. Thus the inclusion monotonicity α ◦β ∈♦(α)◦♦(β ) for all
α,β ∈R is most desirable if not mandatory.

THEOREM 2.9. Let B be a weakly admissible set of interval bounds. Then

α ◦β ∈ ♦(α)◦♦(β ) for ◦ ∈ {+,−, ·} and all α,β ∈R (2.18)

is true if and only ifB is an admissible set of interval bounds, i.e. the range of intervals isR.
REMARK 2.10. Note that the assertion is not true for division because♦(β ) may contain

zero for nonzero β .
Proof. If the range of intervals is R, then ξ ∈ ♦(x) for all ξ ∈ R. Moreover, α ◦β is

defined for any real α,β , so that it cannot happen that α ◦β is defined but α ′ ◦β ′ is not for
α ′ ∈ ♦(α) and β ′ ∈ ♦(β ). Hence (2.18) follows by the definition (2.14).

If, for B = {b1, . . . ,bk}, the supremum of bk is σ < ∞, then ♦(ξ ) = /0 for ξ := σ + 1
and therefore ♦(ξ )+♦(ξ ) = /0, a contradiction to (2.18). If the infimum of b1 is finite, we
proceed similarly.

Because of the utmost importance of the inclusion monotonicity (2.18), we focus our
attention in the following on admissible sets of interval bounds. In this case the range of
intervals is R, and the smallest element b1 and largest element bk in the ordering � may be
interpreted as a representation of the overflow range.

DEFINITION 2.11. For a function f : D f ⊆ Rn → R its natural interval extension F :
IB n→ IB is defined by

F(A) :=
{ ⋂
{C ∈ IB : f (α) ∈C for all α ∈ A} if A ∈ IBn and A⊆ D f

NaI otherwise ,
(2.19)
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where for α := (α1, . . . ,αn) ∈Rn and A := (A1, . . . ,An) ∈ IBn we use the vector notation

α ∈ A :⇔ αi ∈ Ai for all 1≤ i≤ n and A⊆ D f :⇔ α ∈ D f for all α ∈ A . (2.20)

A function G : IB n→ IB is called a weak interval extension of f if, for all A ∈ IB n,

G(A) 6= NaI ⇒ F(A)⊆ G(A) . (2.21)

REMARK 2.12. Definition 2.7 implies that F(A,B) := A◦B is the natural interval exten-
sion of f (α,β ) := α ◦β for ◦ ∈ {+,−, ·,/}.

We close this section with two simple examples. The set B := {N,P0} with

N := {ξ ∈R : ξ < 0} and P0 := {ξ ∈R : ξ ≥ 0} (2.22)

is an admissible set of interval bounds. For positive π ∈ R one has ♦(π) = JP0,P0K, and
therefore

♦(ξ )/♦(π) = NaI for any ξ ∈R and 0 < π ∈R . (2.23)

The set B := {N,P} with

P := {ξ ∈R : ξ > 0} (2.24)

is also an admissible set of interval bounds. One has ♦(π) = JP,PK for positive π ∈ R, and
♦(η) = JN,NK for negative η ∈R, whereas ♦(0) = JN,PK. Thus

♦(α)/♦(β ) =


JP,PK if αβ > 0
JN,NK if αβ < 0
JN,PK if α = 0, β 6= 0
NaI if β = 0 .

(2.25)

Hence α/β ∈ ♦(α)/♦(β ) for all α,β ∈ R with β 6= 0, thus extending Theorem 2.9 to di-
vision. In the next section we will characterize under which circumstances this and other
desirable properties are true.

3. Mathematical properties. As has been mentioned in the introduction, the finiteness
of the set of bounds B does not permit associativity of interval addition and multiplication
under general assumptions.

THEOREM 3.1. Let an admissible set of interval bounds B be given. If {0},{α} ∈B for
0 < α ∈R, then interval addition is not associative. If {1/α},{1},{α} ∈B for 1 < α ∈R,
then interval multiplication is not associative.

Proof. Since B is admissible, b1 and bk are not bounded. Define A := J{α},{α}K and
B := Jbk−1,bk−1K. Then {α} � bk−1 and B+(A−A) = B 6= (B+A)−A.

If {1/α},{1},{α} ∈ B, then again {α} � bk−1. Define A and B as before, and C :=
J{α},{α}K and D := J{1/α},{1/α}K. Then B(CD) = B 6= (BC)D.

Both examples use unbounded intervals as intermediate results. At least for addition
they have to: For B based on a fixed-point number system such as {kα : k ∈ Z, |k| ≤ K}
for nonzero α ∈R appended with bounds covering overflow, addition is exact (and therefore
associative) provided no “overflow” occurs.

In Section 4 we show that for B based on IEEE 754 floating-point numbers, neither
addition nor multiplication is associative even if all quantities and intermediate results are
finite, and the sub-distributivity is not satisfied as well.
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A number of mathematical properties are true. Some of the following properties are
called “trivial implications” in [7], page 21. This is indeed true for intervals with real end-
points. Here, however, we are restricted to a finite set of bounds, such as floating-point num-
bers. We do not know of another definition of interval arithmetic maintaining the following
properties.

We defined the range of intervals to be a subset of R, not allowing infinity as an element
of an interval. Thus multiplication by zero results is zero:

THEOREM 3.2. Let A,B ∈ IB for a weakly admissible set of interval bounds B, and
assume {0} ∈B. Then, identifying 0 with {0},

A ·B = J0,0K ⇔ A = J0,0K or B = J0,0K . (3.1)

Proof. Follows directly by the definition (2.14).
One of the most important properties of any interval arithmetic is the inclusion mono-

tonicity:
THEOREM 3.3. Let A,B ∈ IB for an admissible set of interval bounds B. Then

α ◦β ∈ A◦B for all α ∈ A, β ∈ B (3.2)

for ◦ ∈ {+,−, ·,/}, where 0 /∈ B is assumed in case of division. For A′,B′ ∈ IB we have

A⊆ A′, B⊆ B′ ⇒ A◦B⊆ A′ ◦B′ , (3.3)

where 0 /∈ B′ is assumed in case of division. The assertions (3.2) and (3.3) are not necessarily
true for a weakly admissible set of interval bounds B.

For a function f : D f ⊆ Rn → R and its natural interval extension F : IB n → IB one
has

f (α) ∈ F(A) for all α ∈ A (3.4)

provided A⊆ D f . For a weak interval extension G : IB n→ IB of f we have

G(A) 6= NaI ⇒ f (α) ∈ G(A) for all α ∈ A . (3.5)

Proof. Since the range of intervals is R, the assertions follow directly by the definitions
(2.14) and (2.19). For a weakly admissible set of interval bounds B the range of intervals is
not necessarily R, so that A◦B and A′ ◦B′ may be empty although the power set operation is
well-defined.

We note that Theorem 3.3 extends in an obvious way to arbitrary expressions involving
arithmetic operations and functions, in one or in several dimensions. In general, this results
in a weak interval extension.

DEFINITION 3.4. A weakly admissible set of interval bounds B is called dense around
ρ ∈R if there are t1, t2 ∈B, t1 6= t2 with

sup t1 = inf t2 = ρ and ρ /∈ t1∪ t2 . (3.6)

REMARK 3.5. The definition implies t1 � t2, and {ρ} may be an element of B or not.
With this definition we can characterize the conditions on B so that the inclusion mono-

tonicity (2.18) in Theorem 2.9 is also true for division.
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THEOREM 3.6. Let B be an admissible set of interval bounds, i.e. the range of intervals
is R. Let ρ ∈R be given. Then

ρ 6= ξ ⇔ ρ /∈ ♦(ξ ) for all ξ ∈R (3.7)

is true if and only if B is dense around ρ . Furthermore,

α ◦β ∈ ♦(α)◦♦(β ) for ◦ ∈ {+,−, ·,/} and all α,β ∈R,
β 6= 0 in case of division, (3.8)

is true if and only if B is dense around 0.
Proof. Since B is admissible, ξ ∈ ♦(ξ ) for all ξ ∈R so that the direction “⇐” in (3.7)

is always true.
If B is dense around ρ , then (3.7) follows. Suppose B is not dense around ρ and let

Ja,bK :=♦(ρ). If the range of Ja,bK is {ρ}, then sup t1 6= ρ for all t1 with t1 ≺ a or inf t2 6= ρ

for all t2 with b ≺ t2, so that in either case there is β 6= ρ with ρ ∈ ♦(ξ ). Otherwise, the
interior of Ja,bK is not empty and again there is ξ 6= ρ with ρ ∈ ♦(ξ ). This proves the first
part, and the second part follows by Theorem 2.9 and the equivalence (3.7).

THEOREM 3.7. Let A,B ∈ IB for an admissible set of interval bounds B. Then for
A,B 6= /0 the equivalence

0 ∈ A ·B ⇔ 0 ∈ A or 0 ∈ B . (3.9)

is true if B is dense around 0.
REMARK 3.8. The equivalence may also be true if B is not dense around 0 such as for

B := {b1,b2} with b1 := {ξ ∈ R : ξ ≤ −1} and b2 := {ξ ∈ R : ξ ≥ 1}. Then IB consists
only of the three intervals N := Jb1,b1K, R := Jb1,b2K and P := Jb2,b2K with N ·N = P ·P = P
and R ·N = R ·P = R.

Proof. The direction “⇐” is trivial. Assume B = {b1, . . . ,bk} is dense around 0 with t1
and t2 as in Definition 3.4. If 0 /∈ A and 0 /∈ B, then M := {αβ : α ∈ A,β ∈ B} satisfies

either M ⊆ {ξ ∈R : ξ < 0} ⊆ b1∪ t1 or M ⊆ {ξ ∈R : ξ > 0} ⊆ t2∪bk . (3.10)

In either case the definition (2.14) implies 0 /∈ A ·B, and therefore (3.9).
THEOREM 3.9. Let A,B ∈ IB for an admissible set of interval bounds B. If {ξ ∈ R :

ξ ≤ 0} /∈B, B 6= /0 and 0 /∈ B, then the equivalence

0 ∈ A/B ⇔ 0 ∈ A (3.11)

is true if and only if B is dense around 0.
REMARK 3.10. The assumption N0 := {ξ ∈ R : ξ ≤ 0} /∈ B excludes the pathological

case that ♦(ξ ) = JN0,N0K for each non-positive ξ . For example, B := {N0,P} with P :=
{ξ ∈R : ξ > 0} is an admissible set of interval bounds which is not dense around 0, but for
which the equivalence (3.11) holds true.

Proof. Again, the direction “⇐” in (3.11) is always true, and ifB= {b1, . . . ,bk} is dense
around 0 then the direction “⇒” follows as in the proof of Theorem 3.7. Assume B is not
dense around 0. Then k > 1 implies that

∃α1∀ξ ∈ b1 : ξ ≤ α1 < 0 or ∃α2∀ξ ∈ bk : 0 < α2 ≤ ξ , (3.12)

and by assumption both b1 and bk are unbounded. Define A := Jb1,b1K and B := Jbk,bkK. In
the first case, 0 /∈ A and

{α/β : α,β ∈ A}= P := {ξ ∈R : ξ > 0} ⊆ A/A , (3.13)
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and similarly 0 /∈ B and

{α/β : α,β ∈ B}= P⊆ B/B (3.14)

in the second case. If there is no b ∈ B with inf b = 0 and 0 /∈ b, then 0 ∈ A/A or 0 ∈ B/B,
respectively, a contradiction to (3.11).

On the contrary, assume there exists b ∈B with inf b = 0 and 0 /∈ b. Then b� bk implies
ξ > 0 for all ξ ∈ B. Since b1 � b and the range of intervals is R, we have sup b1 ≤ 0, and
{ξ ∈R : ξ ≤ 0} /∈B implies that α < 0 for all α ∈ A. Hence {α/β : α ∈ A,β ∈ B}= {ξ ∈
R : ξ < 0}. But, because B is not dense around 0, there is no c ∈B with sup c = 0 and 0 /∈ c,
and this means 0 ∈ A/B.

THEOREM 3.11. Let A,B ∈ IB for an admissible set of interval bounds B. If B is dense
around 0, then

0 ∈ A−B ⇔ A∩B 6= /0 . (3.15)

REMARK 3.12. The equivalence may also be true if B is not dense around 0 such as for
B := {b1,b2} as in Remark 3.8. Then N and P are the only intervals with empty intersection,
and neither N−P = N nor P−N = P contain zero.

Proof. If ξ ∈ A∩B, then 0 = ξ −ξ ∈ A−B, so the direction “⇐” is always true. Suppose
A∩B = /0, and assume B= {b1, . . . ,bk} is dense around 0 with t1 and t2 as in Definition 3.4.
Then M := {α−β : α ∈ A,β ∈ B} satisfies

either M ⊆ {ξ ∈R : ξ < 0} ⊆ b1∪ t1 or M ⊆ {ξ ∈R : ξ > 0} ⊆ t2∪bk . (3.16)

In either case the definition (2.14) implies 0 /∈ A−B, and the assertion follows.
THEOREM 3.13. Let A,B ∈ IB for an admissible set of interval bounds B. If {ξ ∈ R :

ξ ≤ 0} /∈B, then

B⊆ A/(A/B) for all A 6= /0 with 0 /∈ A∪B (3.17)

is true if and only if B is dense around 0.
Proof. If B is dense around 0, then by 0 /∈ A∪B and (3.11) we have 0 /∈ A/B, and the

assertion follows by (3.2). If B is not dense around 0, then Theorem 3.9 implies that 0 ∈ A/B
is possible although 0 /∈ A∪B, so that A/(A/B) = NaI.

4. Interval arithmetic based on floating-point endpoints. A generic choice of end-
points suitable for numerical computations is based on floating-point numbers. Let, for exam-
ple, F denote the set of finite single (binary32) or double precision (binary64) floating-point
numbers according to the IEEE 754 standard [1, 2]. Note that F = −F and 0 ∈ F. Then
{{ f} : f ∈F} is a weakly admissible set of interval bounds. As we have seen in the previous
section, the mandatory inclusion monotonicity (3.2) is not satisfied because overflow is not
taken care of.

We first give some examples that associativity of addition and multiplication as well
as sub-distributivity is not satisfied. Denote the relative rounding error unit2 by u, so that
1−2u,1−u,1,1+2u,1+4u are consecutive floating-point numbers. Following we identify
a floating-point number f with ♦( f ) = J{ f},{ f}K and use always interval operations. Then
for A = 1, B = 3u and C =−3u we have

(A+B)+C = [1−u,1+2u] 6= [1,1] = A+(B+C) , (4.1)

2This is the maximal relative error of a floating-point operation; note that eps in Matlab gives 2u.
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for A = 1−2u and B =C = 1+2u we have

A(BC) = [1,1+4u] 6= [1,1+2u] = (AB)C , (4.2)

and for A = 1−u and B =C = 1+2u,

(A+B)C = [2+4u,2+12u]* [2+4u,2+8u] = AC+BC . (4.3)

The main reason that these fundamental arithmetic laws are not satisfied is that the distance
of adjacent floating-point numbers decreases with their magnitude. As has been mentioned,
for an equidistant number system such as fixed point numbers addition is exact as long as the
result is in the representable range.

4.1. An admissible set of interval bounds not dense around 0 based on IEEE 754.
Define

realmin := min{ f : 0 < f ∈ F} and realmax := max{ f : f ∈ F} . (4.4)

A natural extension to an admissible set of interval bounds is to use

F∗ := F∪{−H,H} with H := {ξ ∈R : ξ > realmax} , (4.5)

and to defineB := {{ f} : f ∈F}∪{−H,H}. Besides (3.1) and the inclusion monotonicity as
in Theorem 3.3, not many mathematical properties are satisfied becauseB is not dense around
0: The inclusion of real numbers and operations as by (3.7) and (3.8) is not true, and of the
remaining properties listed in Section 3 only the trivial “⇐” directions are satisfied. The
equivalence in (3.15) is true if F includes gradual underflow because in this case p− q = 0
is equivalent to p = q for p,q ∈ F. Practically speaking floating-point operations in the
underflow range are rather slow; but banning un-normalized numbers spoils the equivalence
in (3.15).

The interval operations can be realized using floating-point operations with directed
rounding on the bounds of the input intervals. This corresponds to the usual approach, cf.
[5, 7, 11]. Those operations ◦∇ : F∗×F∗→ F∗ and ◦∆ : F∗×F∗→ F∗ are defined except
for division by zero by

p◦∇ q := r and p◦∆ q := s where Jp, pK◦ Jq,qK = Jr,sK , (4.6)

identifying f ∈ F with { f}. If the additional quantities ±H are neither operands nor result
and the operation is not division by zero, then the operations ◦∇ and ◦∆ are identical to the
floating-point operations with directed rounding as defined in the IEEE 754 standard.

Provided 0 /∈ Jr,sK in case of division and extending min� and max� in the obvious way
for multiple arguments, one has

Jp,qK◦ Jr,sK =
q

min�
(

p◦∇ r, p◦∇ s,q◦∇ r,q◦∇ s
)
,

max�
(

p◦∆ r, p◦∆ s,q◦∆ r,q◦∆ s
)y

.
(4.7)

In particular,

Jp,qK+ Jr,sK = Jp+∇ r,q+∆ sK and Jp,qK− Jr,sK = Jp−∇ s,q−∆ rK . (4.8)

For multiplication case distinctions can be used so that two multiplications are necessary
unless both operands contain zero as an inner point, in which case four multiplications are
necessary. For division always two divisions suffice, one in rounding downwards and one in
rounding upwards.
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TABLE 4.1
Addition in rounding upwards for f ∈F, 0≥ ν ∈F∗ and 0 < π ∈F∗

p+∆ q −H ν π H

−H −H −H ∆(−realmax+π) H
f ∆( f −realmax) ∆( f +ν) ∆( f +π) H
H H H H H

As usual, for p,q ∈ F the bounds can be computed directly using the directed rounding
∇ :R→ F∗ and ∆ :R→ F∗ defined by

ξ ∈R and ♦(ξ ) = Jp,qK ⇒ ∇(ξ ) := p and ∆(ξ ) := q . (4.9)

To simplify the exposition we identify f ∈ F with { f} ∈ B in the following. Then for the
rounding upwards, for example, one has

∆(ξ ) =

 −H if ξ <−realmax
min{ f ∈ F : ξ ≤ f} if −realmax≤ ξ ≤ realmax

H if ξ > realmax .
(4.10)

Then, similar to IEEE 754, p ◦∇ q := ∇(p+ q) and p ◦∆ q := ∆(p+ q) for p,q ∈ F, where
p+ q ∈ R denotes the real result of the sum. As an example, we show the results of +∆ in
Table 4.1.

Operations with directed rounding are defined in IEEE 754. By identifying H in F∗ with
∞ in IEEE 754 those operations can be used except that (−∞)+∆ ∞ = NaN has to be taken
care of.

4.2. An admissible set of interval bounds being dense around 0 based on IEEE 754.
A natural extension to an admissible set of interval bounds being dense around 0 is

F∗ := F∪{−H,−T,T,H} with T := {ξ ∈R : 0 < ξ < realmin} , (4.11)

and to define B := {{ f} : f ∈ F}∪{−H,−T,T,H}. Then, in contrast to the previous sub-
section, all mathematical properties listed in Section 3 are satisfied.

As before the interval operations can be realized using floating-point operations with
directed rounding on the bounds of the input intervals as in (4.6) and (4.7).

For p,q ∈ F the bounds can again be computed directly using the directed rounding
∇ : R→ F∗ and ∆ : R→ F∗ defined in (4.9). For example, for F∗ as in (4.11) and again
identifying f with { f}, rounding upwards computes now as follows:

∆(ξ ) =



−H if ξ <−realmax
min{ f ∈ F : ξ ≤ f} if −realmax≤ ξ ≤−realmin
−T if −realmin< ξ < 0
0 if ξ = 0
T if 0 < ξ < realmin

min{ f ∈ F : ξ ≤ f} if realmin≤ ξ ≤ realmax

H if ξ > realmax .

(4.12)

Again we show as an example the results of +∆ in Table 4.2. The remarks on multiplication
and division in the previous subsection as well as (4.7) and (4.8) apply as before.
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TABLE 4.2
Addition in rounding upwards for ν1,ν2,π1,π2 ∈ F with −realmax ≤ ν1,ν2 ≤ −realmin and realmin ≤

π1,π2 ≤ realmax; the lower half of the table is defined by symmetry

a+∆ b −H ν2 −T 0 T π2 H

−H −H −H −H −H ∆(−realmax+realmin) ∆(−realmax+π2) H
ν1 ∆(ν1 +ν2) ν1 ν1 ∆(ν1 +realmin) ∆(ν1 +π2) H
−T −T −T realmin π2 H
0 0 T π2 H
T 2realmin ∆(realmin+π2) H
π1 ∆(π1 +π2) H
H H

4.3. Examples and extensions. Let B be as in the previous subsection based on F∗ in
(4.11). We start with a few examples for the arithmetic described in the previous subsection.
Let positive p,q ∈ F, p ≤ q be given such that 0 < p2 < realmin and q2 > realmax. For
simplicity, we identify again f ∈ F with { f} ∈B. Then

C := Jp,qK · Jp,qK = JT,HK . (4.13)

Note that the range of C is (0,∞). Furthermore

D := J1,1K/C = JT,HK =C . (4.14)

Note that 0 /∈ 1/JT,HK. Moreover,

D := J1,1K/JT,TK = Jd,HK , (4.15)

where d :=♦(1/realmin). Furthermore,

exp(J−H,HK) = JT,HK .
= (0,∞) and cosh(J−H,HK) = J1,HK .

= [1,∞) , (4.16)

or

log(JT,1K) = J−H,0K .
= (−∞,0] and log(J0,1K) = NaI . (4.17)

In particular log(exp(J−H,HK)) = J−H,HK, exp(log(JT,1K)) = JT,1K and

A⊆ log(exp(A)) for all A ∈ IB . (4.18)

The “tiny” and “huge” quantities satisfy

♦(ξ ) = JT,TK ⇔ 0 < ξ < realmin and
♦(ξ ) = JH,HK ⇔ ξ > realmax .

(4.19)

Moreover, the interval arithmetic can be extended in several ways. For example, an additional
quantity E := {e} may be added to B, where e ∈R denotes the base of the natural logarithm.
The ordering (2.3) is clear from the definition. Then, for example,

exp(log(J1,EK)) = J1,EK and log(JE,EK) = J1,1K . (4.20)
12



Furthermore, the set B of bounds may be augmented to be dense around other real numbers.
Denote by pred(p) and succ(p) the predecessor and successor of p ∈ F, respectively. Define
the new quantities

1− := {ξ ∈R : pred(1)< ξ < 1} and 1+ := {ξ ∈R : 1 < ξ < succ(1)}

and supplement B as after (4.11) by {pred(1)},1−,{1},1+,{succ(1)}. Then B is an admis-
sible set of interval bounds being dense around 0 and 1, and, for example,

tanh(J0,30K) = J0,1−K, 1− J0,1−K = JT,1K, coth(JT,50K) = J1+,HK . (4.21)

Another example of an extension is to add quantities

π
−
2 := {ξ ∈R : p1 < ξ < π/2}, π2 := {π/2} and π

+
2 := {ξ ∈R : π/2 < ξ < p2}

to B, where [p1, p2] ∈ IF denotes the narrowest interval enclosing π/2. Then

tan(J0,π−2 K) = J0,HK, tan(J0,π2K) = NaI,

cos(Jπ2,π2K) = J0,0K, atan(JT,1020K) = JT,π−2 K .

Arithmetic operations with such new quantities follow Definition 2.7. To save computing
time, the narrowest enclosing interval may also be relaxed into a slightly wider one as a weak
interval extension.

4.4. Realization based on IEEE 754. A floating-point format in IEEE 754 divides into
the sign bit and some bits for the mantissa and for the exponent. The special quantities
Infinity and NaN are represented by the maximal possible exponent with mantissa zero
or nonzero, respectively. Thus a floating-point number is interpreted as NaN if its bit string
contains the maximum possible exponent and at least one nonzero mantissa bit.

This gives a lot of freedom which is scarcely used, for example by discriminating be-
tween quiet and signalling NaN. In the shortest floating-point format binary32 there are 23
mantissa bits which leaves 223− 3 additional possibilities besides the two mentioned ones.
Therefore additional special quantities such as “tiny”, Euler’s constant E, quantities dense
around 1 or π/2, or others as given in the previous subsection can be represented within the
IEEE 754 floating-point formats, and also floating-point operations including directed round-
ing can be defined without jeopardizing the standard floating-point arithmetic.

5. An “ignoring input out of range” mode (iioor). In some applications, in particular
in global optimization, it is advantageous to ignore inputs out of range. This is commonly
known as “cset”-arithmetic and was proposed by Hansen and Walster, with theoretical foun-
dation by Pryce, cf. [8]. It shifts a responsibility to the user to make sure that results are used
in a proper way, see below. Our interval arithmetic defined in Section 2 can be altered in that
sense, thus avoiding the result NaI.

More precisely, we use the set IB as intervals (rather than IB). Definition (2.14) is
changed for A,B ∈ IB into

A◦B :=
⋂
{C ∈ IB : α ◦β ∈C for all (α,β ) ∈ D◦,α ∈ A,β ∈ B} , (5.1)

where D◦ is the range of definition of the operator ◦. The only difference to Definition (2.14)
is that a zero in the denominator interval is ignored. Similarly, the Definition (2.19) of the
natural interval extension F : IB→ IB of a function f : D f ⊆R→R is replaced by

f (A) :=
⋂
{C ∈ IB : f (α) ∈C for all α ∈ A∩D f } . (5.2)
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If A∩D f = /0, then f (A) = /0. This implies, for example,

log(J0,1K) = log(J−1,1K) = J−H,0K .
= (−∞,0] . (5.3)

It is well-known that such an interval arithmetic is not suitable for the application of Brouwer’s
Fixed Point Theorem unless it is monitored that an input out of range occurred (for example
by a flag).3

All properties in Section 3 remain valid mutatis mutandis, except Theorem 3.13: Here

1/(1/J0,1K) = 1/J1,HK = JT,1K (5.4)

in the “iior”-mode of the arithmetic defined in Subsection 4.3, so that A ⊆ 1/(1/A)) is not
necessarily true.
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