
submitted for publication in SIMAX July 9, 2011, accepted October 12, 2011, published 33(1):130-148, 2012

VERIFIED BOUNDS FOR LEAST SQUARES PROBLEMS AND UNDERDETERMINED

LINEAR SYSTEMS

SIEGFRIED M. RUMP ∗

Abstract. New algorithms are presented for computing verified error bounds for least squares problems and underdeter-

mined linear systems. In contrast to previous approaches the new methods do not rely on normal equations and are applicable

to sparse matrices. Computational results demonstrate that the new methods are faster than existing ones.

Key words. Least squares problems, underdetermined linear system, INTLAB, normal equations, extra-precise residual

evaluation.

AMS subject classifications. 65F20, 65G20

1. Introduction. We are interested in verified error bounds for the 2-norm solution of over- and

underdetermined linear systems. Such algorithms are available in INTLAB and are based on solving large

augmented linear systems (4.2) and (3.2) using normal equations. For an m×n-matrix this requires O([m+

n]3) floating-point operations. Therefore larger problems are intractable, in particular because the sparsity

of the matrices involved cannot be taken advantage of. The challenge is to obtain verified bounds in a

computing time proportional to that needed for an approximate solution, namely O(Kk2) operations, where

K := max(m,n) and k := min(m,n).

We first give a very simple solution for the problem by the Lemmas 4.1 and 3.1. The inclusion is based

on a specific approximate solution, and the bounds are poor even for moderately ill-conditioned problems.

It is superior to compute error bounds for some approximate solution, possibly improved by some residual

iteration. For underdetermined linear systems, Miyajima [9] proposed such algorithms requiring O(K2k)

operations. In this paper we also first compute an approximate solution, possibly improve it by some

residual iteration, and then apply a tailor-made inclusion theorem. The progress is that we need only

O(Kk2) operations, and we cover least squares problems as well.

Singular values of a matrix A ∈ Km×n are denoted by σ1(A) ≥ · · · ≥ σk(A), where k := min(m,n) and

K ∈ {R,C}. The Moore–Penrose inverse of A is denoted by A+. Furthermore, I denotes the identity matrix

of proper dimension.

We formulate the following results over the field of real numbers; they apply mutatis mutandis over complex

numbers. To avoid confusion, we always specify the dimensions of a rectangular matrix A such that m ≥ n,

i.e., we use A ∈ Rn×m for underdetermined linear systems and A ∈ Rm×n for least squares problems.

2. Some useful estimates. Many of our estimates are based on the spectral norm. Bounds in the

∞-norm or 1-norm follow for symmetric matrices by

∥A∥2 ≤ ∥ |A| ∥2 ≤ ∥A∥1 = ∥A∥∞ ≤
√
m∥A∥2 for AT = A ∈ Rm×m .(2.1)

For P ∈ Rm×n and Q ∈ Rn×m we frequently use, without further mentioning, that ∥I −QP∥ < 1, which is

possible only for m ≥ n and implies that P and Q have full rank. This is true for any matrix norm.

∗Institute for Reliable Computing, Hamburg University of Technology, Schwarzenbergstraße 95, Hamburg 21071, Germany,

and Visiting Professor at Waseda University, Faculty of Science and Engineering, 3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555,

Japan (rump@tu-harburg.de).

1

2 S.M. RUMP

Lemma 2.1. Let X ∈ Rm×n and p ∈ {1, 2,∞} be given, and suppose ∥I −XTX∥p ≤ α < 1. Then m ≥ n,

X has full rank, and

∥X+ −XT ∥2 ≤ α√
1− α

for p = 2 .(2.2)

Moreover, for any B ∈ Rm×k with k ≥ 1,

∥(X+ −XT)B∥p ≤ α∥XTB∥p
1− α

for p ∈ {1, 2,∞} .(2.3)

Furthermore,

∥X+B∥p ≤ ∥XTB∥p
1− α

, in particular ∥X+∥p ≤ ∥XT ∥p
1− α

for p ∈ {1, 2,∞} .(2.4)

Remark. Note that, for p = 2, (2.2) is superior only to (2.3) if ∥XTB∥ is not too far from ∥XT ∥∥B∥, i.e.,
if columns of B have parts in the singular vectors to the largest singular values of XT . Otherwise, (2.3) may

be much better than (2.2).

Proof. In the case p = 2, i.e., ∥I −XTX∥2 ≤ α < 1, Lemma 2.2 in [14] gives

1√
1 + α

≤ σi(X
+) ≤ 1√

1− α
,(2.5)

so that

X+ −XT = (XTX)−1XT −XT = (I −XTX)(XTX)−1XT = (I −XTX)X+

proves (2.2). For a square matrix M with ∥I −M∥p ≤ α < 1 we have

∥M−1 − I∥p = ∥
(
I − (I −M)

)−1
(I −M)∥p ≤ α

1− α
,(2.6)

so that M := XTX and

∥(X+ −XT)B∥p = ∥
(
(XTX)−1 − I

)
XTB∥p ≤ α∥XTB∥p

1− α
(2.7)

prove (2.3). Finally, ∥X+B∥p ≤ ∥(X+ −XT)B∥p + ∥XTB∥p and (2.3) yields (2.4). �

Similar estimates for Y ∈ Rn×m are weaker than in Lemma 2.1.

Lemma 2.2. Let Y ∈ Rn×m and p ∈ {1, 2,∞} be given, and suppose ∥I − Y Y T ∥p ≤ α < 1. Then m ≥ n, Y

has full rank, and

∥Y + − Y T ∥2 ≤ α√
1− α

for p = 2 .(2.8)

Moreover, for any B ∈ Rn×k with k ≥ 1,

∥(Y + − Y T)B∥p ≤ α∥Y T ∥p
1− α

∥B∥p for p ∈ {1, 2,∞} .(2.9)

Furthermore,

∥Y +B∥p ≤ ∥Y TB∥p +
α∥Y T ∥p
1− α

∥B∥p , in particular ∥Y +∥p ≤ ∥Y T ∥p
1− α

for p ∈ {1, 2,∞} .(2.10)

Proof. In the case p = 2, we apply Lemma 2.1 to X := Y T and use

∥Y + − Y T ∥2 = ∥(X+ −XT)T ∥2 = ∥X+ −XT ∥2

Verified bounds for Least Squares Problems and Underdetermined Linear Systems 3

to prove (2.8). Furthermore (2.6) implies

∥(Y + − Y T)B∥p = ∥Y T
(
(Y Y T)−1 − I

)
B∥p ≤ α∥Y T ∥p

1− α
∥B∥p(2.11)

and shows (2.9). Finally, ∥Y +B∥p ≤ ∥Y TB∥p + ∥(Y + − Y T)B∥p finishes the proof. �

A bound for the residual of an approximate pseudoinverse implies an upper bound for the norm of the true

pseudoinverse as follows.

Lemma 2.3. Let A ∈ Rm×n and P ∈ Rn×m with m ≥ n and p ∈ {1, 2,∞} be given, and suppose ∥I−PA∥p ≤
α < 1. Then A and P have full rank, and

∥A+∥p ≤ φ∥P∥p
1− α

(2.12)

with φ = 1 for p = 2, and φ =
√
m+1
2 for p ∈ {1,∞}.

Remark. For the spectral norm, the result was stated in [9] with a different proof.

Proof. We first note

∥A+∥p = ∥(PA)−1(PA)A+∥p ≤ ∥
(
I − (I − PA)

)−1∥p∥P∥p∥AA+∥p ≤ ∥AA+∥p∥P∥p
1− α

.(2.13)

For the spectral norm we have ∥AA+∥2 = 1; for the row and column sum norm we use the orthogonality of

I − 2AA+ and (2.1) such that

2∥AA+∥p = ∥I − (I − 2AA+)∥p ≤ 1 +
√
m∥I − 2AA+∥2 = 1 +

√
m . �(2.14)

3. Underdetermined linear systems. Let A ∈ Rn×m with n < m and b ∈ Rn be given. It is not

uncommon to look for some x ∈ Rm with at most n nonzero entries satisfying Ax = b. Such an x is, for

example, computed by x = A\b in Matlab. Error bounds for such an x are easily obtained by performing an

LU -decomposition of A with partial pivoting, gathering a square matrix Ã out of the n pivot columns of A,

computing error bounds for the solution of the square system Ãy = b, and assembling x of the yi and zeros.

In this paper we are interested in the minimum 2-norm solution of Ax = b, which is

∥A+b∥ = min{∥x∥2 : Ax = b}(3.1)

provided A has full rank. Our methods do not assume but prove A to have full rank. This implies, in turn,

that they are not applicable to rank-deficient matrices. One way to calculate bounds for (3.1) is solving(
AT −I

0 A

)
·

(
w

x

)
=

(
0

b

)
,(3.2)

which implies x = A+b for full-rank matrix A. Note that in the literature(
−I AT

A 0

)
·

(
x

w

)
=

(
0

b

)
(3.3)

is frequently used, which bears the advantage of a symmetric system matrix. However, numerical evidence

suggests that (3.2) is more stable; see Figure 7.1. In any case, a linear system of dimension m+ n has to be

solved, resulting in a computing time of O(m3).

The residual Ax̃− b may vanish although x̃ ̸= A+b. For example, any x̃ ∈ R2 with x̃1 = 0 satisfies Ax̃ = 0

for A = (1 0) ∈ R1×2. Therefore ∥A+b− x̃∥ cannot be bounded solely knowing the residual Ax̃− b.

4 S.M. RUMP

Throughout this section

let AT ≈ QR be an economy-size QR-decomposition of AT , and

let S ≈ R−T be an approximate inverse of RT .
(3.4)

Then Q ∈ Rm×n and R,S ∈ Rn×n, and SA can be expected to be not too far from orthogonality.

An economy-size QR-factorization can be computed in 2mn2 − 2
3n

3 + O(m2) operations, and a full QR-

factorization in 4m2n− 4mn2 + 4
3n

3 +O(m2) operations counting multiplications and additions separately

[3].

A simple error bound for the solution of an underdetermined linear system is as follows.

Lemma 3.1. Let A ∈ Rn×m with n < m, b ∈ Rn, S ∈ Rn×n, and p ∈ {1, 2,∞} be given. Define Y := SA

and suppose ∥I − Y Y T ∥p ≤ α < 1. Then A and S have full rank, and for x̃ := Y TSb it holds that

∥A+b− x̃∥2 ≤ α∥Sb∥2√
1− α

for p = 2(3.5)

and

∥A+b− x̃∥p ≤ α∥Y T ∥
1− α

∥Sb∥p for p ∈ {1, 2,∞} .(3.6)

Using (3.4) the bound can be computed in 4mn2 + 4
3n

3 +O(m2) operations.

Remark. Except in rather unusual circumstances, (3.6) is better than (3.5) for p = 2. The case p = 2 is

added in (3.6) for completeness.

Proof. The result follows by A+b− x̃ = (Y + − Y T)Sb and Lemma 2.2. �

Lemma 3.1 offers a surprisingly simple method to obtain rigorous error bounds for the solution of an un-

derdetermined linear system. A drawback is that the fixed approximation x̃ := Y TSb has to be used, and

to ensure rigor, an inclusion of this x̃ is necessary. In particular this excludes the possibility of iterative

improvement of x̃. Such a method for the 2-norm error was given by Miyajima.

Theorem 3.2. (Miyajima [9]) Let A ∈ Rn×m with n < m, x̃ ∈ Rm, w̃, b ∈ Rn, Q ∈ Rm×n, and R,S ∈ Rn×n

be given. Assume ∥I −QTQ∥2 ≤ µ < 1 and ∥S(RTQT −A)∥2 ≤ ρ <
√
1− µ. Then A has full rank and

∥A+b− x̃∥2 ≤ ∥x̃−AT w̃∥2 +
∥S(Ax̃− b)∥2√

1− µ− ρ
.(3.7)

The bound can be computed in 6m2n+ 8mn2 + 10
3 n3 +O(m2) operations.

Both residuals x̃ − AT w̃ and Ax̃ − b are small for an approximate solution x̃ of (3.1) and w̃ ≈ (AAT)−1b,

so that the bound in (3.7) can be expected to be of good quality. However, in contrast to Lemma 3.1, the

matrix Q and the residual AT −QR are explicitly needed. Therefore the computing time grows with O(m2n)

rather than O(mn2), which may be significant for m ≫ n. This can be avoided as follows.

Theorem 3.3. Let A ∈ Rn×m with n < m, x̃ ∈ Rm, w̃, b ∈ Rn, S ∈ Rn×n, and p ∈ {1, 2,∞} be given.

Define Y := SA and suppose ∥I − Y Y T ∥p ≤ α < 1. Then A has full rank and, abbreviating ρw̃ := x̃−AT w̃

and ρx̃ := Ax̃− b,

∥A+b− x̃∥p ≤
√
m∥ρw̃∥p + ∥Y TSρx̃∥p +

α∥Y T ∥p
1− α

∥Sρx̃∥p for p ∈ {1,∞}(3.8)

and

∥A+b− x̃∥2 ≤ ∥ρw̃∥2 + ∥Y TSρx̃∥2 +
α√
1− α

∥Sρx̃∥2 for p = 2 .(3.9)

Verified bounds for Least Squares Problems and Underdetermined Linear Systems 5

Using (3.4) the bounds can be computed in 4mn2 + 4
3n

3 +O(m2) operations.

Proof. As in [9] we use the identity

x̃−A+b = (I −A+A)(x̃−AT w̃) +A+(Ax̃− b)(3.10)

which follows by AT = A+AAT . By definition of Y it is A+ = Y +S. Hence (3.10), ∥I − A+A∥2 = 1 and

∥I −A+A∥p ≤
√
m by (2.1), and Lemma 2.2 finishes the proof. �

Note that both vectors x̃ and w̃ can be chosen freely. First, one may be inclined to choose x̃ such that

Ax̃ − b = 0. However, such a vector is difficult to compute. An easy second choice is, for any given w̃,

to define x̃ := AT w̃. In that case the residual ϱw̃ is zero eliminating one term in the estimates (3.8) and

(3.9). However, in that case x̃ has to be computed with error bounds to ensure rigor of the approach. But

this implies that the other residual ϱx̃ cannot become really small because (the desired) cancellation is only

possible for precisely given data without tolerances.

4. Least squares problems. Let A ∈ Rm×n with m > n and b ∈ Rm be given. Next we are interested

in some x ∈ Rn minimizing the 2-norm of the residual Ax− b, which is

x̂ := A+b ⇔ ∥Ax̂− b∥2 = min{∥Ax− b∥2 : x ∈ Rn}(4.1)

provided A has full rank. Again our methods do not assume but prove A to have full rank. And again one

way to calculate bounds is by solving(
A −I

0 AT

)
·

(
x

w

)
=

(
b

0

)
,(4.2)

which implies x = A+b for full-rank matrix A. Also here in the literature frequently the version with

symmetric matrix is used, but again numerical evidence suggests that (4.2) is more stable; see Figure 7.1. In

any case, a linear system of dimension m+n has to be solved, resulting in a computing time of O((m+n)3).

The error of some x̃ to the least squares solution can be bounded knowing only the residual Ax̃ − b. For a

given approximate solution x̃, Lemma 2.3 implies for ∥I−PA∥2 ≤ α < 1 the straightforward but pessimistic

bound

∥A+b− x̃∥2 = ∥A+(AT)+ρ∥2 ≤
[
∥P∥2
1− α

]2
∥ρ∥2, where ρ := AT (Ax̃− b) .(4.3)

Note that ρ = 0 for the solution x̃ = A+b. Throughout this section

let A ≈ QR be an economy-size QR-decomposition of A, and

let S ≈ R−1 be an approximate inverse of R .
(4.4)

Then Q ∈ Rm×n and R,S ∈ Rn×n, and AS can be expected to be not too far from orthogonality. Similar

to the case of an underdetermined linear system, a simple error bound is as follows.

Lemma 4.1. Let A ∈ Rm×n with m ≥ n, b ∈ Rm, S ∈ Rn×n, and p ∈ {1, 2,∞} be given. Define X := AS

and suppose ∥I −XTX∥p ≤ α < 1. Then A and S have full rank, and for x̃ := SXT b it holds that

∥A+b− x̃∥2 ≤ α∥S∥2∥b∥2√
1− α

for p = 2(4.5)

and

∥A+b− x̃∥p ≤ α∥S∥p∥XT b∥p
1− α

for p ∈ {1, 2,∞} .(4.6)

Using (4.4) the bound can be computed in 4mn2 + 4
3n

3 +O(m2) operations.

6 S.M. RUMP

Proof. The result follows by A+b− x̃ = S(X+ −XT)b and Lemma 2.1. �

The simplicity of the bound comes again with the drawback that the fixed approximation x̃ := SXT b has

to be used, and error bounds for this x̃ are necessary to ensure rigor. Again this excludes the possibility of

iterative improvement of x̃. Such a method is given by the following theorem.

Theorem 4.2. Let A ∈ Rm×n with m ≥ n, x̃ ∈ Rn, w̃, b ∈ Rm, S ∈ Rn×n, and p ∈ {1, 2,∞} be given.

Define X := AS and suppose ∥I−XTX∥p ≤ α < 1. Then A has full rank and, abbreviating ρx̃ := Ax̃− w̃−b

and ρw̃ := AT w̃,

∥x̃−A+b∥p ≤ ∥S∥p
1− α

·
(
∥XT ρx̃∥p + ∥ST ρw̃∥p

)
for p ∈ {1, 2,∞} .(4.7)

Furthermore

∥x̃−A+b∥p ≤ ∥SXT ρx̃∥p + ∥SST ρw̃∥p +
α∥S∥p
1− α

·
(
∥XT ρx̃∥p + ∥ST ρw̃∥p

)
for p ∈ {1, 2,∞}(4.8)

and

∥x̃−A+b∥2 ≤ ∥SXT ρx̃∥2 + ∥SST ρw̃∥2 +
α∥S∥2∥ρx̃∥2√

1− α
+

α∥S∥2
1− α

∥ST ρw̃∥2 for p = 2 .(4.9)

Using (4.4) the bounds can be computed in 4mn2 + 4
3n

3 +O(m2) operations.

Remark. In the first estimate (4.7), the terms ∥SXT ρx̃∥p and ∥SST ρw̃∥p are estimated by factoring out

∥S∥p. The latter occurs in (4.8) and (4.9) as well, however, diminished by a factor α, which should be small

except for very ill-conditioned problems. Thus (4.8) and (4.9) are usually superior to (4.7).

Proof. We use the identity

x̃−A+b = A+(Ax̃− w̃ − b) +A+(AT)+(AT w̃)(4.10)

which follows by A+A = I and A+ = A+(AT)+AT . Furthermore, A+ = SX+ and X+ = (XTX)−1XT

imply

A+(AT)+ = SX+(XT)+ST = S(XTX)−1ST ,

so that (4.10) yields

∥x̃−A+b∥p ≤ ∥SX+ρx̃∥p + ∥S(XTX)−1ST ρw̃∥p .(4.11)

Therefore, (XTX)−1 =
(
I − (I − (XTX))

)−1
and (2.4) prove (4.7). Furthermore,

SX+ρx̃ = SXT ρx̃ + S(X+ −XT)ρx̃

and, abbreviating E := I −XTX,

(XTX)−1 = (I − E)−1 = I + (I − E)−1E

together with (4.11) show

∥x̃−A+b∥p ≤ ∥SXT ρx̃∥p + ∥SST ρw̃∥p + ∥S(X+ −XT)ρx̃∥p + ∥S(I − E)−1EST ρw̃∥p .

Hence (2.3), (2.2), ∥E∥p ≤ α, and ∥(I − E)−1∥p ≤ (1− α)−1 prove the theorem. �

Again the two vectors w̃ and x̃ can be chosen freely. One obvious choice is w̃ := 0, so that the residual ϱw̃

vanishes, it saves computing time, and apparently seems to improve the estimates. However, in that case

the other residual ϱx̃ becomes large because, in general, there is no x̃ ∈ Rn with Ax̃ = b. Mathematically,

Verified bounds for Least Squares Problems and Underdetermined Linear Systems 7

x̃−A+b = A+(Ax̃− b) for any x̃; however, the estimate ∥x̃−A+b∥ ≤ ∥A+∥ · ∥Ax̃− b∥ ignores the structure

and is very poor.

The second obvious choice is w̃ := Ax̃ − b, so that the residual ϱx̃ vanishes. But then again, as in the

underdetermined case, w̃ has to be computed with error bounds to ensure rigor, and the other residual

ϱw̃ does not become small. Note that the mere matrix-vector multiplication in ϱw̃ = AT w̃ is a residual

calculation because w̃ should be close to the kernel of AT .

5. Iterative improvement. The only assumption to check before application of Theorems 3.3 and

4.2 is ∥I − Y Y T ∥ and ∥I −XTX∥ in some norm, respectively. In particular there is no a priori assumption

on the quality of the approximate solution x̃. The better the quality of the input quantities, the better the

error bound.

It is desirable to improve given approximations by some iteration. First, consider underdetermined linear

systems, i.e., assume A ∈ Rn×m with n < m, x̃ ∈ Rm, w̃, b ∈ Rn, and S ∈ Rn×n to be given, and for Y := SA

let ∥I−Y Y T ∥ ≤ α < 1 in some norm. The approximations x̃ and w̃ can be improved into x̃− δx̃ and w̃− δw̃

by the following residual iteration step:

ρw̃ := x̃−AT w̃,

ρx̃ := Ax̃− b,

δw̃ := (AAT)−1 (ρx̃ −Aρw̃) ,

δx̃ := AT δw̃ + ρw̃ .

(5.1)

Then

δw̃ = (AAT)−1
(
Ax̃− b−Ax̃+AAT w̃

)
= w̃ − (AAT)−1b and

δx̃ = AT w̃ −AT (AAT)−1b+ x̃−AT w̃ = x̃−A+b ,
(5.2)

so that indeed x̃−δx̃ = A+b and w̃−δw̃ = (AAT)−1b and both residuals ρx̃ and ρw̃ vanish after one iteration.

In theory, (AAT)−1 = ST (Y Y T)−1S, and since Y is expected to be not too far from being orthogonal, we

change (5.1) only by replacing (AAT)−1 by STS in the computation of δw̃ in the numerical iteration:

ρw̃ := x̃−AT w̃,

ρx̃ := Ax̃− b,

δw̃ := ST (Sρx̃ − Y ρw̃) ,

δx̃ := AT δw̃ + ρw̃ .

(5.3)

Then, similar to (5.2), we obtain after some computation

w̃ − δw̃ = w̃ − STS
(
AAT w̃ − b

)
= STSb+ ST

(
I − Y Y T

)
S−T w̃ =: z + Cw̃ .

By assumption, ϱ(C) = ϱ
(
ST
(
I − Y Y T

)
S−T

)
≤ ∥I−Y Y T ∥p ≤ α < 1 for ϱ(·) denoting the spectral radius,

so that w̃ in the iteration (5.3) converges to

(I − C)−1z =
(
STY Y TS−T

)−1
STSb =

(
S−1Y Y TS−T

)−1
b = (AAT)−1b ,

and therefore x̃ converges to

x̃− δx̃ = x̃−AT δw̃ − x̃+AT w̃ = AT (w̃ − δw̃) → AT (AAT)−1b = A+b .

The iteration benefits substantially from using extra-precise evaluation of residuals. Fortunately there is a

large selection of efficient algorithms for this task, among them [2, 6, 7, 8, 10, 11, 15, 16, 17, 18]. They

deliver a result of a dot product with at least the quality “as if” computed in twice the working precision

and rounded into working precision. We call that “extra-precise residual iteration”.

8 S.M. RUMP

In addition, so-called error-free transformations are available, for example, Algorithm TwoSum [5]. The call

[x, y] = TwoSum(a, b) for two floating-point numbers a, b produces a pair of floating-point numbers x, y with

x being the best approximation of a + b and y being the exact error, i.e., x + y = a + b. The algorithm

requires six floating-point operations (it is applicable to vectors and matrices as well), and the mathematical

property x+ y = a+ b is always satisfied, also in the presence of underflow.

In our application, in particular the amplification of the correction δw̃ is of the order (AAT)−1. Thus it is

beneficial to store w̃ in two terms w̃1 + w̃2. The residual ρw̃ is then computed as x̃−AT w̃1 −AT w̃2, and the

correction w̃ − δw̃, which is then w̃1 + w̃2 − δw̃, can be computed using TwoSum by

[x, y] = TwoSum(w̃2,−δw̃),

[w̃1, e] = TwoSum(x, w̃1),

w̃2 = e+ y.

(5.4)

The concept of storing an approximation x̃ in critical situations in several terms x̃1+ · · ·+ x̃k in combination

with an accurate dot product was used in [13]; later it was called “staggered correction”.

Next we consider least squares problems, i.e., we assume A ∈ Rm×n with m ≥ n, x̃ ∈ Rn, w̃, b ∈ Rm, and

S ∈ Rn×n to be given. We define X := AS and assume ∥I −XTX∥ ≤ α < 1 in some norm. Consider the

following residual iteration step:

ρw̃ := AT w̃,

ρx̃ := Ax̃− w̃ − b,

δw̃ :=
(
(AT)+AT − I

)
ρx̃ + (AT)+ρw̃,

δx̃ := A+ρx̃ +A+(AT)+ρw̃ .

(5.5)

It follows that

δw̃ = (AT)+AT (Ax̃− w̃ − b)− (Ax̃− w̃ − b) + (AT)+AT w̃ = w̃ − (AT)+AT b+ b and

δx̃ = A+Ax̃−A+w̃ −A+b+A+(AT)+AT w̃ = x̃−A+b ,
(5.6)

so that indeed x̃− δx̃ = A+b and w̃− δw̃ =
(
(AT)+AT − I

)
b, and both residuals ρw̃ and ρx̃ vanish after one

iteration. We proceed as before and use the approximations A+ = SX+ ≈ SXT and (AT)+ ≈ XST , and

redefine the corrections δw̃ and δx̃ in the numerical iteration as follows:

ρw̃ := AT w̃,

ρx̃ := Ax̃− w̃ − b,

β := XT ρx̃ + ST ρw̃,

δw̃ := Xβ − ρx̃,

δx̃ := Sβ .

(5.7)

With some computation it follows that

x̃− δx̃ = SXT b+ S
(
I −XTX

)
S−1x̃ =: z + Cx̃ .

Again the iteration is convergent because ϱ(C) ≤ ∥I −XTX∥p ≤ α < 1, so that x̃ converges to

(I − C)−1z = S(XTX)−1S−1 · SXT b = S(XTX)−1XT b = SX+b = A+b .

In this case the amplification of the correction δx̃ by SST is of the order (AAT)−1, thus it is beneficial to

store x̃ in two terms x̃1 + x̃2 and to proceed as in (5.4). This concludes the residual iteration part.

6. Performance aspects. Given an economy-size QR-decomposition of AT or A according to (3.4) or

(4.4), respectively, the additional effort to compute rigorous error bounds is the computation of Y = SA or

Verified bounds for Least Squares Problems and Underdetermined Linear Systems 9

X = AS, and mainly the norm of I−Y Y T and I−XTX, respectively. Both require some 2mn2 operations.

Since we are interested in a rigorous error bound, error bounds for the matrices X and Y have to be used

thus adding additional difficulties and computing time.

There are more efficient ways to do this than the straightforward way. We describe the methods for least

squares problems, i.e., bounding |I − XTX|; the bounds of |I − Y Y T | for underdetermined problems are

obtained completely analogously.

For not too ill-conditioned matrix A, one may use I −XTX = I − ST (ATA)S and replace XT ρx̃ and Xβ

in the residual iteration (5.7) by ST (AT ρx̃) and A(Sβ), respectively. This may be advantageous for large

sparse matrices by avoiding the explicit computation of X = AS, a matrix of the same size as A but usually

full. As a drawback, ATA is involved, so that often α < 1 is not true for condition numbers beyond u−1/2.

Moreover, additional matrix multiplications of order O(mn2) are needed, so that for sparse matrices of not

too large dimension the following method is usually faster.

We are in the comfortable situation that X can be expected to be not too far from orthogonality, so that

the entries of XTX are either small or, on the diagonal, close to 1. But an additional problem is that X is

not given explicitly but as the product of two matrices. That means, to ensure rigorous error bounds, the

error in the product X = AS has to estimated.

Denote by F a set of floating-point numbers, and let A ∈ Fm×n and S ∈ Fn×n be given. Suppose there are

matrices X,D ∈ Fm×n with

|AS −X| ≤ D .(6.1)

Then AS = X +∆ with ∆ ∈ Rm×n and

∥(AS)T (AS)− I∥∞ ≤ ∥XTX − I∥∞ + ∥ |XT |D(1)n +DT |X|(1)n +DTD(1)n∥∞ ,(6.2)

where (1)n := (1, . . . , 1)T ∈ Rn. We will describe three incremental ways to estimate ∥(AS)T (AS) − I∥∞
using (6.2). The first method is suitable for moderately ill-conditioned problems, and with additional effort

in the second and third method we increase the range of treatable condition numbers.

Given vectors x, dx, y, dy ∈ Fm, we first discuss error bounds for

|(x+ dx)T (y + dy)| and |(x+ dx)T (x+ dx)− 1| .(6.3)

Denote by fl(·) the evaluation of an expression in floating-point rounding to nearest. Then the standard

estimate [4] for a floating-point dot product of v, w ∈ Fm with mu < 1 is∣∣fl(vTw)− vTw
∣∣ ≤ γm|vT ||w|+meta/2(6.4)

using γm := mu/(1 − mu), where the extra term meta/2 covers underflow; in IEEE 754 double precision

(binary64) we have u = 2−53 and eta = 2−1074. Moreover∣∣vT v − 1
∣∣ = ∣∣vT v − fl(vT v) + fl(vT v)− 1

∣∣ ≤ γm|vT ||v|+meta/2 + (1 + u)|fl(vT v − 1)| .(6.5)

Using (6.4) to estimate the off-diagonal and (6.5) for the diagonal part of |XTX − I| yields∣∣XTX − I
∣∣ ≤ (1 + u)

∣∣fl(XTX − I)
∣∣+ γm|XT ||X|+meta/2 · (1)n(1)Tn(6.6)

for given X ∈ Fm×n, where the comparison is to be understood entrywise. Hence∥∥XTX − I
∥∥
∞ ≤ (1 + u)

∥∥ |fl(XTX − I)|(1)n
∥∥
∞ + γm∥ |XT ||X|(1)n ∥∞ +mneta/2 .(6.7)

10 S.M. RUMP

Therefore, if X,D ∈ Fm×n satisfying (6.1) are known, then an upper bound of ∥(AS)T (AS) − I∥∞ follows

by evaluating (6.7) and (6.2) with all operations in rounding to upwards. One way to do this is to apply

(6.4) to X := fl(AS). Then

X := fl(AS) and D := γn|A||S|+ neta/2 · (1)m(1)Tn(6.8)

implies (6.1). Since (6.2) does not require D explicitly but only an upper bound of the product of D and

a vector, the main computational effort is the matrix multiplications X := fl(AS) and fl(XTX − I) in

rounding to nearest. Thus an upper bound α of ∥(AS)T (AS) − I∥∞ is obtained. If α < 1, then rigorous

error bounds for the least squares problem, and similarly for underdetermined linear systems, are obtained

by the described methods.

For ill-conditioned problems, α < 1 may not be satisfied because both the products AS and XTX are

estimated based on (6.4), which is often pessimistic. In a second and third step we improve the bounds on

AS and XTX. The more critical estimate is that on AS: The norm of S is of the order of ∥A+∥, so that

the condition number of the matrix product is of the order of the condition number of A.

The best we can do in floating-point arithmetic is to calculate AS in rounding to downwards (depicted by

fl∇(·)) and rounding to upwards (depicted by fl∆(·)) yielding

fl∇(AS) ≤ AS ≤ fl∆(AS) .(6.9)

Note that this is true regardless of underflow or overflow; in the latter case (some of the) bounds are infinite.

However, (6.9) requires two additional matrix multiplications. In order to reduce this to one additional

matrix multiplication, we compute X in the first step not as in (6.8) in rounding to nearest but in rounding

to upwards. Floating-point arithmetic using directed rounding satisfies the error estimate (6.4) as well, but

with the relative rounding error unit 2u. Therefore

X := fl∆(AS) and D := γ2n|A||S|+ neta · (1)m(1)Tn(6.10)

satisfy (6.1), and together with (6.2) and (6.7) this defines our first method to bound ∥(AS)T (AS) − I∥∞.

The second method uses

X := fl∇(AS) and D := fl∆(X −X) .(6.11)

The rounding modes imply

X −D ≤ X − (X −X) = X ≤ AS ≤ X .

Hence X,D satisfy (6.1), and again (6.2) and (6.7) can be used. Thus from the first to the second method

one additional matrix multiplication is required.

If this still does not suffice to prove ∥(AS)T (AS)− I∥∞ ≤ α < 1, the last chance is to improve (6.7). This

is only necessary for very ill-conditioned problems. In that case it is advisable not to use X as computed in

(6.10), but to recompute X in rounding to nearest. Then, however, XTX− I also has to be computed again

to apply (6.7). Therefore, two additional matrix multiplications are necessary from the second to the third

method.

One might compute XTX − I with directed rounding as well, however, the condition number of the matrix

product is of the order of the condition number of X, namely 1, so that not much benefit is expected.

Computational evidence supports this statement.

Executable Matlab/INTLAB code for the three methods is given in the appendix. Note that for the first

method the matrix D is not known explicitly but only the estimate (6.8), and this suffices to compute

rigorous error bounds based on Theorems 3.3 and 4.2.

Verified bounds for Least Squares Problems and Underdetermined Linear Systems 11

Fig. 7.1. Accuracy of A\b by solving (3.2) (o) or (3.3) (x) for different condition numbers, where n = 30 and m = 100.

7. Computational results. We first show that it is numerically significant whether to solve (3.2) or

(3.3) to obtain the solution of an underdetermined linear system. For least squares problems the behavior

is completely similar. Note that the system matrix in (3.2) is just a column permutation of the matrix in

(3.3). Thus the usual condition number ∥A−1∥2∥A∥2 does not change, but also the Bauer–Skeel condition

number ∥ |A−1| · |A| ∥2 does not change.

We solve both systems using the built-in Matlab command A\b and check the accuracy of the result by

verifylss, the accurate linear system solver in INTLAB. This is possible because verifylss computes

rigorous error bounds. In Figure 7.1 the results for n = 30 and m = 100 are displayed. As can be seen

for very well-conditioned problems (3.3) computes slightly better approximations, but in most cases the

approximations by (3.3) are much worse than those of (3.2).

Following we show computational results for our algorithms and compare them to other approaches. We first

generate problems of specified condition number similar to the Matlab function randsvd for square matrices,

namely we compute a matrix A := UΣV T by specifying the anticipated singular values in Σ and multiply

by random orthogonal matrices U, V of proper dimension. The singular values are chosen as a geometrical

decreasing sequence from 1 to 10−k for an anticipated condition number cond(A) = σmax(A)/σmin(A) = 10k.

Right-hand sides are b=randn(m,1), i.e., uniformly distributed entries with mean zero and variance 1.

We first investigate underdetermined linear systems. We show results for the following algorithms:

(I) verifylss, INTLAB algorithm solving (3.2) by the (square) linear system solver in [13],

(II) Rohn’s algorithm verlsq [12] based on the pseudoinverse,

(III) Miyajima’s algorithm 2 (Theorem 3.2),

(IV) our algorithm based on Theorem 3.3 w/o iterative refinement,

(V) Miyajima’s algorithm 3 (Theorem 3.2) with iterative refinement,

(VI) our algorithm based on Theorem 3.3 with iterative refinement.

All algorithms are entirely written in Matlab/INTLAB, thus it seems fair to compare computing times.

Rohn’s algorithm is taken from his homepage [12] and seems to be based on the pseudoinverse, however,

12 S.M. RUMP

Table 7.1

Median relative error of the bounds and median computing time in seconds for verifylss (I), Rohn’s verlsq (II), Miya-

jima’s Algorithm 2 (III), our new algorithm based on Theorem 3.3 w/o residual iteration (IV), Miyajima’s Algorithm 3 (V),

and our new algorithm based on Theorem 3.3 with residual iteration (VI). Results for 100 samples each of dimension m × n

and condition number c.

verifylss Rohn Miyajima 2 (IV) Miyajima 3 (VI)

m n c dig. time dig. time dig. time dig. time dig. time dig. time

50 1000 102 15.8 1.09 10.8 8.2 10.7 0.01 11.0 0.01 14.6 1.41 13.9 0.06

50 1000 105 15.8 1.09 8.0 9.3 8.0 0.01 8.1 0.01 14.6 1.42 14.0 0.06

50 1000 1010 15.8 1.23 2.9 8.0 3.2 0.01 3.3 0.01 14.6 2.13 13.9 0.07

50 1000 1011 15.8 1.25 2.1 8.1 2.2 0.01 2.4 0.01 14.1 2.09 14.0 0.08

50 1000 1012 15.8 1.36 1.1 9.3 0.9* 0.01 1.1 0.01 14.4* 2.85 13.9 0.10

50 1000 1013 15.8 1.51 0.2 9.5 - - 0.2 0.01 - - 13.9 0.10

50 3000 102 16.0 14.8 10.7 172 10.2 0.02 10.7 0.02 14.2 4.0 13.4 0.24

50 3000 105 16.0 15.0 8.0 162 7.5 0.02 7.9 0.02 14.2 4.0 13.4 0.25

50 3000 1010 16.0 15.7 2.9 158 2.8 0.02 2.9 0.02 14.2 6.1 13.4 0.30

50 3000 1011 15.9 16.0 1.8 159 1.9 0.02 2.0 0.02 13.6 6.0 13.3 0.35

50 3000 1012 15.9 17.6 0.9 196 0* 0.02 0.8 0.02 13.3* 8.4 13.4 0.40

50 3000 1013 15.7 18.6 0 195 - - 0 0.03 - - 13.4 0.48

300 1000 102 15.8 1.80 10.0 13.5 10.0 0.07 10.2 0.06 14.5 2.08 14.0 0.58

300 1000 105 15.8 1.79 7.2 15.0 7.3 0.08 7.4 0.06 14.5 2.08 13.9 0.58

300 1000 1010 15.8 1.99 2.3 13.6 2.5 0.07 2.4 0.06 14.4 3.14 13.9 0.83

300 1000 1011 15.8 2.22 1.3 13.6 - - 1.6 0.08 - - 13.9 0.87

300 1000 1012 15.8 2.53 0.3 13.7 - - 0.1 0.09 - - 13.9 0.99

300 1000 1013 15.3 2.64 0 15.8 - - - - - - - -

300 3000 102 16.0 19.0 9.9 225 9.5 0.25 9.9 0.19 14.1 5.2 13.4 1.74

300 3000 105 16.0 18.9 7.1 207 6.9 0.25 7.2 0.19 14.1 5.2 13.4 1.74

300 3000 1010 15.9 20.3 2.2 205 1.9 0.25 2.2 0.18 14.0 7.9 13.4 2.32

300 3000 1011 15.9 21.7 1.2 204 - - 1.4 0.24 - - 13.4 2.60

300 3000 1012 15.8 23.1 0.2 236 - - 0 0.26 - - 13.4 2.99

300 3000 1013 15.0 24.5 0 267 - - - - - - - -

only P -code is available so that details are not accessible. For algorithms (III) and (V) the author Miyajima

kindly provided his Matlab/INTLAB code. For all algorithms we compare the ∞-norm bounds.

All algorithms are tested in Matlab version 7.11.0.584 (R2010b) on an Intel Core i7 CPU M640 with 2.8

GHz, INTLAB version 6 and Windows 7 operating system. Accurate residuals are calculated by the INTLAB

routine dot_ emulating accumulation in twice the working precision.

In Table 7.1 we show results for underdetermined linear systems of different dimensions and condition

numbers. For each problem we take the median of the relative error of the computed inclusion, where the

relative error of an interval [xinf, xsup] is defined by (xinf + xsup)/(xsup− xinf). For each triple m,n, c

of dimensions and condition number we treat 100 problems and take the median µ of the medians of relative

errors and display − log10 µ. So 15.8, for example, means that in the median the left and right bounds

coincide in almost 16 decimal digits, i.e., the result is almost of maximum accuracy in IEEE 754 double

precision. On the other hand, a displayed ”0” for the accuracy means that in at least half of the test cases

at least half of the solution components are wide intervals containing zero, i.e., the algorithm verifies that

the matrix is of maximum rank but the inclusions are wide. Furthermore, the median of computing times

in seconds is displayed for each routine.

Verified bounds for Least Squares Problems and Underdetermined Linear Systems 13

Table 7.2

Median relative error of the bounds and median computing time in seconds for verifylss0 simplified residual iteration (I),

verifylss extra-precise residual iteration (II), Rohn’s verlsq (III), our new algorithm based on Theorem 3.3 with extra-precise

residual iteration (VI), our new algorithm based on Theorem 3.3 w/o residual iteration (IV), and the built-in Matlab command

A\b. Results for 100 samples each of dimension m× n and condition number c.

verifylss0 verifylss Rohn (VI) (IV) Matlab A\b
m n c dig. time dig. time dig. time dig. time dig. time dig. time

3000 50 102 14.4 11.3 15.8 14.9 9.8 80 15.1 0.26 12.5 0.07 14.1 0.01

3000 50 105 11.8 11.3 15.8 14.9 7.1 91 15.1 0.27 10.1 0.07 11.1 0.01

3000 50 1010 6.6 11.3 15.8 16.1 2.1 79 15.0 0.33 5.0 0.07 6.2 0.01

3000 50 1011 5.4 11.1 15.8 17.1 1.1 79 14.9 0.35 3.8 0.07 4.9 0.01

3000 50 1012 4.7 11.3 15.7 18.3 0.1 91 14.5 0.40 2.5 0.07 4.2 0.01

3000 50 1013 3.7 11.4 15.0 19.4 0 183 14.3 0.51 1.6 0.07 3.2 0.01

3000 100 102 14.2 11.8 15.8 15.6 9.7 95 15.0 0.59 12.4 0.16 13.9 0.03

3000 100 105 11.6 11.8 15.8 15.7 6.9 84 15.1 0.60 9.8 0.15 11.2 0.03

3000 100 1010 6.7 11.9 15.8 16.7 1.9 83 15.1 0.73 4.8 0.16 6.2 0.03

3000 100 1011 5.5 11.8 15.8 17.9 0.9 83 14.7 0.86 3.6 0.15 5.2 0.04

3000 100 1012 4.5 11.9 15.5 19.2 0.0 95 14.8 0.99 2.7 0.17 4.4 0.03

3000 100 1013 3.7 12.0 14.8 20.4 0 191 13.5 1.14 0.9 0.16 3.4 0.03

3000 300 102 14.1 13.9 15.8 18.3 9.4 109 15.1 1.81 12.1 0.53 14.0 0.19

3000 300 105 11.2 14.1 15.8 18.2 6.5 95 15.0 1.80 9.5 0.53 11.2 0.19

3000 300 1010 6.2 14.1 15.8 20.8 1.7 95 14.5 2.21 4.0 0.53 6.3 0.20

3000 300 1011 5.5 14.1 15.8 20.8 0.8 95 14.9 2.65 3.6 0.59 5.5 0.20

3000 300 1012 4.3 14.3 15.5 22.3 0 109 14.1 3.41 1.9 0.61 4.5 0.21

3000 300 1013 3.2 14.7 14.5 25.5 0 251 - - - - 1.5 0.21

In the case of underdetermined linear systems it is not appropriate to compare to the built-in Matlab

routine A\b because we are aiming for the minimum 2-norm solution, whereas Matlab’s A\b calculates an

approximate solution with at most n nonzero components.

As can be seen in Table 7.1, the results by verifylss are nearly maximally accurate. Rohn’s verlsq is much

slower than verifylss, and the accuracy of the result decreases proportionally to the condition number. The

accuracy of Rohn’s verlsq is similar to Miyajima’s Algorithm 2 and to Theorem 3.3 without extra-precise

residual iteration (IV), but it needs 100 times as much computing time.

Miyajima’s Algorithm 2 and our method (IV) are very fast, significantly faster than verifylss. The accuracy

of the inclusions of both algorithms decreases with the condition number, however, Miyajima’s Algorithm 2

is not capable for solving ill-conditioned problems. For example, for A ∈ R300×1000 with condition number

1011 and beyond the algorithm fails completely. For A ∈ R50×1000 and condition number 1012 the asterisk

indicates that Miyajima’s Algorithm 2 was successful in 90% of all test cases, for A ∈ R50×3000 successful in

40% of all test cases.

Both Miyajima’s Algorithm 3 and the new method by Theorem 3.3 (VI) improve an approximate solution

by some extra-precise residual iteration. All three methods (verifylss, Miyajima’s Algorithm 3, and (VI))

compute–if successful–results of comparable and high accuracy.

For a little larger dimension, Miyajima’s Algorithm 3 is two to three times faster than verifylss if the

ratio of the number of rows is not too small compared to the number of columns; otherwise it is slower than

verifylss. However, the scope of applicability is limited to not too large condition numbers. The asterisks

indicate that the algorithm was not successful in all test cases of that specific dimension and condition

14 S.M. RUMP

Table 7.3

Median relative error of the bounds and median computing time in seconds for our new algorithm based on Theorem 3.3

with extra-precise residual iteration (VI), our new algorithm based on Theorem 3.3 w/o residual iteration (IV), and the built-in

Matlab command A\b. Results for 100 samples each of dimension m× n and condition number c.

(VI) (IV) Matlab A\b
m n c dig. time dig. time dig. time

10000 200 102 15.0 3.8 11.8 1.07 13.6 0.45

10000 200 105 15.0 3.8 9.5 1.09 10.9 0.44

10000 200 1010 14.8 4.6 4.5 1.09 6.0 0.45

10000 200 1011 14.0 5.4 2.8 1.12 5.1 0.45

10000 200 1012 13.9 6.3 2.2 1.16 4.2 0.47

10000 200 1013 13.3* 7.3 1.9* 1.29 0.1 0.46

10000 500 102 15.0 9.7 11.8 2.98 13.7 1.85

10000 500 105 15.0 9.7 9.2 2.94 11.0 1.86

10000 500 1010 13.5 13.6 2.9 3.00 6.1 1.97

10000 500 1011 14.5 16.0 2.9 3.35 5.1 2.01

10000 500 1012 13.9 16.4 2.6 3.73 4.2 2.01

10000 500 1013 - - - - ? 2.04

10000 2000 102 15.0 47 11.5 20.7 13.7 23.9

10000 2000 105 15.0 47 8.9 20.7 11.0 23.9

10000 2000 1010 14.5 67 3.6 25.1 6.1 24.9

10000 2000 1011 14.3 70 3.2 28.2 5.1 25.1

10000 2000 1012 - - - - ? 25.2

number.

The algorithm based on Theorem 3.3 with extra-precise iterative refinement (VI) is significantly faster than

verifylss and Miyajima’s Algorithm 3, but nevertheless achieves nearly maximally accurate inclusions of

the result. Except in the case A ∈ R300×1000 and condition number 1013, it successfully computes inclusions.

Summarizing we see that the scope of applicability of verifylss is best, but the price for treating the large

(m + n) × (m + n) linear system has to be paid in terms of computing time. It is not applicable to large

dimensions with possibly sparse matrices. The new methods (IV) and (VI) are the fastest to achieve a

certain accuracy of the result.

Next we show in Table 7.2 the results for least squares problems. Note that here and in Table 7.3 we display

in the third last and second last columns the results of our algorithm with (VI) and without (IV) residual

iteration, respectively, to show the results for (IV) and the built-in Matlab command A\b next to each other.

Miyajima did only treat underdetermined linear systems, so the comparison is limited to verifylss, Rohn’s

verlsq, and the new algorithm based on Theorem 4.2 with and w/o extra-precise residual iteration. For

least squares problems we can also compare to the built-in Matlab function A\b because in this case the

approximate solution x̃ by Matlab should also minimize the residual Ax̃ − b. In any case the latter is a

comparison of apples and oranges because Matlab does not deliver any guarantee of correctness.

The INTLAB function verifylss has different options for the calculation of residuals. The previous data

in Table 7.1 for underdetermined systems used accurate computation of residuals by the INTLAB-function

dot_ emulating accumulation in twice the working precision. In Table 7.2 we also display the results for an

“improved” calculation of residuals (in INTLAB called “poor man’s residual”). It is less accurate than dot_,

but faster by lacking interpretation overhead. The version with simplified calculation of residuals is called

verifylss0, the version with extra-precise accumulation of dot products is called, as before, verifylss.

Verified bounds for Least Squares Problems and Underdetermined Linear Systems 15

Table 7.4

Median relative error of the bounds and median computing time in seconds for the simple error bound based on Lemma

3.1 (I), our new algorithm based on Theorem 3.3 with (VI) and w/o (IV) extra-precise residual iteration. The number of rows

m, columns n, the sparsity in percent and name of test matrix are displayed.

Lemma 3.1 (VI) (IV)

m n s Test matrix dig. time dig. time dig. time

4929 10595 0.089 HB/gemat1 0 40 11.7 41 6.6 34

2262 12061 0.085 LPnetlib/lp_80bau3b 0 9.9 11.4 8.1 9.6 7.2

3000 13525 0.124 LPnetlib/lp_fit2p 0 22.7 12.2 39 5.7 18.0

1118 25067 0.517 LPnetlib/lp_osa_07 0 6.7 9.5 11.4 7.2 3.6

2337 54797 0.248 LPnetlib/lp_osa_14 0 45 9.0 55 6.7 25

507 63516 1.273 Mittelmann/rail507 2.3 10.5 11.1 12.1 9.7 7.6

124 10757 6.824 Meszaros/air03 0.7 0.33 11.4 1.4 9.3 0.16

4400 16819 0.203 Meszaros/model10 0 46 11.0 39 9.4 36

73 123409 10.045 Meszaros/nw14 2.7 2.1 9.9 13.1 7.0 1.16

4050 61521 0.106 Meszaros/rlfddd 2.0 792 10.2 93 7.7 79

3173 63076 0.245 Meszaros/stat96v4 0 412 13.1 639 8.3 153

190 184756 23.684 JGD_BIBD/bibd_20_10 0.7 14.4 12.6 97 9.9 8.7

231 319770 12.121 JGD_BIBD/bibd_22_8 0.6 26 12.6 112 10.0 16.6

Again algorithm verifylss delivers results of almost maximum accuracy, whereas the less accurate calcu-

lation of residuals in verifylss0 results in a decreasing accuracy with increasing condition number.

Rohn’s verlsq is again significantly slower than verifylss and less accurate. For a larger condition num-

ber, the inclusions are of poor quality. Using Theorem 4.2 with extra-precise residual iteration (VI) achieves

results of almost maximum accuracy, but much faster than verifylss. Again relaxing the accuracy require-

ments allows us to compute verified bounds significantly faster by Theorem 4.2 w/o extra-precise residual

iteration (IV). For larger dimensions it requires about three times as much computing time as Matlab’s A\b,
for smaller dimensions the factor is larger.

The results of our algorithms allow us to judge the accuracy of the approximation computed by the Matlab

built-in function A\b. As can be seen in Table 7.2 also the quality of the Matlab-approximation (as well as

of (IV)) deteriorates with increasing condition number.

Next we display in Table 7.3 results for dense least squares problems with larger dimensions. Now the

difference in computing time between Theorem 4.2 w/o extra-precise residual iteration (IV) and Matlab’s

A\b is less than a factor two; sometimes guaranteed error bounds are computed even faster than the floating-

point approximation by Matlab. Now the additional computing time for the extra-precise residual iteration

is also smaller than before, showing the immense interpretation overhead for smaller dimensions. For large

pairs of dimension an almost maximally accurate result with guarantee needs about twice the computing

time as for a floating-point approximation.

Finally we show results for larger and sparse problems, first for underdetermined systems. The examples are

taken from the Florida sparse matrix collection [1]. In Table 7.4 we display the dimensions, the sparsity in

percent, and the accuracy and timing results for the simple error bound based on Lemma 3.1 and for our

new algorithms based on Theorem 3.3 with (VI) and w/o (IV) extra-precise iterative refinement.

In very few cases the built-in Matlab command A\b is slower than computing error bounds. For instance, in

the third example LPnetlib/lp_fit2p the verified result requires less than a minute, while A\b needs two

minutes. However, our verification methods compute a minimum norm solution as in (3.1), whereas Matlab

computes an approximation with at most n nonzero entries.

16 S.M. RUMP

Table 7.5

Median relative error of the bounds and median computing time in seconds for our new algorithm based on Theorem

4.2 with (VI) and w/o (IV) extra-precise residual iteration, and the built-in Matlab command A\b. The number of rows m,

columns n, the sparsity in percent and name of test matrix are displayed.

(VI) (IV) Matlab A\b
m n s Test matrix dig. time dig. time dig. time

37932 331 1.093 JGD_Taha/abtaha2 14.3 3.7 11.3 2.2 13.7 0.87

14596 209 1.682 JGD_Taha/abtaha1 14.4 1.10 11.6 0.50 13.9 0.15

29493 11822 0.034 Sumner/graphics 14.5 654 9.3 728 8.8 94

10595 4929 0.089 HB/gemat1 12.4 46 6.7 36 12.2 0.74

12061 2262 0.085 LPnetlib/lp_80bau3b 14.7 8.4 11.5 8.3 15.1 1.11

13525 3000 0.124 LPnetlib/lp_fit2p 14.9 40.6 10.3 22.2 14.6 5.2

25067 1118 0.517 LPnetlib/lp_osa_07 14.8 11.8 11.0 5.9 13.7 0.21

54797 2337 0.248 LPnetlib/lp_osa_14 14.7 56 10.4 34 13.4 0.56

23541 16675 0.019 LPnetlib/lp_stocfor3 12.9 1684 8.9 1711 13.0 206

63516 507 1.273 Mittelmann/rail507 14.5 11.6 10.3 7.1 12.9 2.7

10757 124 6.824 Meszaros/air03 15.2 1.46 11.8 0.40 13.0 0.04

16819 4400 0.203 Meszaros/model10 14.6 41 10.5 38 14.0 1.5

123409 73 10.045 Meszaros/nw14 14.1 12.8 9.8 3.5 12.5 0.42

61521 4050 0.106 Meszaros/rlfddd 14.2 88 10.8 84 14.6 2.9

63076 3173 0.245 Meszaros/stat96v4 12.0 719 9.2 301 11.7 95

184756 190 23.684 JGD_BIBD/bibd_20_10 15.0 100 10.7 27 15.5 4.4

319770 231 12.121 JGD_BIBD/bibd_22_8 14.8 116 10.5 38 15.8 8.8

For larger sparse matrices a gain may be expected by not computing the matrix X = SA explicitly but by

replacing it by SA. Practical experience suggests that, in general, there is not much gain; sometimes it is

slower than computing X explicitly. Being advantageous or not depends on the special circumstances.

The simple bound by Lemma 3.1 is usually of poor quality, whereas the algorithm based on Theorem 3.3

computes accurate error bounds. The algorithm (VI) suffers significantly from the interpretation overhead

in the computation of accurate residuals in twice the working precision. Replacing the Matlab/INTLAB

routine dot_ by a mex-file would result in a substantial speed-up.

The results for least squares problems are a little different. There are not many test cases in [1], therefore

we took matrices from underdetermined problems and transposed them. Again the simple bound by Lemma

4.1 is not of much quality. But now avoiding to compute X explicitly by replacing it by the product AS

for larger matrices is faster and delivers results of high accuracy. This may be due to the fact that many

problems are not too ill-conditioned. Due to space limitations these results are not displayed but those of

Theorem 4.2 w/o and with extra-precise residual refinement, and Matlab’s A\b.

As can be seen in Table 7.5, all results are accurate (where this is not known for A\b without further

information). Occasionally our algorithm (VI) with extra-precise refinement requires less computing time

than without, thus showing that the accuracy of the timing is limited.

For all our algorithms, an approximate inverse S of the R-factor in the QR-decomposition is necessary. This

is, in general, a full n×n-matrix. The matrices SA or AS are, in general, also full but need not be computed

explicitly. Thus the applicability of our algorithms for underdetermined linear systems and for least squares

problems to large sparse matrices is basically limited by the smaller dimension n.

Verified bounds for Least Squares Problems and Underdetermined Linear Systems 17

8. Summary. New algorithms have been presented for computing verified error bounds for least squares

problems as well as for underdetermined linear systems. With extra-precise evaluation of residuals the

inclusions are practically always narrow, otherwise the accuracy decreases with increasing condition number.

In contrast to previous approaches the new methods are applicable to sparse matrices. It seems these are

the first algorithms computing verified bounds for least squares problems and for underdetermined problems

in O(Kk2) operations, where K := max(m,n) and k := min(m,n). They will be included in a future version

of INTLAB.

Acknowledgement. The author thanks Florian Bünger, Christian Jansson and Shinya Miyajima for

comments on a preliminary version of this manuscript.

9. Appendix. In what follows we display executable Matlab/INTLAB code for the three methods

to compute a rigorous bound for ∥(AS)T (AS) − I∥∞ as described in Section 6. Most of the code is self-

explanatory together with the comments, therefore we add only a few remarks.

In practical computations, operations with quantities in underflow are often time consuming. Thus we

avoid underflow by using max(m2u, 1) · realmin rather than m2eta/2, where realmin = 1
2u

−1eta denotes the

smallest positive normalized floating-point number. In IEEE 754 we have realmin = 2−1023.

The command max(sum(E)) computes the maximum of the column sums of the matrix E. Since the rounding

is set to upwards, this is an upper bound for the 1-norm because E is nonnegative. And this is equal to the

∞-norm because the matrix E is symmetric, where computing a sum of the columns of a matrix is often

faster in Matlab than a sum of rows. The Matlab quantity eps is 2−52 is equal to the relative rounding error

unit for directed rounding. For rounding to nearest, Eps = 2−53 is the relative rounding error unit.

For a matrix X not too far from orthogonality and for not too big ∆X, the computed bound alpha should

be sufficiently less than one. Note that a poor estimate like α = 0.1 implies a factor α/(1− α) = 1/9 in the

error bounds. Thus the goal is to compute some α less than one, but not necessarily much less than one.

setround(1) % rounding to upwards

e = ones(n,1); Eps = eps/2; % Eps=2^-53 for rounding to nearest

g2n = n*eps/(-(n*eps-1)); % gamma_n for directed rounding

gm = m*Eps/(-(m*Eps-1)); % gamma_m for rounding to nearest

X = A*S; % upper bound of AS

accX = 0; % the first method: |AS-X| <= D with D = g2n|A||S| + n*eta*(1)_m*(1)_n’

De = g2n*(abs(A)*(abs(S)*e)) + max(n^2*eps,1)*realmin; % upper bound of De

Xe = abs(X)*e; % upper bound of |X|e

setround(0) % set rounding to nearest

E = abs(X’*X-speye(n)); % approximation of |X’X-I| (rdg to nearest)

setround(1) % set rounding upwards

normE = max(sum(E)) + (Eps*normE + gm*max(abs(X’)*Xe) + max(m*n*Eps,1)*realmin);

y = Xe + De;

alpha = normE + max(De’*abs(X) + g2n*((y’*abs(A))*abs(S))) ...

+ max(n*eps*sum(y),1)*realmin; % first bound alpha

if alpha>0.9

setround(-1); Xinf = A*S; setround(1) % lower bound of AS

D = X - Xinf; % X,D satisfy (6.1)

accX = 1; % the second method: AS in [Xinf,X], so that |AS-X| <= D

De = D*e; % upper bound of De

alpha = normE + max(abs(X’)*De + D’*(Xe+De)); % second bound alpha

if (alpha<2) && (alpha>0.9)

18 S.M. RUMP

X = 0.5*(Xinf+X); % upper bound of midpoint of [Xinf,X]

D = X - Xinf; % X,D satisfy (6.1)

accX = 2; % the third method: |AS-X| <= D

Xe = X*e; De = D*e; % upper bounds of Xe and De

setround(0) % set rounding to nearest

E = abs(X’*X-speye(n)); % approximation of |X’X-I| (rdg to nearest)

setround(1) % set rounding to upwards

normE = max(sum(E)) + (Eps*normE + gm*max(abs(X’)*Xe) ...

+ max(m*n*Eps,1)*realmin);

alpha = normE + max(abs(X’)*De + D’*(Xe+De)); % third bound alpha

end

end

REFERENCES

[1] T.A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw., 38(1):1:1–1:25,

2011.

[2] J. Demmel and Y. Hida. Accurate and efficient floating point summation. SIAM J. Sci. Comput., 25:1214–1248, 2003.

[3] G.H. Golub and Ch. Van Loan. Matrix Computations. Johns Hopkins University Press, third edition, 1996.

[4] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, Philadelphia, 2nd edition, 2002.

[5] D.E. Knuth. The Art of Computer Programming–Seminumerical Algorithms, Vol. 2, Addison Wesley, Reading, Mas-

sachusetts, 1969.

[6] P. Kornerup, V. Lefèvre, N. Louvet, and J.-M. Muller. On the Computation of Correctly-Rounded Sums. Technical

Report 2008-35, LIP, Paris, France, 2008.

[7] X. Li, J. Demmel, D. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Kang, A. Kapur, M. Martin, B. Thompson, T.

Tung, and D. Yoo. Design, implementation and testing of extended and mixed precision BLAS. ACM Trans. Math.

Software, 28(2):152–205, 2002.

[8] M. Malcolm. On accurate floating-point summation. Comm. ACM, 14(11):731–736, 1971.

[9] S. Miyajima. Fast enclosure for solutions in underdetermined systems. J. Comput. Appl. Math., 234:3436–3444, 2010.

[10] A. Neumaier. Rundungsfehleranalyse einiger Verfahren zur Summation endlicher Summen. Z. Angew. Math. Mech.,

54:39–51, 1974.

[11] T. Ogita, S.M. Rump, and S. Oishi. Accurate sum and dot product. SIAM J. Sci. Comput., 26(6):1955–1988, 2005.

[12] J. Rohn. A Handbook of Results on Interval Linear Problems, 2005.

[13] S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe, Karlsruhe, Germany 1980.

[14] S.M. Rump. Error estimation of floating-point summation and dot product. to appear in BIT, 2011.

[15] S.M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part I: Faithful rounding. SIAM J. Sci. Comput.,

31(1):189–224, 2008.

[16] J.R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete Comput.

Geom., 18(3):305–363, 1997.

[17] XBLAS: A Reference Implementation for Extended and Mixed Precision BLAS. http://crd.lbl.gov/~xiaoye/XBLAS/.

[18] Y.-K. Zhu and W. Hayes. Fast, guaranteed-accurate sums of many floating-point numbers. In G. Hanrot and P. Zimmer-

mann, editors, Proceedings of the RNC7 Conference on Real Numbers and Computers, Nancy, France, Loria, 2006.

pp. 11–22.

