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VERIFIED BOUNDS FOR SINGULAR VALUES, IN PARTICULAR FOR THE

SPECTRAL NORM OF A MATRIX AND ITS INVERSE

SIEGFRIED M. RUMP ∗

Abstract. The singular value decomposition and spectral norm of a matrix are ubiquitous in numerical analysis. They are

extensively used in proofs, but usually it is not necessary to compute them. However, there are some important applications

in the realm of verified error bounds for the solution of ordinary and partial differential equations where reasonably tight error

bounds for the spectral norm of a matrix are mandatory. We present various approaches to this together with some auxiliary

useful estimates.
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1. Introduction. The spectral norm of a matrix is ubiquitous in numerical analysis. In particular the

singular value decomposition A = UΣV T reveals most important properties of A, from the condition number

over the distance to singularity to the solution of a linear or, in case of a rectangular matrix, underdetermined

or least squares problem.

The singular value decomposition is indispensable for theoretical considerations, however, it is hardly com-

puted in practice. The same applies, mutatis mutandis to the largest or smallest singular value, i.e. the

spectral norm of a matrix or its inverse, respectively.

But there are some important applications where rigorous bounds for the extreme singular values are neces-

sary. The apparently only known method [15] for computing rigorous error bounds for the solution of a large

linear system Ax = b with sparse matrix requires a rigorous lower bound for the smallest singular value of A.

This was also used in the computation of verified error bounds for elliptic problems, see [10], [9]. Moreover,

in the course of rigorous error bounds for the solution of other ordinary and partial differential equations

[11], [19], [22], [21], [25], [27] a rigorous upper bound for the spectral norm is needed.

The better the accuracy of the bound for the singular values in both cases, the narrower the computed

error bounds for the solution of the linear system or the partial differential equation. The first problem is

addressed in [15] and [18]; in the following we derive some methods to compute rigorous and tight upper

bounds for ∥A∥2.

This paper elaborates the details on an idea mentioned in the author’s overview article to be published in

Acta Numerica [19] on verification methods.

If not denoted otherwise, throughout the paper a norm ∥ · ∥ will denote the spectral norm ∥ · ∥2. Singular

values of a matrix A ∈ Km×n are denoted by σ1(A) ≥ · · · ≥ σk(A), where k := min(m,n) and K ∈ {R,C},
and the Moore-Penrose inverse of A is denoted by A+. Furthermore, Im,n denotes the left upper m × n

submatrix of the identity matrix of dimension max(m,n). Mostly the dimension is clear from the context

and we just use I without indices. We write A ≻ 0 (A ≽ 0) to denote that a square symmetric (Hermitian)

matrix A is positive (semi-)definite.
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2. Some useful estimates. Let square E ∈ Kn×n be given, and suppose ∥E∥ ≤ α < 1. A standard

estimate to be found in every textbook on numerical computations [13] or matrix algorithms [5], [20] is

∥(I + E)−1∥ ≤ 1

1− α
.(2.1)

The standard proof uses (I + E)−1 = I − E + E2 − . . ., so that ∥(I + E)−1∥ ≤ 1 + α+ α2 . . . = (1− α)−1.

Following we extend this to a result with a simple proof which is surely known but, in our opinion, gives

more insight into the matter. The only we need is the well-known fact (Theorem 3.3.16 in [7]) that

A,E ∈ Km×n ⇒ |σi(A+ E)− σi(A)| ≤ ∥E∥ for 1 ≤ i ≤ min(m,n) .(2.2)

Note that the i-th singular values of A + E and A match up to ∥E∥, no reordering is necessary. Setting

A := I it follows for not necessarily square E ∈ Km×n and ∥E∥ ≤ α that for all 1 ≤ i ≤ min(m,n)

1− α ≤ σi(I + E) ≤ 1 + α .(2.3)

If, in addition, α < 1, then I + E has full rank and the singular values of the pseudoinverse (I + E)+ are

the reciprocals of the singular values of I + E, so that

1

1 + α
≤ σi((I + E)+) ≤ 1

1− α
.(2.4)

In other words, for small α, the unit ball is mapped, as expected, by I+E or (I+E)+ into an ellipsoid with

half-axes not far from 1, and this idea is quantified in (2.3) and (2.4).

In particular it follows for square E that

1

1 + α
≤ ∥(I + E)−1∥ ≤ 1

1− α
.(2.5)

Along the same lines we provide more details for another standard estimate, where in numerical textbooks

[13] only the second inequality of (2.7) is given.

Lemma 2.1. Let A,R ∈ Kn×n be given, and suppose ∥I − RA∥ ≤ α < 1. Then A and R are nonsingular,

and

σi(R)

1 + α
≤ σi(A

−1) ≤ σi(R)

1− α
(2.6)

for all 1 ≤ i ≤ n. In particular,

∥R∥
1 + α

≤ ∥A−1∥ ≤ ∥R∥
1− α

.(2.7)

Proof. We use the following multiplicative bound for singular values, see (Theorem 3.3.16 in [7]):

A,B ∈ Km×n ⇒ σi(AB) ≤ σi(A)∥B∥ for 1 ≤ i ≤ min(m,n) .(2.8)

Since the singular values and the spectral norm do not change under transposition, it follows

σi(AB) ≤ ∥A∥σi(B)

as well. Applying this to R =
(
I − (I − RA)

)
· A−1 and using the right inequality in (2.3) gives the left

inequality in (2.6), and applying (2.8) to A−1 =
(
I − (I −RA)

)−1 ·R and using the right inequality in (2.5)

proves the right inequality in (2.6). �
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Again, we gain the insight that all singular values of A−1 and R cannot be too far apart, quantified by

two-sided inequalities.

Lemma 2.1 suggests a generalization to rectangular matrices: the inequalities in (2.6) should remain true for

the pseudoinverse A+ of A ∈ Km×n with R ∈ Kn×m with m ≤ n and ∥I − RA∥ ≤ α < 1. However, this is

not true since there may be matrices R so that RA is of full rank and equal to the identity matrix and thus

∥I−RA∥ = 0, but R (and its singular values) are different from A+ (and its singular values). An example is

A =


2 −1

−1 1

1 0

 , R =

(
0 0 1

0 1 1

)
with I −RA = 0 but A+ =

1

3

(
1 1 2

0 3 3

)
.

The above observations can be applied to matrices not too far from orthogonality, in this case also for

rectangular matrices. More precisely, we quantify that the singular values of X cannot be far from 1, and

those of XH and X−1 cannot be too far apart provided ∥I −XHX∥ is small enough.

Lemma 2.2. Let X ∈ Km×n be given, and suppose ∥I −XHX∥ ≤ α < 1. Then m ≥ n, X has full rank, and

√
1− α ≤ σi(X) ≤

√
1 + α and

1√
1 + α

≤ σi(X
+) ≤ 1√

1− α
(2.9)

for all 1 ≤ i ≤ n. In particular,

√
1− α ≤ ∥X∥ ≤

√
1 + α and

1√
1 + α

≤ ∥X+∥ ≤ 1√
1− α

.(2.10)

Proof. The assertions m ≥ n and that X has full rank are obvious from the singular value decomposition

of X, and observing

σi(X)2 = σi(X
HX) = σi

(
I − (I −XHX)

)
and applying (2.3) and (2.4) proves the result. �

3. Bounds for the spectral norm. In the following we will describe four methods to compute bounds

for the spectral norm of a matrix. The first three methods deliver very accurate bounds, often to the last

bit; however, they rely on a singular or eigendecomposition of the matrix and are thus only suited for full

matrices. Also all three methods require quite an amount of computing time.

In contrast, the fourth method is very fast and suited for (large and) sparse matrices, however, the bounds

are less accurate. All methods simplify if the matrix is symmetric or Hermitian.

We concentrate on upper bounds because any nontrivial vector x implies a lower bound ∥Ax∥/∥x∥ for ∥A∥.
Few power set iterations on AHA usually suffice for this. More precisely, for any 0 ̸= x ∈ Rn and 0 < λ ∈ R,
the interval

X := {ℓ ∈ R : |ℓ− λ| ≤ ∥AH(Ax)− λ2x∥1/2}(3.1)

contains a singular value of A. Although it may be likely that power iterations on AHA yield an approxima-

tion λ2 for the square of the largest singular value of A, so that X contains ∥A∥, there is no proof for that.

This is the task of this paper.

Immediate upper bounds for ∥A∥2 are the Frobenius norm ∥A∥F =
√∑

ij a
2
ij and

√
∥A∥1∥A∥∞. However,

both can be weak up to a factor
√
n. A less used bound is

∥A∥ ≤ ∥ |A| ∥(3.2)
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for real or complex A, which follows by ∥Ax∥ ≤ ∥ |A||x| ∥ and ∥ |x| ∥ = ∥x∥. A tight bound of ∥B∥ for

nonnegative B is obtained as follows. We have

∥B∥2 = ∥BTB∥ = ϱ(BTB)

for ϱ denoting the spectral radius. But with B, also BTB is nonnegative, so Collatz’ Theorem [1] in Perron-

Frobenius Theory yields

∥B∥2 ≤ max
i

(BT (Bx))i
xi

for every positive vector x .(3.3)

Few power set iterations starting with (1) ∈ Rn, the vector of 1’s, gives an accurate upper bound on ∥B∥.
As is known [24], the bound improves monotonically in each step. Note that for nonnegative B and x = (1),

the bound in (3.3) is ∥BTB∥∞.

However, the amount of overestimation by (3.2) may also be a factor of
√
n as by

∥A∥22 = ϱ(AHA) ≤ ϱ(|AHA|) ≤ ϱ(|AH | · |A|) = ∥ |A| ∥22

≤ ∥ |A|H∥1 · ∥ |A| ∥∞ = ∥A∥2∞ ≤ n · ∥A∥22 ,
(3.4)

and, as noted by Ludwig Elsner [4], the upper bound is sharp for Hadamard or Fourier matrices1. The proof

in (3.4) uses ϱ(A) ≤ ϱ(B) if A ≤ |B| as by Perron-Frobenius Theory, and ∥A∥∞ ≤
√
n∥A∥2. Numerical

evidence suggests that for all bounds the overestimation is, in general, not far from
√
n/2.

To compute tight bounds of ∥A∥ for general matrix A we start, for didactical reasons, with the weakest, but

most obvious approach.

The singular value decomposition is a stable algorithm (in the backward sense), thus A ≈ UΣV H computed

in floating-point gives accurate approximations Σii (relative to σ1(A)) for the singular values σi(A). Rigorous

error bounds and our first method to bound the spectral norm are obtained by Lemma 2.2 as follows. We

state the result for square matrices and note that it is immediately extended to rectangular matrices.

Theorem 3.1. Let A,U, V ∈ Kn×n be given, and define Σ := UHAV . Assume

∥I − UHU∥ ≤ α < 1 and ∥I − V HV ∥ ≤ β < 1 .(3.5)

Furthermore, define D,E ∈ Kn×n so that Σ = D + E and D is diagonal. Then there is a numbering

ν : {1, . . . , n} → {1, . . . , n} with

|Dii| − ∥E∥√
(1 + α)(1 + β)

≤ σν(i)(A) ≤ |Dii|+ ∥E∥√
(1− α)(1− β)

(3.6)

for all 1 ≤ i ≤ n. In particular,

∥A∥ ≤ maxi |Dii|+ ∥E∥√
(1− α)(1− β)

.(3.7)

Remark. It looks like a vicious circle that estimates of the spectral norms of I − UHU , I − V HV and E

are needed to estimate the norm of A. However, the former norms can be expected to be rather small, so a

crude estimate suffices to obtain an accurate result.

Proof of Theorem 3.1. For A,B ∈ Kn×n with nonsingular B apply (2.8) to AB ·B−1 to obtain

σi(A)

∥B−1∥
≤ σi(AB) ≤ σi(A)∥B∥(3.8)

1Thanks to Ludwig Elsner for pointing to these examples. We do not know whether the upper bound is also sharp for real

matrices of those dimensions, for which no Hadamard matrix exists.
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for 1 ≤ i ≤ n. Applying (3.8) to Σ · V −1 and U−H · (ΣV −1) = A and using (2.10) implies

σi(Σ)√
(1 + α)(1 + β)

≤ σi(A) ≤ σi(Σ)√
(1− α)(1− β)

,(3.9)

and (2.2) proves the result. �

If A is symmetric or Hermitian, we can directly compute an eigen-decomposition and obtain the following

Corollary 3.2. Let A, V ∈ Kn×n be given, assume AH = A, and define Σ := V HAV . Assume

∥I − V HV ∥ ≤ α < 1 .(3.10)

Furthermore, define D,E ∈ Kn×n so that Σ = D + E and D is diagonal. Then there is a numbering

ν : {1, . . . , n} → {1, . . . , n} with

|Dii| − ∥E∥
1 + α

≤ σν(i)(A) ≤ |Dii|+ ∥E∥
1− α

(3.11)

for all 1 ≤ i ≤ n. In particular,

∥A∥ ≤ maxi |Dii|+ ∥E∥
1− α

.(3.12)

Theorem 3.1 and Corollary 3.2 establish our first method to bound the spectral norm. For the practical

application we need several observations. In particular we have to discuss the inevitable presence of rounding

errors. A very simple way to deal with this is using interval arithmetic, particularly by INTLAB [17], the

Matlab toolbox for reliable computing. Most of our results are given in executable INTLAB code. For details

on interval arithmetic, see [12].

First, an inclusion of UHAV is computed by

[U,S,V] = svd(A);

Sigma = U’*(A*intval(V));

The type concept forces A*intval(V) to be computed in interval arithmetic with interval matrix result, so

that Sigma is an inclusion of the matrix UHAV . To proceed we have to deal with all (real or complex)

matrices included in the interval matrix Sigma∈ IKn×n. This is done as follows. The statements

M = mid(Sigma);

R = rad(Sigma);

compute matrices with floating-point entries such that, using entrywise comparison, for all S ∈ Sigma,

M− R ≤ S ≤ M+ R ,

so that

|σi(S)− σi(M)| ≤ ∥R∥ .

Note that M is real or complex, whereas R is real and nonnegative. The spectral norm of R is estimated by

(3.3).

Similarly, bounds α and β satisfying (3.5) are computable. The corresponding programs are included in

INTLAB. The matrices D and E are computed by

D = diag(diag(M));

E = M - D;
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Estimating ∥E∥ as before yields the desired bounds for ∥A∥.

A matrix product costs 2n3 operations in general, however, V TV can be computed in n3 floating-point

operations using symmetry. In the following we refer to the number of operations by Matlab routines, which

is 2n3 for V TV because the symmetry is not used.

Moreover we need to compute bounds for the product of two floating-point matrices (resulting in an in-

terval matrix), and the product of a floating-point and an interval matrix. Both are implemented using

midpoint-radius arithmetic [16] in INTLAB, where the conversion from infimum-supremum to midpoint-

radius representation uses Oishi’s trick [14]2. Then the former product requires 2, and the latter product

requires 3 (ordinary) matrix multiplications.

Hence the total computational cost using Theorem 3.1 for general real matrix A is 39n3+O(n2) divided into

21n3 full singular value decomposition

8n3 inclusions of UTU and V TV to bound α, β

4n3 inclusion of B := AV

6n3 inclusion of UTB ,

whereas for symmetric A using Corollary 3.2 the cost is 18n3 +O(n2) divided into

4n3 eigen-decomposition

4n3 inclusions of V TV to bound α

4n3 inclusion of B := AV

6n3 inclusion of V TB .

We mention that ∥I−UTU∥ and ∥I−V TV ∥ can be estimated by standard a priori estimates [5]. For general

matrix A it is superior to use the following, which will be the basis for our second and third method.

Theorem 3.3. Let A, V ∈ Kn×n be given, and define B := AV . Assume

∥I − V HV ∥ ≤ α < 1 .(3.13)

Furthermore, define D,E ∈ Kn×n so that BHB = D + E and D is diagonal. Then there is a numbering

ν : {1, . . . , n} → {1, . . . , n} with √
Dii − ∥E∥

1 + α
≤ σν(i)(A) ≤

√
Dii + ∥E∥

1− α
(3.14)

for all 1 ≤ i ≤ n. In particular,

∥A∥ ≤
√

maxi Dii + ∥E∥
1− α

.(3.15)

Proof. For 1 ≤ i ≤ n we have σi(AV ) =
√

σi(BHB) and |Dii −
(
σν(i)(AV )

)2| ≤ ∥E∥ for a suitable

numbering ν. Applying (3.8) to AV and AV · V −1 and using (2.10) shows

σj(AV )√
1 + α

≤ σj(A) ≤ σj(AV )√
1− α

for 1 ≤ j ≤ n. Using (2.2) proves the result. �

2Denote by ∇(·) and ∆(·) the result obtained by executing all operations within the parenthesis in rounding downwards and

rounding upwards, respectively. Then [∇(A ·B),∆(A ·B)] is an inclusion of the true (real) product A ·B of two floating-point

matrices A,B. For A ∈ Fn×n and an interval matrix ⟨mB, rB⟩ = {B ∈ Rn×n : mB − rB ≤ B ≤ mB + rB} an inclusion of

their product is [∇(A ·mB − rC),∆(A ·mB + rC)] using rC := ∆(|A| · rB). For details see [16] or [12].
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In the practical application, V is an approximation to the matrix of right singular vectors of A. Note that

this implies that B = AV ≈ UΣ, so that BHB is close to a diagonal matrix.

There are two ways to obtain V . First, a simplified singular value decomposition can be used, and second by

a symmetric (Hermitian) eigen-decomposition of AHA. Then one proceeds as before to compute an upper

bound for ∥A∥. This establishes our second and third method.

The computational costs for real matrix A using the simplified singular value decomposition are 28n3+O(n2)

divided into

12n3 simplified singular value decomposition

4n3 inclusion of V TV to bound α

4n3 inclusion of B = AV

8n3 inclusion of BTB .

whereas using the eigen-decomposition of ATA takes 18n3 +O(n2) divided into

2n3 approximate computation of ATA

4n3 eigen-decomposition of ATA

4n3 inclusion of B = AV

8n3 inclusion of BTB .

In all approaches up to now the matrix V of right singular vectors of A occurs. This means that neither

approach is applicable to sparse matrices because V will, in general, be a full matrix. The following, fourth

and final method works for sparse matrices as well.

This approach is based on verifying positive definiteness of a given matrix. Such methods were originally

developed to solve systems of sparse linear equations. In [15] we perform for given symmetric (Hermitian)

A and for some positive s an (approximate) Cholesky decomposition of a shifted matrix

B := A− 2sI ≈ GHG and E := GHG−B .(3.16)

It follows that

|λi(B)− λi(G
HG)| ≤ ∥E∥ .

Since GHG is positive semidefinite we have λn(B) ≥ −∥E∥, and, provided s ≥ ∥E∥, it follows

λn(A) = 2s+ λn(B) ≥ 2s− ∥E∥ ≥ s > 0 implying σmin(A) = λn(A) ≥ s .

For the residual GHG−B error bounds are computed by interval arithmetic.

In [2], see also [6], Demmel proved that if the Cholesky decomposition applied to a real symmetric matrix

A runs to completion, and if during the execution no overflow and underflow occurs, then the computed

Cholesky factor G̃ satisfies

G̃T G̃ = A+∆A with |∆A| ≤ γn+1

1− γn+1
ddT ,(3.17)

where di = a
1/2
ii and γk := keps/(1− keps). Here eps denotes the relative rounding error unit which is about

10−16 in double precision IEEE 754 [8].

In [18] we use this idea to show that if the Cholesky decomposition of a symmetric or Hermitian matrix

executed in pure floating-point runs to completion, then there is an a priori lower bound for the smallest

eigenvalue, which is roughly −p · eps · trace(A) for p denoting the average number of nonzero off-diagonal

elements per row. Our estimate is also valid in the presence of underflow.
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Applying this to a shifted matrix A−sI yields algorithm isspd (see [18]), which is now included in INTLAB,

to prove positive definiteness of a matrix: if isspd(A) yields the result 1, it is proved that A is positive

definite, if the result is 0, nothing can be said. Algorithm isspd is particularly fast because it uses only

floating-point arithmetic.

Let A ∈ Kn×n be given. Obviously, AHA is positive semidefinite, and ∥AHA∥ = ∥A∥2. Let α̃ be an

approximation of ∥A∥, and define α := (1 + e)α̃ for e > 0. Then

α2I −AHA ≽ 0 ⇒ ∥A∥ ≤ α .(3.18)

If A is symmetric or Hermitian, then the singular values coincide with the absolute values of the eigenvalues.

This means

AH = A : αI −A ≽ 0 and αI +A ≽ 0 ⇒ ∥A∥ ≤ α .(3.19)

One may argue that often it is not advisable to use AHA. For example, least squares problems are sometimes

solved using normal equations; however, this squares the condition number and is sometimes much worse

than to orthogonalize the system [23]. In our case this argument does not apply. The condition number

of α2I − AHA is the important quantity. Suppose α̃ = ∥A∥ and α2I − AHA is positive semidefinite for

α := (1 + e)α̃. Then, regardless how large the condition number of A is,

cond(α2I −AHA) =
σ1(α

2I −AHA)

σn(α2I −AHA)
≤ α2

(1 + e)2α̃2 − α̃2
=

(1 + e)2

(1 + e)2 − 1
≈ 1

2e
(3.20)

for small e. That means for anticipated 6 decimal digits accuracy of the norm bound, the condition number

of α2I−AHA is only about 5 ·105, and algorithm isspd will have no problem to verify positive definiteness.

This already defines an algorithm to verify an upper bound of the spectral norm of A. However, some care

is necessary to obtain an efficient implementation. First, if the input matrix is an interval matrix A, split

it into midpoint-radius form A = ⟨M,R⟩ := {A : M − R ≤ A ≤ M + R} using entrywise and, for complex

matrices, partial ordering to obtain3

∀A ∈ A : ∥A∥ ≤ ∥M∥+ ∥R∥ .(3.21)

Since the radius matrix R is nonnegative we can use (3.3). For the following we may assume A ∈ Kn×n.

The initial approximation α̃ ≈ ∥A∥ is computed by some power iterations on AHA. A good starting vector

is x(0) := A · (1). We then set α := (1 + e)α̃ for some positive e aiming to verify ∥A∥ ≤ α. The value e

determines the accuracy of the bound; a value like e = 10−6 aims on 6 digits accuracy.

For symmetric or Hermitian A we have to verify, following (3.19), that αI − A and αI + A are positive

semidefinite. For a given floating-point number alpha the computation of alpha*speye(n)4 causes no

rounding error, but the computation of αI ± A may. But rather than using interval operations (producing

an interval matrix to be verified to be positive definite by isspd) we use directed rounding. The INTLAB

code

setround(-1)

B = alpha*speye(n)-A;

setround(0)

3In INTLAB complex matrices are stored in midpoint-radius format, and for real matrices, stored in infimum-sepremum

format, the commands M=mid(A) and R=rad(A) ensure A ⊆ ⟨M,R⟩.
4speye(n) is the Matlab notation for the sparsely stored n× n identity matrix.
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Table 3.1

Number of floating-point operations to bound ∥A∥ for general matrix A.

method flops

Theorem 3.1 39n3 +O(n2)

Theorem 3.3 using singular values of A 28n3 +O(n2)

Theorem 3.3 using eigenvectors of ATA 20n3 +O(n2)

the method in (3.18) 14
3 n3 +O(n2)

Table 3.2

Number of floating-point operations to bound ∥A∥ for symmetric matrix A.

method flops

Corollary 3.2 18n3 +O(n2)

the method in (3.19) 4
3n

3 +O(n2)

uses the definition of floating-point arithmetic by IEEE 754 to switch the rounding mode to downwards

(towards −∞) to compute a matrix B satisfying B ≤ αI − A, and switches the rounding mode back to

nearest. But rounding errors may only occur for the diagonal elements of B, so that

B = αI −A−D for nonnegative and diagonal D .

This means that D is positive semidefinite and if isspd(B) returns 1 it follows that

αI −A ≽ B ≻ 0 .

Proceeding similarly for αI+A defines an algorithm to bound ∥A∥ for a symmetric (Hermitian) matrix. Note

that, according to (3.21) and (2.2), for a given interval matrix A the norm of all A ∈ A is bounded including

non-symmetric (-Hermitian) matrices provided the midpoint matrix of A is symmetric (Hermitian).

Now let non-symmetric (-Hermitian) A ∈ Kn×n be given. In this case the product AHA is calculated in

interval arithmetic, and (3.21), (3.3) and the method already described are used to bound ∥AHA∥ and thus

∥A∥.

The computational cost for real symmetric matrices by (3.19) is 4
3n

3 + O(n2) for the two (floating-point)

Cholesky decompositions in algorithm isspd, and for general real matrices by (3.18) it is 14
3 n3 + O(n2)

divided into

4n3 inclusion of ATA

2/3n3 Cholesky decomposition in isspd .

Note that in contrast to the previous methods this is the verification of a sufficient criterion. If the initial

approximation is too weak and e too small, α has to be increased and tested again.

Summarizing the computational cost for the four presented methods for general real input matrix are given

in Table 3.1, and for real symmetric matrix in Table 3.2.

4. Computational results. Following we test the presented routines using Matlab. All tests are

performed on a Laptop with Intel Core 2 Duo CPU with 1.6 GHz and 32-bit Windows. Concerning computing

times, note that there is some interpretation overhead.

First, we generate general random matrices of different dimension. The accuracy of the four methods listed in

Table 3.1 is of the order 10−13 for the first three methods, and about 10−6 for the fourth method. Accuracy

means the relative error of the midpoint of the inclusion compared with the endpoints.
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Table 4.1

Computing times for full matrices, time t for the Matlab routine normed to 1.

n t1/t t2/t t3/t t4/t

100 10.98 9.81 7.65 3.32

200 9.25 8.66 6.02 1.51

500 13.35 12.79 6.68 1.23

1000 11.16 10.84 5.19 1.14

In Table 4.1 we list the computing times of the four methods, where the time for the built-in Matlab routine

norm(A) is normed to 1. As expected by Table 3.1, the fourth method is the fastest. Note that the simplified

version of the singular value decomposition (computing only the right singular vectors) is not available in

Matlab, so the third method is slower than expected by the flop-count. For larger dimensions there is not

much penalty for the computation of verified error bounds rather than an approximation.

The results for symmetric, Hermitian and for ill-conditioned matrices are very similar, so they are not

displayed. Also for interval matrices the results are very similar because the additional effort using (3.21)

and (3.3) is negligible.

Finally we tested sparse matrices in the Harwell-Boeing test case library [3]. Selected results for matrices

of larger dimension are listed in Table 4.2, that is the name of the matrix, its dimension, and the ratio of

computing time for the verified bound divided by the norm estimation by the Matlab routine normest. The

tested matrices are real but not necessarily symmetric.

For most matrices there is a reasonable penalty for the verification. The matrix “psmigr2” is exceptional

with a density of less than 6%, but with a density of more than 91% for ATA. Occasionally, the verification

is faster than the approximation.

The accuracy of both the approximation and the computed bounds is of similar quality in almost all examples,

namely about 10−6 corresponding to 6 correct decimal figures. In few cases, the verified bounds are a little

more accurate than the approximation. For example, for the matrix “bcsstk21” the inclusion 1.2731911 · 108 is

computed in 1
5 of the computing time for the approximation 1.272817 · 108. Note that the accuracy of the

approximation can only be verified if verified error bounds are known.

5. Application to differential equations. As has been mentioned, bounds for the spectral norm of

a matrix or its inverse are needed in the course of the computation of rigorous error bounds for the solution

of certain ordinary and partial differential equations [10], [9], [11], [19], [21], [22]. More precisely, bounds for

the extreme singular values are needed in the following two applications.

Let a two-point boundary value problem of the form{
−u′′ = ruN + f, 0 < x < 1,

u(0) = u(1) = 0,
(5.1)

be given with N ≥ 2 and r ∈ L∞, f ∈ L2, or an elliptic problem{
−∇ · (a∇u) = g(u), x ∈ Ω,

u = 0, x ∈ ∂Ω
(5.2)

for a bounded convex polygonal domain Ω ⊂ Rn for n ∈ {2, 3}, for smooth a(x) with a(x) ≥ a0 > 0 and

Fréchet differentiable g : H1
0 (Ω) → L2(Ω).

After approximation with some spline functions or some finite element basis functions, a positive definite

stiffness matrix D and some matrix G arise. Depending on the application, the matrix G may be symmetric

(Hermitian) or not; in any case it has to be verified to be nonsingular.
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Table 4.2

Ratio of computing times for sparse matrices.

matrix n time(verification)/time(estimation)

bcspwr10 5300 1.1

bcsstk15 3948 1.4

bcsstk16 4884 2.4

bcsstk17 10974 2.0

bcsstk18 11948 2.5

bcsstk21 3600 0.2

bcsstk23 3134 5.4

bcsstk24 3562 0.9

bcsstk25 15439 3.5

bcsstk28 4410 3.4

bcsstk29 13992 0.9

bcsstm21 3600 8.6

bcsstm23 3134 3.9

bcsstm24 3562 1.6

bcsstm25 15439 0.5

cegb3024 3024 0.9

cegb3306 3306 1.3

lshp3025 3025 1.9

lshp3466 3466 2.0

man5976 5976 0.8

psmigr1 3140 46.8

psmigr2 3140 366.7

saylr4 3564 9.1

sherman3 5005 1.7

sherman5 3312 14.8

sstmodel 3345 1.5

In order to compute verified bounds for the infinite dimensional problem, in the first example (5.1) an upper

bound for the largest (in absolute value) eigenvalue λmax of the matrix eigenvalue problem

DG−1DG−1Dv = λDv(5.3)

is necessary [19], where G is symmetric. First note that the eigenvalues of a generalized eigenvalue problem

Av = λBv are real for a Hermitian matrix A and positive definite B. This is because

vHAv = λvHBv ,(5.4)

where vHBv > 0 because B is positive definite, and the left hand side of (5.4) is real because A is Hermitian.

So λ in (5.3) must be real and nonzero. Moreover, λ is an eigenvalue of (G−1D)2, and along the same lines

as above one shows λ > 0. Moreover, because D is positive definite,

λ′D −DG−1DG−1D ≽ 0 ⇔ λ′ ≥ λmax .(5.5)

So choosing λ′ a little larger than an approximation of λmax and verifying that λ′D − DG−1DG−1D is

positive semidefinite by algorithm isspd gives the desired estimate. Note that an inclusion of G−1D is

computed by the INTLAB algorithm verifylss(G,D). Note this also verifies the nonsingularity of G.
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In the second example (5.2) two problems arise. First, G is symmetric and an upper bound for

α := ∥LTG−1L∥(5.6)

is needed, where LLT = D denotes the Cholesky decomposition of D. Here the size of G may be too large

to compute an inclusion of the full matrix G−1. For Λ(A) denoting the spectrum of A, set

λmax(A) := max{|λ| : λ ∈ Λ(A)} and λmin(A) := min{|λ| : λ ∈ Λ(A)} .(5.7)

It is known that always

σmin(A) ≤ λmin(A) and λmax(A) ≤ σmax(A) .(5.8)

Then the symmetry of G and using Λ(AB) = Λ(BA) implies

α2 = λmax(L
TG−1L · LTG−1L) = λmax((G

−1D)2) = λmax(G
−1D)2(5.9)

or

α−1 = λmin(D
−1G) .(5.10)

We have

α−1 = min{|λ| : Gv = λDv, 0 ̸= v ∈ Cn} ,(5.11)

and by (5.4) it follows that +α−1 or −α−1 is a real eigenvalue of D−1G. We show that

β > 0 and G− βD ≽ 0 ⇒ α−1 ≥ β .(5.12)

Suppose β > α−1. Then

G+ α−1D ≽ G− α−1D = G− βD + (β − α−1)D ≻ 0(5.13)

because D is symmetric positive definite, so that ±α−1 is no eigenvalue of D−1G, a contradiction.

It follows α ≤ β−1 if G − βD ≽ 0. The latter can be effectively verified by algorithm isspd in INTLAB,

also for large and sparse matrices G and D. A suitable value for β is found by purely numerical means, for

example some power set iteration.

This approach is applicable if the eigenvalues of D−1G, which are real by (5.4), are positive (which is proved

a posteriori by the verification). Fortunately, in many applications this is true. If this is not the case, then

we use (5.10) to see

α−2 = λmin(D
−1G)2 ≥ σmin(D

−1G)2 = σmin(D
−1G2D−1) = λmin(D

−2G2) .(5.14)

Now the eigenvalues of D−2G2 are positive, and we proceed as before to show

G2 − βD2 ≽ 0 ⇒ α−2 ≥ β .(5.15)

It follows α ≤ β−1/2 if G2 − βD2 ≽ 0, and the method is again effectively applicable to large and sparse

matrices G and D. There is a drawback in the estimation of the smallest eigenvalue by the smallest singular

value in (5.14). Fortunately, the effect is small in the application to (5.2). The method can be applied to

(5.1) as well. Here, however, the estimate is significantly weaker than (5.5).

Finally, to compute verified bounds for the infinite dimensional problem in the second example for (5.2), G

is still symmetric, but an upper bound for

α := ∥LTG−1L1∥(5.16)



VERIFIED BOUNDS FOR SINGULAR VALUES 13

is necessary, where L1L
T
1 = D1 is the Cholesky factorization of some other positive definite matrix D1. We

proceed as in (5.9) and obtain

α2 = λmax(L
T
1 G

−1L · LTG−1L1) = λmax(D1G
−1DG−1)(5.17)

and

α−2 = λmin(GD−1GD−1
1 ) ≥ σmin(GD−1G)σmin(D

−1
1 ) =

= λmin(GD−1G)
∥D1∥ = λmin(D

−1G2)
∥D1∥ .

(5.18)

As before we show

G2 − βD ≽ 0 ⇒ λmin(D
−1G2) ≥ β ,(5.19)

so that G2 − βD ≽ 0 proves

α ≤

√
∥D1∥
β

.(5.20)

An upper bound for ∥D1∥ is computed by the methods discussed in Section 3, so that using algorithm isspd

the method is effectively applicable for large and sparse matrices G, D and D1. The only drawback is the

underestimation in (5.18) by splitting the minimum singular values. Fortunately, the underestimation is

almost negligible in practice.

Following are some computational results for problems arising in eigenvalue excluding methods for infinite

dimensional operators [26]. Consider the two-dimensional self-adjoint eigenvalue problem{
−∆u+ ν(3u2

h − 2(a+ 1)uh + a)u = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω ,
(5.21)

where Ω = (0, 1)×(0, 1), ν and a are positive constants, and uh is an approximate solution of the Allen-Cahn

equation {
−∆u = νu(u− a)(1− u), x ∈ Ω,

u = 0, x ∈ ∂Ω .
(5.22)

For parameter values ν = 150 and a = 0.01, and uh being lower and upper branch finite element solutions

with linear element functions on a uniform triangular mesh on Ω, rigorous exclusion regions of eigenvalues

for (5.21) are computed. Here both the problems (5.6) and (5.18) arise.

In Table 5.1 we summarize some computational results for our methods proposed in (5.12) and (5.19), and

compare it to the method used in [26].

As can be seen, the norm estimate by the previous method in [26] is slightly better than our estimate,

however, our methods are much faster. For dimensions 9801 and larger, the previous method was not

applicable. Our method computes a verified upper bound of the matrix norm in (5.6) for dimension up to

almost 1 million, however, for the matrix norm in (5.18) it fails because the problem is too ill-conditioned.

For the large dimension, however, computing time increases significantly due to cache misses.
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