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Let an n × n matrix A of floating-point numbers in some format be given. Denote the
relative rounding error unit of the given format by eps. Assume A to be extremely

ill-conditioned, that is cond(A) � eps−1. In about 1984 I developed an algorithm to
calculate an approximate inverse of A solely using the given floating-point format. The
key is a multiplicative correction rather than a Newton-type additive correction. I did not
publish it because of lack of analysis. Recently, in [9] a modification of the algorithm was
analyzed. The present paper has two purposes. The first is to present reasoning how and
why the original algorithm works. The second is to discuss a quite unexpected feature
of floating-point computations, namely, that an approximate inverse of an extraordinary
ill-conditioned matrix still contains a lot of useful information. We will demonstrate this
by inverting a matrix with condition number beyond 10300 solely using double precision.
This is a workout of the invited talk at the SCAN meeting 2006 in Duisburg.

Key words: extremely ill-conditioned matrix, condition number, multiplicative correction,
accurate dot product, accurate summation, error-free transformations

1. Introduction and previous work

Consider a set of floating-point numbers F, for instance double precision
floating-point numbers according to the IEEE 754 standard [3]. Let a matrix
A ∈ F

n×n be given. The only requirement for the following algorithm are floating-
point operations in the given format. For convenience, assume this format to be
double precision in the following.

First we will show how to compute the dot product xTy of two vectors x, y ∈ F

in K-fold precision with storing the result in one or in K floating-point numbers.
This algorithm to be described in Section 2 uses solely double precision floating-
point arithmetic and is based on so-called error-free transformations [7, 13, 12].
The analysis will show that the result is of a quality “as if” computed in K-fold
precision.

The relative rounding error unit in IEEE 754 double precision in rounding to
nearest is eps = 2−53. Throughout the paper we assume that no over- or underflow
occurs. Then every single floating-point operation produces a result with relative
error not larger than eps.

This research was partially supported by Grant-in-Aid for Specially Promoted Research
(No. 17002012: Establishment of Verified Numerical Computation) from the Ministry of Edu-
cation, Science, Sports and Culture of Japan.
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Throughout this paper we use the Frobenius norm ‖A‖F :=
(∑

a2
ij

)1/2. It is
unitary as the often used spectral norm, but it is much easier to compute and of
similar size as by ‖A‖2 ≤ ‖A‖F ≤√rank(A) · ‖A‖2.

For a matrix A ∈ R
n×n, the condition number cond(A) = ‖A−1‖ · ‖A‖ charac-

terizes the sensitivity of the inverse of A with respect to small perturbations in A.
More precisely, for small enough ε and ‖ΔA‖ = ε‖A‖,

‖(A + ΔA)−1 − A−1‖
ε‖A−1‖ ≤ cond(A). (1.1)

Practical experience verifies that for a general perturbation ΔA we can expect
almost equality in (1.1). Now consider an extremely ill-conditioned matrix A ∈
F

n×n. By that we mean a matrix A with cond(A) � eps−1. As an example taken
from [10] consider

A4=

⎛
⎜⎜⎝

−5046135670319638 −3871391041510136 −5206336348183639 −6745986988231149
−640032173419322 8694411469684959 −564323984386760 −2807912511823001

−16935782447203334 −18752427538303772 −8188807358110413 −14820968618548534
−1069537498856711 −14079150289610606 7074216604373039 7257960283978710

⎞
⎟⎟⎠.

(1.2)
This innocent looking matrix is extremely ill-conditioned, namely

cond(A4) = 6.4 · 1064.

An approximate inverse R of extremely ill-conditioned matrices calculated by any
standard algorithm such as Gaussian elimination is so severely corrupted by round-
off errors that we cannot expect a single correct digit in R. For our matrix A4

we obtain

invfl(A4) =

⎛
⎜⎜⎝

−3.11 −1.03 1.04 −1.17
0.88 0.29 −0.29 0.33

−2.82 −0.94 0.94 −1.06
4.00 1.33 −1.34 1.50

⎞
⎟⎟⎠,

fl(A−1
4 ) =

⎛
⎜⎜⎝

8.97 · 1047 2.98 · 1047 −3.00 · 1047 3.37 · 1047

−2.54 · 1047 −8.43 · 1046 8.48 · 1046 −9.53 · 1046

8.14 · 1047 2.71 · 1047 −2.72 · 1047 3.06 · 1047

−1.15 · 1048 −3.84 · 1047 3.85 · 1047 −4.33 · 1047

⎞
⎟⎟⎠.

(1.3)

Here R := invfl(A4) denotes an approximate inverse of A calculated in floating-
point, for example by the Matlab command R = inv(A), whereas fl(A−1

4 ) denotes
the true inverse A−1

4 rounded to the nearest floating-point matrix. Note that in
our example R is almost a scalar multiple of A−1

4 , but this is not typical. As can
be seen, R and A−1

4 differ by about 47 orders of magnitude. This corresponds to a
well-known rule of thumb in numerical analysis [2].

One may regard such an approximate inverse R as useless. The insight of the
algorithm to be described is that R contains a lot of useful information, enough
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information to serve eventually as a good preconditioner for A. The challenge will
be to extract this information out of R.

The key will be a multiplicative correction rather than a Newton-type additive
correction. A Newton-type iteration converges only in a neighborhood of the true
solution. But the ordinary approximate inverse R computed in double precision is
far away from the true inverse, see the example above. Thus the additive correction
is of the order of the approximation and causes only cancellation but no reason-
able correction. The multiplicative correction, however, is capable to extract the
information hidden in R.

Since our matrices are so extremely ill-conditioned that almost anything can
happen, including R to be singular (which is, in fact, rare, but may happen), we
may not expect a completely rigorous analysis. However, we give a reasoning how
and why the algorithm works. A main observation to be explained in the following
is that floating-point operations per se introduce a certain smoothing effect, similar
to a regularization process applied to ill-posed problems.

As an answer to a question posed by Prof. Shin’ichi Oishi from Waseda Uni-
versity we mention that our algorithm may be applied to a sum

∑
Ai of m matrices

as well. This is can be viewed as a representation of the input matrix in m-fold
precision and may be helpful to generate extremely ill-conditioned matrices. As we
will see this does not influence the analysis. An example with m = 5 is presented
in Table 4.5.

The paper is organized as follows. In the following section we state some basic
definitions, and we introduce and analyze a new algorithm producing a result “as
if” computed in K-fold precision. In Section 3 we state and analyze the algorithm I
developed in about 1984. The paper is concluded with computational results. Some
proofs are moved to an appendix, where we also give the complete Matlab-code for
our algorithms.

2. Basic facts

We denote by fl( · ) the result of a floating-point computation, where all op-
erations within the parentheses are executed in working precision. If the order of
execution is ambiguous and is crucial, we make it unique by using parentheses. An
expression like fl

(∑
pi

)
implies inherently that summation may be performed in

any order.
In mathematical terms, the fl-notation implies |fl(a ◦ b)− a ◦ b| ≤ eps|a ◦ b| for

the basic operations ◦ ∈ {+,−, ·, /}. In the following we need as well the result of
a dot product xTy for x, y ∈ F

n “as if” calculated in K-fold precision, where the
result is stored in 1 term res ∈ F or in K terms res1, . . . , resK ∈ F. We denote
this by res := flK,1(xTy) or res := flK,K(xTy), respectively. The subindices K, K

indicate that the quality of the result is “as if” computed in K-fold precision,
and the result is stored in K parts. For completeness we will as well mention an
algorithm for flK,L, i.e., storing the result in L terms, although we don’t actually
need it for this paper.
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The mathematical assumption on flK,K(xTy) is not very strict, we only require

res = flK,K(xTy) =⇒
∣∣∣∣∣

K∑
i=1

resi − xTy

∣∣∣∣∣ ≤ ϕ · epsK |xT| |y| (2.1)

for a reasonably small constant ϕ. Note that this implies the relative error of
∑

resi

to xTy to be not much larger than epsK cond(xTy). More general, the result may
be stored in L terms res1···L. We then require

res = flK,L(xTy) =⇒
∣∣∣∣∣

L∑
i=1

resi − xTy

∣∣∣∣∣ ≤ ϕ′ · epsL|xTy|+ ϕ′′ · epsK |xT| |y| (2.2)

for reasonably small constants ϕ′ and ϕ′′. In other words, the result res is of a
quality “as if” computed in K-fold precision and then rounded into L floating-point
numbers. The extra rounding imposes the extra term ϕ′epsL in (2.2). For L = 1,
the result of Algorithm 4.8 (SumK) in [7] satisfies (2.2), and for L = K the result of
Algorithm SumL in [14] satisfies (2.1). In this paper we need only these two cases
L = 1 and L = K. A value L > K does not make much sense since the precision is
only K-fold.

It is not difficult and nice to see the rationale behind both approaches. Fol-
lowing we describe an algorithm to compute flK,L(xTy) for 1 ≤ L ≤ K. We first
note that using algorithms by Dekker and Veltkamp [1] two vectors x, y ∈ F

n can
be transformed into a vector z ∈ F

2n such that xTy =
∑2n

i=1 zi, an error-free trans-
formation. Thus we concentrate on computing a sum

∑
pi for p ∈ F

n “as if” cal-
culated in K-fold precision and rounded into L floating-point numbers. In [13, 12]
an algorithm was given to compute a K-fold faithfully rounded result. Following
we derive another algorithm to demonstrate that faithful rounding is not necessary
to invert extremely ill-conditioned matrices.

All algorithms use extensively the following error-free transformation of the
sum of two floating-point numbers. It was given by Knuth in 1969 [4] and can be
depicted as in Fig. 2.1.

Algorithm 2.1. Error-free transformation for the sum of two floating-point
numbers.

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x − a)
y = fl((a − (x − z)) + (b − z))

Knuth’s algorithm transforms any pair of floating-point numbers (a, b) into a
new pair (x, y) with

x = fl(a + b) and x + y = a + b. (2.3)
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Fig. 2.1. Error-free transformation x+y = a+b of the sum of two floating-point numbers.

Note that this is also true in the presence of underflow. First we repeat Algo-
rithm 4.2 (VecSum) in [7]. For clarity, we state the algorithm without overwriting
the input vector.

Algorithm 2.2. Error-free vector transformation.

function q = VecSum(p)
q1 = p1

for i = 2 : n

[qi, qi−1] = TwoSum(pi, qi−1)

Successive application of (2.3) to a vector p ∈ F
n yields

n∑
i=1

qi =
n∑

i=1

pi, (2.4)

the transformation is error-free. Moreover, Lemma 4.2 in [7] implies

n−1∑
i=1

|qi| ≤ γn−1

n∑
i=1

|pi|, (2.5)

where γk := keps/(1 − keps) as usual [2]. Note that q1, . . . , qn−1 are the errors of
the intermediate floating-point operations and qn is the result of ordinary recursive
summation, respectively. Now we modify Algorithm 4.8 (SumK) in [7] according to
the scheme as in Fig. 2.2. Compared to Fig. 4.2 in [7] the right-most “triangle” is
omitted. We first discuss the case L = K, i.e., summation in K-fold precision and
rounding into K results. The algorithm is given as Algorithm 2.3 (SumKK). Again,
for clarity, it is stated without overwriting the input vector.

Algorithm 2.3. Summation “as if” computed in K-fold precision with
K results.

function {res} = SumKK(p(0),K)
for k = 0 : K − 2

p(k+1) = VecSum
(
p
(k)
1···n−k

)
resk+1 = p

(k+1)
n−k

resK = fl
(∑n−K+1

i=1 p
(K−1)
i

)
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Fig. 2.2. Summation “as if” in K-fold precision.

Note that the vectors p(k) become shorter with increasing values of k, more
precisely p(k) has n− k elements. In the output of the algorithm we use braces for
the result {res} to indicate that it is a collection of floating-point numbers.

Regarding Fig. 2.2 and successively applying (2.3) yields

s :=
n∑

i=1

pi = p′1 + π1 +
n∑

i=3

pi = p′1 + p′2 + π2 +
n∑

i=4

pi = · · · =
n−1∑
i=1

p′i + res1.

In the same way we conclude

n−1∑
i=1

p′i =
n−2∑
i=1

p′′i + res2 and
n−2∑
i=1

p′′i =
n−3∑
i=1

p′′′i + res3.

Applying this scheme to Algorithm 2.3 it follows

n∑
i=1

p
(0)
i =

n∑
i=1

p
(1)
i = res1 +

n−1∑
i=1

p
(1)
i

= res1 + res2 +
n−2∑
i=1

p
(2)
i = · · · =

K−1∑
k=1

resk +
n−K+1∑

i=1

p
(K−1)
i .

Now (2.5) gives

n−K+1∑
i=1

∣∣p(K−1)
i

∣∣ ≤ γn−K+1 ·
n−K+2∑

i=1

∣∣p(K−2)
i

∣∣ ≤ · · · ≤
(

n−1∏
ν=n−K+1

γν

)
·

n∑
i=1

∣∣p(0)
i

∣∣.
The error of the final floating-point summation to compute resK satisfies [2]

∣∣∣∣∣resK −
n−K+1∑

i=1

p
(K−1)
i

∣∣∣∣∣ ≤ γn−K ·
n−K+1∑

i=1

∣∣p(K−1)
i

∣∣.
Combining the results proves the following theorem.
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Theorem 2.4. Let a vector p ∈ F
n be given and define s :=

∑n
i=1 pi. Then

for K ≥ 1 the result res ∈ F
K of Algorithm 2.3 satisfies

∣∣∣∣∣
K∑

k=1

resk − s

∣∣∣∣∣ ≤
(

n−1∏
ν=n−K

γν

)
·

n∑
i=1

|pi| ≤ γK
n−1 ·

n∑
i=1

|pi|. (2.6)

We note that the sum
∑

resk may be ill-conditioned. The terms resk need
neither to be ordered by magnitude, nor must they be non-overlapping. However,
this is not important: The only we need is that the final error is of the order epsK

as seen in (2.6).
To obtain a result stored in less than K results, for example L = 1 result, we

might sort resi by magnitude and sum in decreasing order. A simple alternative is
to apply the error-free vector transformation VecSum K−L times to the input vector
p and then compute the final L results by the following Algorithm 2.5. Since the
transformation by VecSum is error-free, Theorem 2.4 implies an error of order epsL.

The corresponding algorithm to compute flK,L

(∑
pi

)
is given as Algorithm 2.5,

now with overwriting variables. Note that Algorithm 2.5 and Algorithm 2.3 are
identical for L = K.

Algorithm 2.5. Summation “as if” computed in K-fold precision and
rounded into L results res1···L.

function res = SumKL(p,K,L)
for i = 1 : K − L

p = VecSum(p)
for k = 0 : L − 2

p1···n−k = VecSum(p1···n−k)
resk+1 = pn−k

resL = fl
(∑n−L+1

i=1 pi

)
We note that the results of Algorithm SumKL is much better than may be

expected by Theorem 2.4. In fact, in general the estimations (2.1) and (2.2) are
satisfied for factors ϕ and ϕ′ not too far from 1.

As has been noted before, we need Algorithm SumKL only for L = K and L = 1.
For general L this is Algorithm 2.5, for L = K this is Algorithm 2.3, and for L = 1
this is Algorithm 4.8 (SumK) in [7]. For the reader’s convenience we repeat this very
simple algorithm.

Algorithm 2.6. Summation “as if” computed in K-fold precision and
rounded into one result res.

function res = SumK1(p,K)
for i = 1 : K − 1

p = VecSum(p)
res = fl

(∑n
i=1 pi

)
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As has been mentioned, there is an error-free transformation of a dot product
of two n-vectors x, y into the sum of a 2n-vector [7]. If this sum is calculated by
SumKL, we will refer to the result of the dot product as flK,L(xTy).

3. The algorithm and its analysis

First let us clarify the notation. For two matrices A,B ∈ F
n×n the ordinary

product in working precision is denoted by C = fl(A · B).
If the product is executed in k-fold precision and stored in k-fold precision,

we write {P} = flk,k(A · B). We put braces around the result to indicate the P

comprises of k matrices Pν ∈ F
n×n. This operation is executed by firstly trans-

forming the dot products into sums, which is error-free, and secondly by applying
Algorithm 2.3 (SumKK) to the sums.

If the product is executed in k-fold precision and stored in working preci-
sion, we write P = flk,1(A · B) ∈ F

n×n. This operation is executed as flk,k(A · B)
but Algorithm 2.6 (SumK1) is used for the summation. The result is a matrix in
working precision.

For both types of multiplication in k-fold precision, either one of the fac-
tors may be a collection of matrices, for example {P} = flk,k(A · B) and {Q} =
flm,m({P} ·C) for C ∈F

n×n. In this case the result is the same as flm,m

(∑k
ν=1 PνC

)
,

where the dot products are of lengths kn. Similarly, Q = flm,1({P} ·C) is computed.
Note that we need to allow only one factor to be a collection of matrices except
when the input matrix A itself is a collection of matrices.

In the following algorithms it will be clear from the context that a factor {P}
is a collection of matrices. So for better readability we omit the braces and write
flm,m(P · C) or flm,1(P · C).

Finally we need an approximate inverse R of a matrix A ∈ F
n×n calculated in

working precision; this is denoted by R = invfl(A). Think of this as the result of
the Matlab command R = inv(A). The norm used in the following Algorithm 3.1
(InvIllCoPrel) to initialize R(0) is only for scaling; any moderate approximate
value of some norm is fine.

Algorithm 3.1. Inversion of an extremely ill-conditioned matrix, prelimi-
nary version.

function {R(k)} = InvIllCoPrel(A)

R(0) = fl1,1

(
1

‖A‖
) · I; k = 0

repeat
k = k + 1
P (k) = flk,1(R(k−1) · A) % stored in working precision

X(k) = invfl(P (k)) % floating-point inversion in working precision

{R(k)}=flk,k(X(k) ·R(k−1)) % stored in k-fold precision

until cond(P (k)) < eps−1/100
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As can be seen, R(0) is just a scaled identity matrix, generally a very poor
approximate inverse, and R(1) is, up to rounding errors, the approximate inverse
computed in ordinary floating-point. In practice the algorithm may start with
k = 1 and R(1) := invfl(A). However, the case k = 0 gives some insight, so for
didactical purposes the algorithm starts with k = 0.

For our analysis we will use the “∼”-notation to indicate that two quantities
are of the same order of magnitude. So for e, f ∈ R, e ∼ f means |e| = ϕ|f | for a
factor ϕ not too far from 1. The concept applies similarly to vectors and matrices.

Next we informally describe how the algorithm works. First, let A be an
ill-conditioned, but not extremely ill-conditioned matrix, for example cond(A) ∼
eps−1/10. Then cond(P (1)) = cond(A), the stopping criterion is not satisfied, and
basically R(1) ∼ invfl(A) and R(1) ∈ F

n×n. We will investigate the second iteration
k = 2. For better readability we omit the superindices and abbreviate R := R(1)

and R′ := R(2), then

P ≈ R · A, X ≈ (RA)−1 = A−1R−1 and R′ ≈ X · R ≈ A−1.

For A not too ill-conditioned, we can expect R to be a good enough precondition
matrix for A, so that RA is not too far from the identity matrix. This means
cond(P ) ≈ 1. Yet, due to the condition of A, we expect ‖I − RA‖ to be less than,
but not much less than 1. Thus we can expect X to be an approximate inverse of
RA of reasonable quality.

The final step R′ ≈ X · R needs special attention. The aim is to produce a
preconditioner R′ of A so that ‖I−R′A‖ is very small, at best of the order eps. But
the i-th column of R′A is an approximate solution of the linear systems Ax = ei,
were ei denotes the i-th column of the identity matrix. Thus the relative error of
that approximate solution is expected to be cond(A) · eps, which is 1/10 in our
example. This means, for R′ ∈ F

n×n the entries of I −R′A will be at least of order
0.1, and ‖I − R′A‖ can’t be much less than 1.

This argument is true as long R′ is a matrix with floating-point entries, i.e.,
with precision eps. Therefore it is mandatory to store R′ = R(2) in two matrices,
as indicated by {R(2)} = fl2,2(X(2) · R(1)).

A key observation in this example is that cond(RA) ≈ eps · cond(A). We claim
that this observation is generally true, also for extremely ill-conditioned matrices.
More precisely, for cond(A) � eps−1 and R := invfl(A) we claim cond(RA) ≈ eps ·
cond(A). To develop arguments for this will be a main task in the following.

To illustrate this behavior, consider again the extremely ill-conditioned 4 × 4
matrix A4 in (1.2). Recall cond(A4) = 7.5 · 1064. In the following Table 3.1 we dis-
play for k ≥ 2 the condition numbers cond(R(k−1)), cond(R(k−1)A) and cond(P (k))
as well as ‖I − R(k)A‖. The numbers confirm that in each iteration cond(R(k−1))
increases by a factor eps−1 starting at cond(R(1)) = 1, and that cond(R(k−1)A) de-
creases by a factor eps starting at cond(R(1)A) = cond(A) = 6.4 · 1064. Note that
R(k−1)A denotes the exact product of R(k−1) and A, whereas P (k) is this product
calculated in k-fold precision and rounded into working precision.
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Table 3.1. Computational results of Algorithm 3.1 (InvIllCoPrel) for the matrix A4

in (1.2).

k cond(R(k−1)) cond(R(k−1)A) cond(P (k)) ‖I − R(k)A‖
2 1.68 · 1017 2.73 · 1049 2.31 · 1017 3.04
3 1.96 · 1032 2.91 · 1033 2.14 · 1017 5.01
4 7.98 · 1048 1.10 · 1017 1.83 · 1017 1.84
5 6.42 · 1064 8.93 8.93 3.43 · 10−16

As we will see, rounding into working precision has a smoothing effect, similar
to regularization, which is important for our algorithm. This is why cond(P (k)) is
constantly about eps−1 until the last iteration, and also ‖I − R(k)A‖ is about 1
until the last step. We claim and will see that this behavior is typical.

The matrices P (k) and R(k) are calculated in k-fold precision, where the first is
stored in working precision in order to apply a subsequent floating-point inversion,
and the latter stored in k-fold precision. It is interesting to monitor what happens
when using another precision to calculate P (k) and R(k). This was a question by
one of the referees.

First, suppose we invest more and compute both P (k) and R(k) in 8-fold preci-
sion for all k, much more than necessary for the matrix A4 in (1.2). More precisely,
we replace the inner loop in Algorithm 3.1 (InvIllCoPrel) by

P (k) = flprec,1(R(k−1) · A)
% computed in prec-fold and stored in working precision

X(k) = invfl(P (k))
% floating-point inversion in working precision

{R(k)} = flprec,prec(X(k) · R(k−1))
% computed in prec-fold and stored in prec-fold precision

(3.1)
with fixed prec = 8 for all k. Note that 8-fold precision corresponds to a relative
rounding error unit of eps8 = 2.3 · 10−128. If matrix inversion would be performed
in that precision, the approximate inverse of the matrix A4 would be correct to the
last bit.

The results are displayed in the following Table 3.2. As can be seen there is
not much difference to the data in Table 3.1, the quality of the results does not
increase. Computational experience and our analysis suggest that this behavior is
typical, so that it does not make sense to increase the intermediate computational
precision. The reason is that everything depends on the approximate inverses X(k)

which is computed in working precision, so that there is no more information to
squeeze out.

Second, one may try to reduce the computational effort and compute both P (k)

and R(k) in 4-fold precision for all k. For k < 4 this is more than in Algorithm 3.1
(InvIllCoPrel), for k > 4 it is less. That means we replace the inner loop in
Algorithm 3.1 for the matrix A4 by (3.1) with prec = 4. The results are displayed
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Table 3.2. Results of Algorithm 3.1 (InvIllCoPrel) for the matrix A4 in (1.2) using fixed

8-fold precision.

k cond(R(k−1)) cond(R(k−1)A) cond(P (k)) ‖I − R(k)A‖
2 1.68 · 1017 2.73 · 1049 2.66 · 1017 3.59
3 2.73 · 1032 4.37 · 1033 2.80 · 1017 4.78
4 6.49 · 1048 9.05 · 1017 1.12 · 1018 17.8
5 1.76 · 1067 7750 7750 3.86 · 10−13

6 7.45 · 1064 4.0 4.0 1.79 · 10−16

in the following Table 3.3. As expected by the previous example, there is not much
difference to the data in Table 3.1 for k ≤ 4, the quality of the results does not
increase. The interesting part comes for k > 4. Now the precision is not sufficient
to store R(k) for k ≥ 5, as explained before for R(2), so that the grid for R(k) is
too coarse to make I − R(k)A convergent, so ‖I − R(k)A‖ remains about 1. That
suggests the computational precision in Algorithm 3.1 is just sufficient in each loop.

Table 3.3. Results of Algorithm 3.1 (InvIllCoPrel) for the matrix A4 in (1.2) using fixed

4-fold precision.

k cond(R(k−1)) cond(R(k−1)A) cond(P (k)) ‖I − R(k)A‖
2 1.68 · 1017 2.73 · 1049 2.66 · 1017 3.59
3 2.73 · 1032 4.37 · 1033 2.80 · 1017 4.78
4 6.49 · 1048 9.05 · 1017 4.52 · 1017 16.9
5 3.51 · 1064 34.8 41.1 5.37
6 1.34 · 1065 37.0 19.2 2.75
7 1.39 · 1065 22.3 26.4 6.42
8 1.43 · 1065 18.5 19.4 3.79

In [9] our Algorithm 3.1 (InvIllCoPrel) was modified in the way that the
matrix P (k) was artificially afflicted with a random perturbation of size √eps |P (k)|.
This simplifies the analysis; however, the modified algorithm also needs about twice
as many iterations to compute an approximate inverse of similar quality. We will
come to that again in the result section (cf. Table 4.3). In the following we will
analyze the original algorithm.

Only the matrix R in Algorithm 3.1 (InvIllCoPrel) is represented by a sum
of matrices. As mentioned before, the input matrix A may be represented by a sum∑

Ai as well. In this case the initial R(0) can be taken as an approximate inverse of
the floating-point sum of the Ai. Otherwise only the computation of P is affected.

For the preliminary version we use the condition number of P (k) in the stop-
ping criterion. Since X(k) is an approximate inverse of P (k) we have cond(P (k)) ∼
‖X(k)‖ · ‖P (k)‖. The analysis will show that this can be used in the final version
InvIllCo in the stopping criterion without changing the behavior of the algorithm.

Following we analyze this algorithm for input matrix A with cond(A)�eps−1.
Note that in this case the ordinary floating-point inverse invfl(A) is totally
corrupted by rounding errors, cf. (1.3).
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We call a vector “generic” if its entries are pseudo-random values uniformly
distributed in some interval. Correspondingly, a matrix A ∈ R

n×n is said to be
“generic” if its columns are generic. Similarly a vector is called generic on the
unit ball if it is chosen randomly on the unit ball with uniform density. We first
show that the distance of a generic vector x ∈ R

n to its rounded image fl(x) can be
expected to be nearly as large as possible. The proof is given in the appendix.

Lemma 3.2. Let a nonnegative vector d = (d1, . . . , dn) ∈ R
n be given. Sup-

pose xi, 1 ≤ i ≤ n are independent variables uniformly distributed in [−di, di].
Then the expected Euclidean length of x = (x1, . . . , xn)T satisfies

1
2
√

n
· ‖d‖1 ≤ E(‖x‖2) ≤ ‖d‖2. (3.2)

For an equidistant grid, i.e., d1 = · · · = dn, we have

1
2
· ‖d‖2 ≤ E(‖x‖2) ≤ ‖d‖2.

Note that the maximum Euclidean length of x is ‖d‖2. In other words, this
repeats the well-known fact that most of the “volume” of an n-dimensional rectangle
resides near the vertices. The same is true for matrices, the distance ‖fl(A) − A‖
can be expected to be nearly as large as possible.

Corollary 3.3. Let a generic matrix A ∈ R
n×n be given, where no entry

aij is in the overflow- or underflow range. Denote the rounded image of A by
Ã = fl(A). Then

eps

2n
· ‖Ã‖F ≤ eps

2n
·
∑
i,j

|ãij | ≤ E(‖Ã − A‖F) ≤ eps · ‖Ã‖F. (3.3)

If the entries of A are of similar magnitude, then

E(‖Ã − A‖F) = βeps · ‖Ã‖F

for a factor β not far from 1.

Proof. For generic A we can expect ãij = fl(aij) not to be a power of 2. Then
aij − ãij is in the grid [−dij , dij ] with dij = eps · |ãij |. Regarding A as an element
in R

n2
and applying Lemma 3.2 proves the result. �

We cannot expect a totally rigorous analysis of Algorithm 3.1 (InvIllCoPrel)
since, for example, the inversion of P (k) in working precision may fail (we discuss
a cure of even this later). Thus we collect a number of arguments to understand
the principle of the algorithm. The main point will be the observation that even
an approximate inverse of an arbitrarily ill-conditioned matrix does, in general,
contain useful information.
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This is due to a kind of regularization by rounding into working precision. In
fact, Corollary 3.3 shows that the rounded image of a real matrix A in floating-
point can be expected to be far away from A itself. This is in particular helpful if
A is extremely ill-conditioned: the rounded image has, in general, a much better
condition number. More precisely, we can expect the condition number of a generic
floating-point matrix to be limited to not much more than eps−1. In the appendix
we will show the following.

Observation 3.4. Let A be generic on the variety of singular matrix R
n×n

be given. Then the expected Frobenius-norm condition number of A rounded into a
floating-point matrix fl(A) satisfies

√
n2 − 2
0.68

· eps−1 ≤ E(condF(fl(A))) ≤ n
√

n2 − 1
0.3

· eps−1, (3.4)

where eps denotes the relative rounding error unit. If the entries of A are of similar
magnitude, then

E(condF(fl(A))) = nβ · eps−1

for a factor β not far from 1.

The arguments for Observation 3.4 are based on the following fact which states
that the expected angle between two generic vectors is approaching π/2 with in-
creasing dimension. This is surely known. However, we did not find a proper
reference so we state the result and prove it in the appendix.

Theorem 3.5. Let x, y ∈ R
n be generic vectors on the unit ball and suppose

n ≥ 4. Then the expected value of |xTy| satisfies

0.61√
n − 1

≤ E(|xTy|) ≤ 0.68√
n − 2

. (3.5)

Using this we first estimate the magnitude of the elements of an approxi-
mate inverse R := invfl(A) of A ∈ F

n×n and, more interesting, the magnitude of
‖I − RA‖. We know that for not extremely ill-conditioned matrices the latter is
about eps · cond(A). Next we will see that we can expect it to be not much larger
than 1 even for extremely ill-conditioned matrices.

Observation 3.6. Let A ∈ F
n×n be given. Denote its floating-point inverse

by R := invfl(A), and define C := min(eps−1, cond(A)). Then ‖R‖ ∼ C/‖A‖ and

‖I − RA‖ ∼ eps · C. (3.6)

In any case

‖RA‖ ∼ 1. (3.7)
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Argument. If A is not extremely ill-conditioned so that cond(A) � eps−1, say,
then R is an approximate inverse of reasonable quality, so that ‖R‖ ∼ ‖A−1‖ =
C/‖A‖. Now suppose A is extremely ill-conditioned. Matrix inversion is commonly
performed using Gaussian elimination or alike. After the first elimination step,
the matrix of intermediate results is generally corrupted by rounding errors. By
Observation 3.4 the condition number of this intermediate matrix can be expected
to be not much larger than eps−1. Thus, if no exceptional operations such as
division by zero occur, we can expect in any case ‖R‖ ∼ C/‖A‖. A standard
estimation (cf. [2]) states

|I − RA| ≤ γn|R| |L| |U |

for an approximate inverse R computed via LU-decomposition. Note that this
estimation is independent of cond(A) and is valid with or without pivoting. In
fact, the estimation is used as an argument for the necessity of pivoting in order to
diminish |U |. Furthermore,

|uij | ≤ �n · max|aij |,

where �n denotes the growth factor. Recall the growth factor for an L,U -
decomposition is defined by �(A) := maxi,j,k

∣∣a(k)
ij

∣∣/maxi,j |aij |, where a
(k)
ij denote

all intermediate values during the elimination process.
With pivoting we can expect �n to be small, so

∥∥|L| · |U |∥∥ ∼ ‖A‖, and (3.6)
follows. For extremely ill-conditioned A we have C ∼ eps−1 and ‖I − RA‖ ∼ 1,
and therefore (3.7). Otherwise, R is of reasonable quality, so that RA ∼ I and
also (3.7). �

Let A ∈ F
n×n be extremely ill-conditioned, and let R := invfl(A) be an approx-

imate inverse calculated in working precision. The main point in Algorithm 3.1 is
that even for an extremely ill-conditioned matrix A its floating-point inverse R con-
tains enough information to decrease the condition number by about a factor eps,
i.e., cond(RA) ∼ eps · cond(A). To see this we need a lower bound for the norm
of a matrix.

Lemma 3.7. Let a matrix A ∈ R
n×n and a vector x ∈ R

n be given which are
not correlated. Then

‖A‖ ≥ E

(‖Ax‖
‖x‖

)
≥ 0.61√

n − 1
· ‖A‖ (3.8)

for ‖ · ‖2 and ‖ · ‖F.

Proof. With the singular value decomposition of A = UΣ V T we have

‖Ax‖2 = ‖Σ V Tx‖2 ≥ ‖A‖2

∣∣vT
1 x
∣∣,

where v1 denotes the first column of V . Since x is generic, Theorem 3.5 proves
the result. �
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Geometrically this means that representing the vector x by the base of right
singular vectors vi, the coefficient of v1 corresponding to ‖A‖ is not too small in
magnitude. This observation is also useful in numerical analysis. It offers a simple
way to approximate the spectral norm of a matrix with small computational cost.
Next we are ready for the anticipated result.

Observation 3.8. Let A ∈ F
n×n and 1 ≤ k ∈ N be given, and let {R} be a

collection of matrices Rν ∈ F
n×n, 1 ≤ ν ≤ k. Define

P := flk,1(R · A) =: RA + Δ1,

X := invfl(P ),

{R′} := flk,k(X · R) =: XR + Δ2,

C := min(eps−1, cond(P )).

(3.9)

Assume

‖R‖ ∼ eps−k+1

‖A‖ (3.10)

and

‖RA‖ ∼ 1 (3.11)

and

cond(RA) ∼ epsk−1 cond(A). (3.12)

Then

‖R′‖ ∼ C
eps−k+1

‖A‖ , (3.13)

‖R′A‖ ∼ 1 (3.14)

and

cond(R′A) ∼ epsk−1

C
cond(A). (3.15)

Remark 1. Note that for ill-conditioned P , i.e., cond(P ) � eps−1, we have
C = eps−1, and the estimations (3.13) and (3.15) read

‖R′‖ ∼ eps−k

‖A‖ and cond(R′A) ∼ epsk cond(A).

Remark 2. Furthermore note that RA ∈ R
n×n in (3.11) is the exact product

of R and A. However, we will estimate the effect of rounding when computing this
product in finite precision.

Remark 3. Finally note that R denotes a collection of matrices. We omit
the braces for better readability.
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Argument. First note that (3.10) and the computation of P in k-fold preci-
sion imply

‖Δ1‖ � eps‖RA‖ + epsk‖R‖ · ‖A‖ ∼ eps, (3.16)

where the extra summand eps‖RA‖ stems from the rounding of the product into
a single floating-point matrix. Therefore with (3.11)

‖P‖ ∼ ‖RA‖ ∼ 1.

Hence Observation 3.6 yields

‖X‖ ∼ C

‖P‖ ∼ C and ‖I − XP‖ ∼ Ceps, (3.17)

and with the assumption (3.10) it follows

‖R′‖ ∼ ‖X‖ · ‖R‖ ∼ C
eps−k+1

‖A‖ . (3.18)

Therefore, the computation of R′ in k-fold precision gives

‖Δ2‖ � epsk‖X‖ · ‖R‖ � Ceps

‖A‖ . (3.19)

Putting things together, (3.9), (3.17), (3.16) and (3.19) imply

‖I − R′A‖ = ‖I − XP + XΔ1 − Δ2A‖ � Ceps + Ceps + Ceps ∼ Ceps. (3.20)

The definition of C implies ‖I − R′A‖ � 1, so that (3.14) follows.
To see (3.15) suppose first that P is not extremely ill-conditioned, so that

in view of (3.9) and (3.16) we have C ∼ cond(RA) < eps−1. Then R′A is not far
from the identity matrix by (3.20), which means cond(R′A) ∼ 1 ∼ C−1 cond(RA) ∼
C−1epsk−1 cond(A) using (3.12).

Second, suppose P is extremely ill-conditioned, so that C = eps−1. For that
case we give two arguments for (3.15). In that case (3.13) and (3.14) imply

eps−k/‖A‖ ∼ ‖R′‖ ≤ ‖R′A‖ · ‖A−1‖

and therefore cond(A) � eps−k. Denote the ν-th column of R′ by r′(ν). Then

‖(R′A)−1r′(ν)‖ = ‖A−1eν‖ ∼ ‖A−1‖,

where eν denotes the ν-th column of the identity matrix. We have cond(P ) ∼ eps−1

by Observation 3.4, so that the entries of X differ from those of P−1 in the first
digit. This introduces enough randomness into the coefficients of R′ = flk,k(RA),
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so that Lemma 3.7 is applicable. Using ‖R′‖ ∼ ‖r′(ν)‖, (3.18) and C = eps−1 we
can expect

‖(R′A)−1‖ ∼ ‖A−1‖
‖r′(ν)‖ ∼ epsk · cond(A).

Thus, (3.14) implies (3.15). The second argument uses the fact that by (3.14) R′ is
a preconditioner of A. This means that the singular values of R′ annihilate those
of A, so that accurately we would have σν(R′) ∼ 1/σn+1−ν(A). However, the accu-
racy is limited by the precision epsk of R′ = flk,k(XR). So because σ1(A)/σn(A) =
cond(A) � eps−k, the computed singular values of R′ increase starting with the
smallest σn(R′) = 1/σ1(A) only until eps−k/σ1(A). Note this corresponds to ‖R′‖∼
eps−k/‖A‖ in (3.13). Hence the large singular values of R′A, which are about 1,
are annihilated to 1, but the smallest will be eps−k/σ1(A) · σn(A). Therefore

‖(R′A)−1‖ ∼ 1 · epskσ1(A)/σn(A) = epsk cond(A),

and again using (3.14) finishes the argument. �

Observation 3.9. Algorithm 3.1 ( InvIllCoPrel) will stop for nonsingular
A ∈ F

n×n after some

k ∼ 2 + log10 cond(A)
− log10 eps

steps. For the computed approximate inverse R we can expect

‖I − RA‖ � eps · cond(P (k)) � 0.01.

If an additional iteration is performed, then ‖I − RA‖ ∼ eps.

Remark 4. Basically, the condition number of RA improves by a factor eps
in each iteration. For example, for cond(A) ∼ 10100 and computing in IEEE 754
double precision with eps = 2−53 ∼ 10−16, the algorithm should finish after some
6 or 7 iterations.

Argument. The assumptions (3.10), (3.11) and (3.12) of Observation 3.8 are
obviously satisfied for k = 0. The results follow by an induction argument and a
straightforward computation. �

For the final version of our Algorithm 3.1 (InvIllCoPrel) we introduce two
improvements. First, as has been mentioned before, the floating-point inversion of
P (k) may fail in floating-point. Although this is very rare, we can cure it by a af-
flicting P (k) with a random relative perturbation of size eps|P (k)|. Since P (k) must
be extremely ill-conditioned if the inversion fails, it is clear that such a perturbation
does not change the analysis.

Second, a suitable approximation of the condition number of P (k) is already
at hand with the approximate inverse X(k), namely cond(P (k)) ∼ ‖X(k)‖ · ‖P (k)‖.
Hence the stopping criterion contains only computed quantities.
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For the final Algorithm 3.10 (InvIllCo) the analysis as in Observation 3.9 is
obviously valid as well. In the final version we also overwrite variables. Moreover
we perform a final iteration after the stopping criterion ‖P‖ · ‖X‖ < eps−1/100 is
satisfied to ensure ‖I − RA‖ ∼ eps. Finally, we start with a scalar for R to cover
the case that the floating-point inversion of A fails.

Algorithm 3.10. Inversion of an extremely ill-conditioned matrix, final
version.

function {R} = InvIllCo(A)
R = fl(1/‖A‖); P = X = ∞; k = 0
repeat

finished = (‖P‖ · ‖X‖ < eps−1/100);
k = k + 1
P = flk,1(R · A) % stored in working precision
X = invfl(P ) % floating-point inversion in working precision
while “inversion failed”

P = P + ΔP % relative perturbation ΔP of size eps|P |
X = invfl(P ) % floating-point inversion in working precision

end while
{R} = flk,k(X · R) % stored in k-fold precision

until finished

We mention that in Algorithm AccInv3 in [8] the stopping criterion ‖P − I‖ <

10−3 was used. Moreover, in that algorithm all matrix products were calculated
with faithful rounding using our algorithms in [13, 12]. The same stopping cri-
terion can be used in Algorithm 3.10, however, our criterion avoids one extra
multiplication P = flk,1(R · A).

If the algorithm is used to prove nonsingularity of the matrix A by ‖I−RA‖ <

1, then the error in the computation of ‖P − I‖ has to be estimated. It seems
preferable to use Algorithm 3.10 with computations in k-fold precision and prove
‖I−RA‖ < 1 by computing ‖I−RA‖ with faithful rounding. In that case only one
matrix product has to be computed with faithful rounding. However, the advantage
is marginal since our algorithms to compute a matrix product with faithful rounding
are almost as fast as computation in k-fold precision, sometimes even faster.

4. Computational results

All computational results are performed in Matlab [5] using IEEE 754 [3]
double precision as working precision. Note that this is the only precision used.

The classical example of an ill-conditioned matrix is the Hilbert matrix, the
ij-th component being 1/(i + j − 1). However, due to rounding errors the floating-
point Hilbert matrix is not as ill-conditioned as the original one, in accordance to
Observation 3.4. This can nicely be seen in Fig. 4.1, where the condition number
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Fig. 4.1. Condition number of the true (×) and rounded Hilbert matrices (◦).

of the rounded Hilbert matrices are limited to about eps−1. Therefore we use the
Hilbert matrix scaled by the least common multiple of the denominators, i.e.,

Hn ∈ F
n×n with hij := lcm(1, 2, . . . , 2n − 1)/(i + j − 1).

The largest dimension for which this matrix is exactly representable in double
precision floating-point is n = 21 with cond(H21) = 8.4 · 1029. The results of Algo-
rithm 3.10 are shown in Table 4.1. All results displayed in the following tables are
computed in infinite precision using the symbolic toolbox of Matlab.

Table 4.1. Computational results of Algorithm 3.10 (InvIllCo) for the Hilbert 21 × 21

matrix.

k cond(R) cond(RA) condmult(R ·A) cond(P ) condmult(X ·R) ‖I −R′A‖
1 21.0 8.44 ·1029 2.00 1.67 ·1018 2.06 158
2 7.06 ·1018 8.57 ·1015 9.78 ·1016 8.55 ·1015 7.96 0.06
3 8.49 ·1029 21.0 6.66 ·1030 21.0 2.06 9.03 ·10−16

4 8.44 ·1029 21.0 4.53 ·1046 21.0 2.00 3.32 ·10−16

The meaning of the displayed results is as follows. After the iteration counter
k we display in the second and third column the condition number of R and of
RA, respectively, before entering the k-th loop. So in Table 4.1 the first result
cond(R) = 21.0 is the Frobenius norm condition number of the scaled identity
matrix, which is

√
n ·√n = n. In the following fourth column “condmult(R ·A)” we

display the product condition number of the matrix product R times A (not of the
result of the product). The condition number of a dot product xTy is well-known to
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be cond(xTy) = 2|xT| |y|/|xTy|, where the absolute value is taken componentwise.
Therefore we display

condmult(R · A) = median

{
2
(|R| |A|)ij

|RA|ij

}

with the median taken over all n2 components. It follows the condition number
of P , and similarly condmult(X · R) denotes the condition number of the matrix
product X times R. Finally, the last column shows ‖I −RA‖ as an indicator of the
quality of the preconditioner R.

We mention again that all quantities in the tables are computed with the
symbolic toolbox of Matlab in infinite precision. For larger matrices this requires
quite some computing time.

For better understanding we display the results of a much more ill-conditioned
matrices. The first example is the following matrix A6 with cond(A6) = 6.2 · 1093,
also taken from [10].

A6=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1810371096161830 −2342429902418850 2483279165876947 −3747279334964253 −3262424857701958 −3083142983440029
−4670543938170405 −1397606024304777 60011496034489 1689416277492541 −1500903035774466 3966198838365752
−1064600276464066 −7561599142730362 4805299117903646 −6663945806445749 −7071076225762059 −52156788818356
13002500911063530 2223055422646289 −1553584081743862 −5252100317685933 7524433713832350 −6396043249912008
−395183142691090 −2180846347388541 1450541682835654 −3629498209925700 −1866168768872108 1230298410784196
2337744233608461 1359019382927754 1241733688092475 1803080888028433 −2648685047371017 −7046414836143443

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Then ‖invfl(A6)‖ = 12.4 for the floating-point approximate inverse of A6,
whereas ‖A−1

6 ‖ = 2.4 · 1077 for the true inverse of A6. So the approximate inverse
and the true inverse differ by about 76 orders of magnitude. Nevertheless there
is enough information hidden in the approximate inverse to serve as a reasonable
preconditioner so that cond(RA) is about eps times cond(A).

The computational results of Algorithm 3.10 (InvIllCo) for the matrix A6

are displayed in Table 4.2. Let us interpret them. As expected (see (3.13)) the
condition number of R increases in every step by about a factor eps−1 up to about
the final condition number of the input matrix A6. According to (3.12) the condition
number of RA decreases in each step by a factor eps down to about 1 in the last
iteration. The quality of R as a preconditioner becomes better and better, and thus
the product condition number of the matrix product R ·A must increase. This also
shows why it is mandatory to calculate this product in k-fold precision.

The result of the product R · A computed in k-fold precision is rounded into
working precision, into the matrix P . The smoothing effect of rounding as explained
in Observation 3.4 limits the condition number of P to about eps−1, as is seen in
the fifth column of Table 4.2. The product condition number of the matrix product
X · R stays close to 1, but nevertheless it is mandatory to compute the product
R = flk,k(X · R) with increasing number of results to achieve the intended quality
of the preconditioner R.

We note that for k = 2 and for k = 3 the floating-point inversion failed so that
P had to be slightly perturbed. Obviously this is not visible in Table 4.2.
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Table 4.2. Computational results of Algorithm 3.10 (InvIllCo) for the matrix A6.

k cond(R) cond(RA) condmult(R ·A) cond(P ) condmult(X ·R) ‖I −R′A‖
1 6.00 6.21 ·1093 2.00 9.90 ·1017 11.1 37.4
2 4.55 ·1018 5.15 ·1079 4.56 ·1016 2.16 ·1018 162 7.88
3 2.19 ·1031 1.46 ·1064 6.98 ·1030 3.39 ·1018 3.85 9.54
4 1.87 ·1047 4.13 ·1048 2.37 ·1046 1.24 ·1017 9.06 4.71
5 6.42 ·1062 3.41 ·1032 1.08 ·1062 1.99 ·1020 2.08 6.26
6 2.18 ·1079 9.95 ·1015 5.51 ·1078 9.91 ·1015 2.16 0.98
7 7.00 ·1093 6.78 1.42 ·1094 6.78 2.89 2.02 ·10−16

Finally we observe the quality of R as a preconditioner. In all iterations but
the last one the norm of I − RA is about 1 in agreement with (3.14). In the final
iteration, ‖I − RA‖ becomes about eps, which is best possible.

The results for the Hilbert 21× 21-matrix as displayed in Table 4.1 are very
similar. For comparison we display the behavior of the modified algorithm as
considered in [9] for H21. The artificial, relative perturbation of size √

eps of
P reduces the improvement of R as a preconditioner to a factor

√
eps rather than

eps. This can be nicely observed in Table 4.3.

Table 4.3. Computational results of the modified algorithm [9] for the Hilbert 21× 21

matrix.

k cond(R) cond(RA) condmult(R ·A) cond(P ) condmult(X ·R) ‖I −R′A‖
1 21.0 8.44 ·1029 2.00 1.65 ·1010 6.77 10.1
2 1.65 ·1010 7.90 ·1021 1.95 ·109 3.00 ·1010 5.79 53.3
3 4.10 ·1018 8.40 ·1014 1.42 ·1017 9.10 ·1010 2.27 91.3
4 1.29 ·1026 5.47 ·107 2.83 ·1024 5.47 ·107 4.19 0.01
5 8.44 ·1029 21.0 1.86 ·1032 21.0 2.00 3.73 ·10−8

6 8.44 ·1029 21.0 2.17 ·1040 21.0 2.00 3.61 ·10−8

7 8.44 ·1029 21.0 3.76 ·1048 21.0 2.00 3.17 ·10−8

For clarity we display in Table 4.3 the results for the following iterations after
‖I − RA‖ is already of the order √

eps. As can be seen cond(R) does not increase
for k > 5 because R is already very close to the true inverse of A. Nevertheless
the off-diagonal elements of RA are better and better approximations of zero, so
that the condition number condmult(R ·A) of the product R times A still increases
with k. Note that due to the artificial perturbation of P the norm of the residual
‖I − RA‖ does not decrease below √

eps.
Finally we will show some results for a truly extremely ill-conditioned matrix.

It is not that easy to construct such matrices which are exactly representable in
floating-point. In [10] an algorithm is presented to construct such matrices in an
arbitrary floating-point format.1 The matrix A4 in (1.2) and A6 are produced by

1Recently Prof. Tetsuo Nishi from Waseda University presented a refined discussion of this
approach at the international workshop INVA08 at Okinawa in March 2008, and at the NOLTA
conference in Budapest in 2008, cf. [6].
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this algorithm. It is included as Algorithm “randmat.m” in INTLAB [11], the
Matlab toolbox for reliable computing.

Using Algorithm “randmat.m” we generated a 50 × 50 matrix with condition
number cond(A) = 7.4 · 10305. The results of Algorithm 3.10 (InvIllCo) for this
matrix are displayed in Table 4.4. Our algorithm easily allows much larger dimen-
sions, however, the symbolic computation of the results in Table 4.4 took about a
day on a Laptop.

Table 4.4. Computational results of Algorithm 3.10 (InvIllCo) for a 50×50 matrix with
condition number 1.14 · 10305.

k cond(R) cond(RA) condmult(R ·A) cond(P ) condmult(X ·R) ‖I −R′A‖
1 50.0 7.36 ·10305 2.00 4.59 ·1018 7.72 30.7
2 3.25 ·1018 1.39 ·10291 2.94 ·1016 1.39 ·10291 62.3 106
3 2.60 ·1033 8.89 ·10276 9.07 ·1030 5.14 ·1023 68.2 65.5
4 6.40 ·1047 1.58 ·10263 1.38 ·1045 8.86 ·1018 138 121
5 1.29 ·1063 5.26 ·10249 1.81 ·1059 3.47 ·1018 669 36.7
6 9.16 ·1074 1.23 ·10235 4.36 ·1072 1.43 ·1018 48.9 5.32
7 8.62 ·1087 3.85 ·10219 1.44 ·1087 9.97 ·1017 4.93 35.7
8 3.04 ·10105 9.30 ·10206 4.47 ·10102 9.92 ·1017 2.79 ·103 8.53
9 1.47 ·10116 1.37 ·10192 3.87 ·10115 4.59 ·1017 20.9 23.5
10 1.68 ·10131 2.17 ·10177 2.20 ·10130 4.81 ·1017 16.8 4.54
11 6.19 ·10145 7.42 ·10161 5.67 ·10145 4.28 ·1017 6.51 3.63
12 1.03 ·10161 1.95 ·10146 7.34 ·10160 1.58 ·1018 3.67 5.83
13 5.99 ·10176 5.79 ·10130 4.46 ·10176 9.72 ·1017 3.86 5.44
14 2.28 ·10192 1.43 ·10115 3.31 ·10192 3.33 ·1017 5.31 8.04
15 1.05 ·10208 5.27 ·1099 1.41 ·10208 9.76 ·1017 9.31 152
16 5.55 ·10224 1.07 ·1086 2.22 ·10223 4.93 ·1018 225 28.2
17 3.57 ·10238 8.91 ·1070 2.39 ·10237 3.36 ·1018 19.0 10.1
18 2.75 ·10252 7.20 ·1055 3.68 ·10252 4.54 ·1017 11.8 7.18
19 1.91 ·10267 2.08 ·1040 3.54 ·10267 2.39 ·1018 4.32 21.7
20 1.48 ·10283 2.45 ·1025 8.92 ·10282 3.18 ·1018 13.0 7.80
21 1.24 ·10298 4.55 ·109 2.23 ·10298 4.55 ·109 8.53 1.58 ·10−7

22 7.36 ·10305 50.0 Inf 50.0 2.00 5.64 ·10−16

We can nicely observe how the condition number of R as well as condmult(R·A)
increase in each step by a factor eps−1, and eventually ‖I − RA‖ becomes less
than 1 after some 22 iterations. Note that we expect this to happen after about
305/16� + 1 = 21 iterations. The condition number cond(A) = 7.4 · 10305 of the
matrix is close to the overflow range, the largest floating-point number in double
precision is 1.8 · 10308.

Note in particular that for k = 2 we have the exceptional value cond(P ) =
1.39 · 10291 ≈ cond(RA). This may happen accidentally, but obviously it does not
influence the general behavior of the iteration.
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In the last iteration condmult(R ·A) causes already overflow. In this particular
example the artificial relative perturbation of P in Algorithm 3.10 (InvIllCo) by
about eps was not necessary.

Finally we note a question posed by Prof. Kunio Tanabe from Waseda Uni-
versity about the distribution of singular values of the generated, extremely ill-
conditioned matrices and the possible effect on the performance of our algorithm.
Indeed it is likely that for matrices generated by the method in [10] the singular
values σ1 to σn−1 are close to ‖A‖, whereas σn is extremely small.

However, our analysis showed no relevance of this to our algorithm. Fortunate-
ly we may enter a sum of matrices

∑
Ai into Algorithm 3.10 (InvIllCo) to check

on this. We choose the original Hilbert matrix with hij := 1/(i+ j − 1) and approx-
imate the individual entries by several floating-point numbers. As is well known,
the singular values of the Hilbert matrix cover the interval [σn, σ1] linearly on a
logarithmic scale.

As an example we show the result of the Hilbert 50 × 50 matrix stored as a
sum of 5 matrices. As can be seen in Table 4.5 the computational behavior of
Algorithm 3.10 (InvIllCo) is quite similar to the previous examples.

Table 4.5. Computational results of Algorithm 3.10 (InvIllCo) for the Hilbert 50 × 50

matrix stored as the sum of 5 matrices.

k cond(R) cond(RA) condmult(R ·A) cond(P ) condmult(X ·R) ‖I −R′A‖
1 50.0 1.50 ·1074 2.00 1.03 ·1019 5.25 89.7
2 7.17 ·1018 3.35 ·1059 1.85 ·1017 2.03 ·1019 12.6 874
3 7.00 ·1034 8.03 ·1046 6.61 ·1031 2.65 ·1020 8.57 345
4 1.34 ·1048 8.85 ·1032 4.28 ·1045 5.35 ·1019 19.9 33.4
5 7.81 ·1060 1.54 ·1018 1.34 ·1059 1.99 ·1018 22.8 6.76
6 2.64 ·1073 417 2.71 ·1072 417 7.24 2.02 ·10−14

7 1.50 ·1074 50.0 7.24 ·1087 50.0 2.00 4.76 ·10−16

Appendix.

In the following we present auxiliary results, proofs and arguments for some
results of the previous section.

Proof of Lemma 3.2. We have

E(‖x‖2) =
∫ dn

−dn

· · ·
∫ d1

−d1

‖x‖2 dx1 · · · dxn

/
n∏

i=1

(2di) =: I

/
n∏

i=1

di,

where

I :=
∫ dn

0

· · ·
∫ d1

0

‖x‖2 dx1 · · · dxn.
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Now
√

n · ‖x‖2 ≥ ‖x‖1, so x ≥ 0 implies

√
n · I ≥

∫ dn

0

· · ·
∫ d1

0

n∑
i=1

xi dx1 · · · dxn =
1
2

(
n∏

i=1

di

)(
n∑

i=1

di

)

and therefore the left inequality in (3.2). Moreover,

∫ c

0

√
x2 + a dx ≤ c

√
c2 + a for a, c ≥ 0,

so

I ≤ d1

∫ dn

0

· · ·
∫ d2

0

(
d2
1 +

n∑
i=2

x2
i

)1/2

dx2 · · · dxn ≤ · · · ≤
(

n∏
i=1

di

)
· ‖d‖2.

The proof is finished. �

The surface S(n) of the n-dimensional unit sphere satisfies S(n) = 2πn/2/

Γ (n/2). Recall the Gamma function defined by Γ (x) =
∫∞
0

tx−1e−t dt interpolates
the factorial by (n − 1)! = Γ (n). To prove Theorem 3.5 we need to estimate the
surface of a cap of the sphere. For this we need the following lemma.

Lemma A.1. For x > 1 we have

1√
x − 1/2

<
Γ (x − 1/2)

Γ (x)
<

1√
x − 1

.

Proof. The function Γ (x−1/2)/Γ (x) is monotonically decreasing for x > 0.5,
so it follows

1
x − 1/2

=
Γ (x − 1/2)
Γ (x + 1/2)

=
Γ (x − 1/2)

Γ (x)
· Γ (x)
Γ (x + 1/2)

<

(
Γ (x − 1/2)

Γ (x)

)2

<
Γ (x − 1/2)

Γ (x)
· Γ (x − 1)
Γ (x − 1/2)

=
1

x − 1
. �

Proof of Theorem 3.5. Denote by On(Φ) the surface of the cap of the
n-dimensional unit sphere with opening angle Φ, see Fig. A.1. Then

On(Φ) = 2On−1(π/2) ·
∫ Φ

0

sinn−2 ϕdϕ (A.1)

and

On(π/2) =
πn/2

Γ (n/2)
, (A.2)
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Fig. A.1.

the latter denoting half of the surface of the n-dimensional sphere. The expected
value of |xTy|= |cos �(x, y)| satisfies E(|xTy|)=cos Φ̂ for the angle 0< Φ̂ <π/2 with

On(Φ̂) =
1
2
On(π/2). (A.3)

Now

On(Φ1) ≥ 1
2
On(π/2) ≥ On(Φ2) ⇐⇒ cosΦ1 ≤ E(|xTy|) ≤ cosΦ2. (A.4)

We will identify such angles Φ1 and Φ2 to obtain bounds for Φ̂. Define

R :=
1
2

On(π/2)
On−1(π/2)

. (A.5)

Then

R =
√

π

2
Γ (n/2 − 1/2)

Γ (n/2)
=
∫ π/2

0

sinn−2 ϕdϕ (A.6)

by (A.2) and (A.1), so that

∫ Φ

0

sink ϕdϕ =
∫ π/2

0

sink ϕdϕ −
∫ π/2−Φ

0

cosk ϕdϕ (A.7)

and 1 − ϕ2/2 ≤ cos ϕ ≤ 1 for 0 ≤ ϕ ≤ π/2 and (A.6) yield

R − α ≤
∫ Φ

0

sinn−2 ϕdϕ ≤ R − α

(
1 − (n − 2)α2

6

)
(A.8)

with α := π/2 − Φ. Set

Φ1 :=
π

2
−

√
π

4
· 1√

n/2 − 1/2
. (A.9)

Then Lemma A.1 and (A.6) give

π

2
− Φ1 ≤

√
π

4
Γ (n/2 − 1/2)

Γ (n/2)
=

1
2
R, (A.10)
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and using (A.1), (A.8), (A.10) and (A.5) we see On(Φ1) ≥ 2On−1(π/2)·(R− 1
2R
)

=
1
2On(π/2). Hence (A.4) implies for n ≥ 4,

E(|xTy|) ≥ cosΦ1 = sin
√

2π

4
√

n − 1
=: sin β > β(1 − β2/6) >

0.61√
n − 1

.

This proves the first inequality in (3.5). To see the second one define

Φ2 := π/2 − γ

√
2π

4
√

n − 2
with γ := 1.084.

Then π
48γ3 − γ + 1 < 0 implies

γ−1 < 1 − n − 2
6

· π

16
· 2
n − 2

γ2

and
√

2π

4
√

n − 2
= δ · γ−1 < δ

(
1 − n − 2

6
δ2

)
for δ := γ

√
2π

4
√

n − 2
= π/2 − Φ2.

Hence (A.6) and Lemma A.1 give

1
2
R =

√
π

4
Γ (n/2 − 1/2)

Γ (n/2)
<

√
π

4
√

n/2 − 1
< δ

(
1 − n − 2

6
δ2

)
,

so that with (A.1), (A.8) and (A.5) we have

On(Φ2) ≤ 2On−1(π/2) ·
(

R − 1
2
R

)
=

1
2
On(π/2).

Thus (A.4) yields

E(|xTy|) ≤ cosΦ2 = sin
γ
√

2π

4
√

n − 2
≤ 0.68√

n − 2
.

The theorem is proved.

Next we come to the Observation 3.4. We give two different arguments. Let
A ∈ R

n×n be generic on the variety S of singular n×n-matrices. Then the normal
vector N to S in A is well-defined. The situation is as in Fig. A.2, where Ã := fl(A).
Assuming S to be locally linear, the distance d := min{‖Ã − B‖F : det B = 0} of
Ã to the nearest singular matrix satisfies

d = ‖Ã−1‖−1
F = ‖Ã − A‖F · cos ϕ (A.11)
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Fig. A.2. Distance of fl(A) to the nearest singular matrix.

since ‖ · ‖F is unitarily invariant. Accepting that Ã is generic to S we use Theo-
rem 3.5 to see

0.61√
n2 − 1

≤ E(cos ϕ) ≤ 0.68√
n2 − 2

.

Then (A.11) and Corollary 3.3 show (3.4).
For the second argument, let u and v denote a left and right singular vector

of A to the singular value σn(A) = 0, respectively. Note that σn−1(A) > 0 for
generic A. Denote Ã = fl(A) = A+E. First-order perturbation theory for singular
values tells

|σn(A + E) − σn(A)| = |uTEv| + O(eps).

Assuming E and v are general to each other, Lemma 3.7 gives

‖Ev‖ ≥ 0.61√
n − 1

‖E‖.

For simplicity we assume the entries of A to be of similar magnitude. Then we
can expect ‖E‖ ∼ eps‖A‖F by Corollary 3.3. Assuming Ev is general to u we may
apply Theorem 3.5 to see

|uTEv| ≥ 0.61√
n − 1

‖Ev‖ ∼ 0.4eps
n

‖A‖F.

Since σn(A) = 0, σn(A+E) ≈ |uTEv| is the distance δ = ‖Ã−1‖−1
2 of A+E to the

nearest singular matrix in the spectral norm. Hence

condF(Ã) = δ−1‖Ã‖F ∼ 5neps−1.

The following is executable Matlab-code for Algorithm 3.10 (InvIllCo). The
routines TwoSum, VecSum, Split and TwoProduct are listed in [7]. The code
for ProdKL is straightforward transforming dot products into sums and applying
SumKL. All routines are included in INTLAB [11], the Matlab toolbox for reliable
computing.
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Algorithm A.2. Executable Matlab code for Algorithm 3.10 ( InvIllCo).
function R = invillco(A)

% Inversion of extremely ill-conditioned matrices by Rump’s algorithm.

% The result R is stored in matrices R_1,...,R_k

%

n = size(A,1);

R = eye(n)/norm(A,’fro’);

X = inf; P = inf; k = 0;

while 1

k = k+1;

finished = ( norm(X,’fro’)*norm(X,’fro’)<.01/eps );

P = ProdKL(R,A,k,1);

X = inv(P);

while any(any(isinf(X)))

disp(’perturbation of P’)

X = inv(P.*(1+eps*randn(n)));

end

R = ProdKL(X,R,k,k);

if finished, break, end

end

%

function res = SumKL(p,K,L)

% Sum(p_i) in approximately K-fold precision stored in L elements

%

% Adaptation of SumK in

% T. Ogita, S.M. Rump, S. Oishi: Accurate Sum and Dot Product,

% SIAM Journal on Scientific Computing (SISC), 26(6):1955-1988, 2005

% to L outputs.

%

n = length(p); res = zeros(1,L);

for i=1:K-L

p = VecSum(p);

end

for k=0:L-2

p = VecSum(p(1:n-k));

res(k+1) = p(n-k);

end

res(L) = sum(p(1:n-L+1));
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