
published in BIT Numerical Mathematics, 46:433–452, 2006

VERIFICATION OF POSITIVE DEFINITENESS ∗

S.M. RUMP

Institute for Reliable Computing, Hamburg University of Technology,

Schwarzenbergstr. 95, 21071 Hamburg, Germany,

and Waseda University, Faculty of Science and Engineering,

2-4-12 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan.

email: rump@tu-harburg.de

Abstract. We present a computational, simple and fast sufficient criterion to verify positive definiteness of a symmetric

or Hermitian matrix. The criterion uses only standard floating-point operations in rounding to nearest, it is rigorous, it takes

into account all possible computational and rounding errors, and is also valid in the presence of underflow. It is based on

a floating-point Cholesky decomposition and improves a known result. Using the criterion an efficient algorithm to compute

rigorous error bounds for the solution of linear systems with symmetric positive definite matrix follows. A computational

criterion to verify that a given symmetric or Hermitian matrix is not positive definite is given as well. Computational examples

demonstrate the effectiveness of our criteria.

Keywords and phrases. Positive definite, verification, self-validating methods, Cholesky decomposition, rigorous error

bounds, INTLAB, semidefinite programming

AMS subject classification (2000). 65G20, 15A18

1. Introduction and notation. The aim of this paper is to derive a fast and rigorous criterion to
prove positive semidefiniteness of a symmetric or Hermitian matrix. The method is applicable to large,
sparse matrices. It includes the case where X is an interval matrix, in which case positive semidefiniteness
is proved for all symmetric (Hermitian) X̃ ∈ X. A computable criterion to prove that a symmetric or
Hermitian matrix is not positive definite is given as well. The well known book on deterministic global
optimization by Floudas devotes a chapter to the computation of lower bounds for the smallest eigenvalue
of all (symmetric) matrices Ã within an interval matrix [5, Chapter 12.4]. Our method is based on a single
floating-point Cholesky decomposition.

The problem of verifying positive semidefiniteness of a singular positive semidefinite matrix is ill-posed: An
arbitrarily small change in the input data can change the answer from yes to no. Therefore we verify positive
definiteness rather than positive semidefiniteness. This is a principle of so-called self-validating methods
(see [10] or Volume 324 of Linear Algebra and its Applications (LAA), which is devoted to self-validating
methods).

There are various applications of verifying positive definiteness, for example in semidefinite programming
problems [5]. Denote by Mn(IK), IK ∈ {IR, C} the set of n× n matrices over IK. A standard formulation of
a semidefinite programming problem is

minimize 〈C,X〉 for 〈Ai, X〉 = bi, 1 ≤ i ≤ m and X º 0,

where 〈C, X〉 := trace(CT X), and X º 0 means that the (symmetric or Hermitian) matrix X is positive
semidefinite. To check feasibility of some X∗ = X ∈ Mn(IK), we have to verify positive semidefiniteness of
X, i.e. x∗Xx ≥ 0 for all x ∈ IKn.

Another application of our criterion is the computation of verified error bounds for large, sparse linear
systems. The apparently only known effective method for that [10] relies on the verification of positive
definiteness of a certain matrix.

Our method is based on standard IEEE 754 floating-point arithmetic with rounding to nearest. The main
computational effort is one floating-point Cholesky decomposition. A major advantage of the method is that
any library routine can be used. We extend and improve a result in [12] (see also [3, 6]). Moreover, we allow

∗Received 02.01.2005 Revised 27.01.2005 Communicated by Per Christian Hansen

1

2 SIEGFRIED M. RUMP

underflow so that our criterion is rigorous under all circumstances: provided the hardware and software work
to their specifications, our criterion is like a mathematical proof.

We use standard notation for rounding error analysis [6]. For example, fl(·) is the result of the expression
within the parenthesis computed in rounding to nearest. Denote by IF (IF + iIF) the set of real (complex)
floating-point numbers with relative rounding error unit eps and underflow unit eta . In case of IEEE 754
double precision, eps = 2−53 and eta = 2−1074. Then

a, b ∈ IF : fl(a ◦ b) = a ◦ b(1 + ε1) for ◦ ∈ {+,−}, |ε1| ≤ eps

a, b ∈ IF : fl(a ◦ b) = a ◦ b(1 + ε2) + η2 for ◦ ∈ {·, /}, |ε2| ≤ eps , |η2| ≤ eta ,

ε2η2 = 0
0 ≤ a ∈ IF : fl(a1/2) = a1/2(1 + ε3) |ε3| ≤ eps

x, y ∈ IF + iIF : fl(x± y) = (x± y)(1 + ε4) |ε4| ≤ eps

x, y ∈ IF + iIF : fl(x · y) = xy(1 + ε5) + η5, |ε5| ≤
√

2γ2, |η5| ≤ 2
√

2eta
x ∈ IF + iIF : fl(x∗x) = x∗x · (1 + ε6) + η6, |ε6| ≤ γ2, |η6| ≤ 2eta
x ∈ IF + iIF, b ∈ IF : fl(x/b) = x/b · (1 + ε7) + η7, |ε7| ≤ eps , |η7| ≤

√
2eta

(1.1)

where, as usual,

γk :=
keps

1− keps
for k ≥ 0. (1.2)

Here x∗ denotes the complex conjugate of x. Most of the properties are proved in [6, (2.4) and Lemma
3.5], the others follow easily. In a recent paper [1] it is shown that

√
2γ2 for complex multiplication can be

replaced by
√

5eps which is essentially sharp. Note that no underflow correction is necessary for addition
and subtraction. We will use well known properties of γk such as mγk ≤ γmk. All our estimations will hold
no matter what the order of evaluation.

We add a special remark to today’s computers and architectures. When computing in double precision
on a PC, intermediate results may be stored in extended precision depending on the setting of the control
word. For example, the imaginary part of x∗x for complex x = a + ib ∈ IF + iIF might be computed by the
statements Im=a*b; Im=Im-b*a. If the first result Im=a*b is stored in double, but the intermediate result
b*a accumulated in extended precision, then the imaginary part may be nonzero. To avoid such phenomena
we assume throughout the paper that all floating-point results are computed and stored in one working
precision, for example double precision.

2. Error estimation. Suppose AT = A ∈ Mn(IF) or A∗ = A ∈ Mn(IF + iIF). Up to different order of
execution every variant of the Cholesky decomposition R∗R = A follows the scheme [6, Algorithm 10.2]:

for j = 1 : n

for i = 1 : j − 1
rij = (aij −

∑i−1
k=1 r∗kirkj)/rii

end
rjj = (ajj −

∑j−1
k=1 r∗kjrkj)1/2

end

(2.1)

as implied by solving R∗R = A for rij . Note that R is upper triangular. We say the decomposition “runs to
completion” if all square roots are real. For the analysis of floating-point Cholesky decomposition we extend
and improve the analysis in [3] to complex matrices and to include underflow. To obtain “nice” constants,
we first extend the standard result [6, Lemma 8.4] to complex data and improve it for real data.

Lemma 2.1. For floating-point quantities ai, bi and c, where bk is real, let

ỹ = fl((c−
k−1∑

i=1

aibi)/bk). (2.2)

Assume γk+1 ≤ 1. Then, no matter what the order of evaluation and allowing underflow,

|c−
k−1∑

i=1

aibi − bkỹ| < γp

(
k−1∑

i=1

|aibi|+ |bkỹ|
)

+ 3eta (2k + |bk|),

VERIFICATION OF POSITIVE DEFINITENESS 3

where p = k for real data and p = k + 1 for complex data.

Remark. Note that we will prove (2.5) which implies

|c−
k−1∑

i=1

aibi − bkỹ| ≤ γk−1

k−1∑

i=1

|aibi|+ γk|bkỹ| (2.3)

for real ai, bi if no underflow occurs. This is slightly better than the famous Lemma 8.4 in [6] and is needed
to obtain “nice” constants in Theorem 2.3.

Proof. We use the standard scheme in [6, Lemma 8.4]. We first analyze the numerator in (2.2) and denote

s̃ = fl(c−
k−1∑

i=1

aibi).

The sum consists of k terms, the 0-th term t0 := c and the i-th term ti := −fl(aibi) = −(aibi(1 + εi) + ηi)
for 1 ≤ i ≤ k− 1, where |εi| ≤ eps , |ηi| ≤ eta for real ai, bi, and |εi| ≤ γ3, |ηi| ≤ 2

√
2eta for complex ai, bi.

Let π : {0, . . . , k − 1} → {0, . . . , k − 1} be the permutation of terms such that s̃ is actually computed by

s̃ = tπ(0)

for i = 1 : k − 1
s̃ = fl(s̃ + tπ(i))

end

Then

s̃ =
k−1∑

i=0

Φπ(i)tπ(i) with Φπ(0) = Φπ(1) = 1 + δπ(1) and Φπ(i) =
i∏

ν=1

(1 + δπ(ν)) for i > 1,

where |δν | ≤ eps for real and complex ai, bi. Note that each Φπ(i) consists of at least one and of at most
k − 1 factors 1 + δπ(ν). Let t0 = c be the m-th term tπ(m) in the computation of s̃, then 0 ≤ m ≤ k − 1 and

s̃

Φπ(m)
= c +

∑k−1
i=0
i6=m

Φπ(i)

Φπ(m)
tπ(i)

= c +
∑m−1

i=0

∏m
ν=max(2,i+1) (1 + δπ(ν))−1tπ(i) +

∑k−1
i=m+1

∏i
ν=max(2,m+1) (1 + δπ(ν))tπ(i) .

This implies

s̃(1 + Θk−1) = c +
k−1∑

i=1

(1 + Θ(i)
k−2)ti (2.4)

for real and for complex data, where |Θk−1| ≤ γk−1 and |Θ(i)
k−2| ≤ γk−2. Furthermore,

ỹ = fl(s̃/bk) = s̃/bk · (1 + εk) + ηk ,

where |εk| ≤ eps , |ηk| ≤ eta for real ai, bi, and, because bk is real, |εk| ≤ eps , |ηk| ≤
√

2eta for complex
ai, bi. Hence

ỹbk(1 + Θk−1)
1 + εk

= c−
k−1∑

i=1

(1 + Θ(i)
k−2)(aibi(1 + εi) + ηi) +

bkηk(1 + Θk−1)
1 + εk

. (2.5)

This implies the result for real ai, bi and for complex ai, bi . ¥

Lemma 2.2. For ai ∈ IF + iIF, c ∈ IF assume γk+1 < 1 and let

s̃ = fl(c−
k−1∑

i=1

a∗i ai) ≥ 0 and ỹ = fl(s̃1/2).

4 SIEGFRIED M. RUMP

Then, also in the presence of underflow,

|c−
k−1∑

i=1

a∗i ai − ỹ2| < γk+1

(
k−1∑

i=1

a∗i ai + ỹ2

)
+ 4keta

and

ỹ2 +
k−1∑

i=1

a∗i ai ≤ (1− γk+1)−1c.

Proof. Note that fl(a∗i ai) is real because real floating-point multiplication is commutative, and

fl(a∗i ai) = fl((Re ai)2 + (Im ai)2) = a∗i ai(1 + εi) + ηi ≥ 0 (2.6)

with |εi| ≤ γ2, |ηi| ≤ 2eta for real and for complex ai. We proceed similarly as before with aibi = a∗i ai, so
that

ỹ = fl(s̃1/2) = s̃1/2(1 + ε), |ε| ≤ eps

implies

ỹ2 = s̃(1 + Θ2) with |Θ2| ≤ γ2

for real and complex ai and s̃ as in (2.4). Now (2.6) implies ηi ≥ 0, with or without underflow. Inserting in
(2.4) yields

ỹ2(1 + Θk−1)
1 + Θ2

= c−
k−1∑

i=1

(1 + Θ(i)
k−2)(a

∗
i ai(1 + εi) + ηi) ,

or

ỹ2(1 + Θk+1) = c− (1 + Θk)
k−1∑

i=1

a∗i ai − η with 0 ≤ η ≤ 2(k − 1)(1 + γk)eta

and |Θk+1| ≤ γk+1, |Θk| ≤ γk. This implies the first inequality. Moreover η ≥ 0 yields

ỹ2 +
k−1∑

i=1

a∗i ai ≤ c + γk+1(ỹ2 +
k−1∑

i=1

a∗i ai),

and the result follows. ¥

Now let real AT = A ∈ Mn(IF) or complex A∗ = A ∈ Mn(IF + iIF) be given, and assume the Cholesky
decomposition (2.1) executed in floating-point runs to completion. This implies ajj ≥ 0 and r̃jj ≥ 0. Note
that we do not assume A to be positive semidefinite and that underflow may occur. Then we can derive the
following improved lower bound for the smallest eigenvalue of A.

Theorem 2.3. Let AT = A ∈ Mn(IF) or A∗ = A ∈ Mn(IF + iIF) be given. Denote the symbolic Cholesky
factor of A by R̂. For 1 ≤ i, j ≤ n define

s(i, j) := |{k ∈ IN : 1 ≤ k < min(i, j) and r̂kir̂kj 6= 0}|

and denote

αij :=

{
γs(i,j)+2 if s(i, j) 6= 0
0 otherwise.

Suppose αjj < 1 for all j. With

dj := ((1− αjj)−1ajj)1/2 and M := 3(2n + max aνν)

define

0 ≤ ∆(A) ∈ Mn(IR) by ∆(A)ij := αijdidj + Meta .

VERIFICATION OF POSITIVE DEFINITENESS 5

Then, if the floating-point Cholesky decomposition of A runs to completion, the smallest eigenvalue λmin(A)
of A satisfies

λmin(A) > −‖∆(A)‖2.

Remark 1. Note that s(i, j) is an upper bound on the number of nontrivial multiplications in (2.1) to
compute rij . An obvious upper bound is s(i, j) ≤ min(i, j)− 1.

Remark 2. The matrix ∆(A) and therefore the lower bound for the smallest eigenvalue of A depends only
on the diagonal elements and the sparsity pattern of A. If A is positive definite, then the nonnegative matrix
∆(A) has the same sparsity pattern as the Cholesky factor of A (ignoring zeros by cancelation).

Remark 3. The matrix ∆(A) is nonnegative and symmetric, so ‖∆(A)‖ = %(∆(A)), that is the spectral
radius and Perron root of ∆(A) coincide.

Remark 4. If floating-point Cholesky runs to completion, then ajj ≥ 0 and dj is real.

Proof. Suppose the floating-point Cholesky factorization of A runs to completion, denote the computed
Cholesky factor by R̃ and its j-th column by r̃j . Then r̃jj ≥ 0, and Lemma 2.2 and (2.1) imply

‖r̃j‖22 ≤ (1− αjj)−1ajj = dj
2 . (2.7)

Define δA := A− R̃∗R̃. Then (2.1), the symmetry of δA and Lemma 2.1 imply

|δaij | < αij |r̃∗i | |r̃j |+ 3eta (2n + max r̃νν) for i 6= j (2.8)

for real A and for complex A, and by Lemma 2.2 this is also true for i = j. So (2.7), (2.8) and (2.1) yield

|δaij | < αij‖r̃i‖2‖r̃j‖2 + 3eta (2n + max aνν) ≤ αijdidj + Meta = ∆(A)ij for all i, j. (2.9)

The matrix R̃∗R̃ is positive semidefinite and the eigenvalues of A and A − δA differ at most by ‖δA‖2 ≤
‖ |δA| ‖2 ≤ ‖∆(A)‖2 by applying Perron-Frobenius Theory to the nonnegative matrices |δA| ≤ ∆A. The
theorem is proved. ¥

With this result we can establish the following rigorous test on positive definiteness. The test can be executed
in pure floating-point; to simplify matter we first use floating-point subtraction with rounding downwards.

Corollary 2.4. With the notations of Theorem 2.3 assume ‖∆(A)‖2 ≤ c ∈ IF. Let Ã ∈ IFn×n be given
with ãij = aij for i 6= j and ãii ≤ aii − c for all i. If the floating-point Cholesky decomposition applied to Ã

runs to completion, then A is positive definite.

Proof. The floating-point Cholesky decomposition of Ã runs to completion, so 0 ≤ ãii ≤ aii for all i. The
symmetric matrix ∆(A) in Theorem 2.3 depends only on the nonzero pattern and the diagonal of A, so
0 ≤ ∆(Ã) ≤ ∆(A) and Perron-Frobenius Theory yield

‖∆(Ã)‖2 = %(∆(Ã)) ≤ %(∆(A)) = ‖∆(A)‖2 ≤ c.

By assumption, Ã = A− cI −D with diagonal D ≥ 0. Hence Theorem 2.3 proves

λmin(A) = c + λmin(A− cI) = c + λmin(Ã + D) ≥ c + λmin(Ã) > c− ‖∆(Ã)‖2 ≥ 0.

because Ã is symmetric. ¥

One way to obtain suitable Ã is directed rounding, which is available in INTLAB [11], the Matlab toolbox
for verified computations. With little effort we can avoid this as shown by the following lemma. The proof
uses the fact that fl(a ± b) = a ± b for |a ± b| ≤ eps−1eta , and (1.1) otherwise. Note that 1

2eps
−1eta is

the smallest positive normalized floating-point number.

Lemma 2.5. Let a, b ∈ IF and c = fl(a ◦ b) for ◦ ∈ {+,−}. Define ϕ := eps (1 + 2eps) ∈ IF. Then

fl(c− ϕ|c|) ≤ a ◦ b ≤ fl(c + ϕ|c|). (2.10)

6 SIEGFRIED M. RUMP

Hence, we can define Ã by

ãij :=





fl(d− ϕ|d|) with d := fl(aii − c) if i = j

aij otherwise,
(2.11)

where ϕ := eps (1 + 2eps) ∈ IF.

We can use the results to prove that all symmetric (Hermitian) matrices within a real (complex) interval
matrix are positive definite. For A∗ = A ∈ IKn×n and 0 ≤ R ∈ IRn×n, RT = R, IK ∈ {IR, C}, denote

〈A,R〉 := {X̃ ∈ IKn×n : X̃∗ = X̃, RT = R, and |X̃ −A| ≤ R} (2.12)

where absolute value and comparison are to be understood entrywise. Then

λν(X̃) ≥ λν(A)− ‖R‖ for all X̃ ∈ 〈A,R〉 and all ν.

The radius matrix, however, is real symmetric and nonnegative, so ‖R‖ = %(R) is the Perron root of R. This
can easily estimated by the well-known Lemma by Collatz [2], [7, Theorem 8.1.26].

Lemma 2.6. Let 0 ≤ A ∈ Mn(IR) and x ∈ IRn with xi > 0 for 1 ≤ i ≤ n. Then

min
i

(Ax)i

xi
≤ %(A) ≤ max

i

(Ax)i

xi
.

For irreducible A ≥ 0, the iteration y = Ax(k), x(k+1) = y/‖y‖ produces for arbitrary starting vector
x(0) > 0 a strictly decreasing sequence r(k) := max yν/x

(k)
ν converging to the Perron root [13]. Usually few

iterations suffice to produce a good approximation. The quality, i.e. lower and upper bounds for %(A), and
thus a stopping criterion follow by Lemma 2.6.

Corollary 2.7. Let AT = A ∈ Mn(IF) or A∗ = A ∈ Mn(IF + iIF) and 0 ≤ R ∈ Mn(IF), RT = R be given.
With the notation of Theorem 2.3 assume ‖∆(A)‖2 ≤ c ∈ IF and ‖R‖2 ≤ r ∈ IF. Let Ã ∈ IFn×n be given
with ãij = aij for i 6= j and ãii ≤ aii − c − r for all i. If the floating-point Cholesky decomposition applied
to Ã runs to completion, then every matrix X̃ ∈ 〈A,R〉 as defined by (2.12) is symmetric positive definite.

Note that Corollary 2.7 is a sufficient criterion for positive definiteness of all symmetric (Hermitian) matrices
within 〈A, R〉. Also note that establishing a necessary and sufficient criterion is an NP-hard problem [9].

We can also use the previous results to verify that a symmetric (Hermitian) matrix is not positive semidefinite,
i.e. has a negative eigenvalue. For this we need a “converse” of Theorem 2.3 improving a result in [3], see
also [6, Theorem 10.7].

Theorem 2.8. Let AT = A ∈ Mn(IF) or A∗ = A ∈ Mn(IF + iIF) be given. Assume that floating-point
Cholesky decomposition of A ends prematurely. Then, with the notation of Theorem 2.3,

λmin(A) < ‖∆(A)‖2.

Proof. Without loss of generality we may assume aii ≥ 0 for all i, otherwise λmin(A) < 0. Suppose that
floating-point Cholesky decomposition finishes successfully stages 1 . . . k − 1 and computes

s̃ = fl(akk −
k−1∑
ν=1

r̃∗νk r̃νk) < 0

in stage k. In contrast to (2.1) we define r̃kk := 0 and denote by Ak, R̃k the upper left k× k-matrix in A, R̃,
respectively. We proceed as in the proof of Theorem 2.3 and note that for 1 ≤ i, j ≤ k the estimation of
|δaij | in (2.9) does not depend on r̃kk except for the indices i = j = k. Therefore

|aij − (R̃∗kR̃k)ij | < ∆(A)ij (2.13)

at least for all 1 ≤ i, j ≤ k except i = j = k. Suppose akk ≥ (R̃∗kR̃k)kk + ∆(A)kk. Setting m := s(k, k) and
using (2.4) implies

s̃(1 + Θm−1) = akk −
k−1∑
ν=1

(1 + Θ(ν)
m−2)(r̃

∗
νkr̃νk(1 + εν) + ην)

VERIFICATION OF POSITIVE DEFINITENESS 7

with |Θm−1| ≤ γm−1, |Θ(ν)
m−2| ≤ γm−2, |εν | ≤ γ2 and 0 ≤ ην ≤ 2eta . Hence

0 > s̃(1 + Θm−1) ≥ akk − (1 + γm)(R̃∗kR̃k)kk − 2k(1 + γm)eta
≥ ∆(A)kk − γm(R̃∗kR̃k)kk −Meta

≥ αkk(1− αkk)−1akk + Meta − γm(R̃∗kR̃k)kk −Meta

≥ 0

using αkk(1− αkk)−1 ≥ γm. This contradiction shows akk < (R̃∗kR̃k)kk + ∆(A)kk.

If akk ≥ (R̃∗kR̃k)kk, then (2.13) is also true for i = j = k. By construction, R̃∗kR̃k is singular and of course
positive semidefinite, so interlacing implies

λmin(A) ≤ λmin(Ak) < λmin(R̃∗kR̃k) + ‖∆(A)‖2 = ‖∆(A)‖2 . (2.14)

If akk < (R̃∗kR̃k)kk, then define Ãk ∈ Mk to be the matrix Ak with ãkk := (R̃∗kR̃k)kk. Then λν(Ak) ≤ λν(Ãk)
for all ν and

| ãij − (R̃∗kR̃k)ij | < ∆(A)ij for all 1 ≤ i, j ≤ k .

So we can proceed an in (2.14) and the lemma is proved. ¥

Corollary 2.9. With the notations of Theorem 2.3 assume that c ∈ IF is given with ‖∆(Ã)‖2 ≤ c, where
Ã ∈ IFn×n satisfies ãij = aij for i 6= j and ãii ≥ aii + c for all i. If the floating-point Cholesky decomposition
applied to Ã ends prematurely, then A is not positive semidefinite, i.e. has at least one negative eigenvalue.

Remark. Note that the constant c depends on Ã, but the computation of Ã also involves c, so determination
of a suitable c is not obvious; an iteration for c starting with ‖∆(A)‖2 may be applied, but is costly. Another
possibility is given in Corollary 3.1.

Proof of Corollary 2.9. By assumption, Ã = A + cI + D with diagonal D ≥ 0. Hence Theorem 2.8 implies

λmin(A) = λmin(A + cI)− c = λmin(Ã−D)− c ≤ λmin(Ã)− c < ‖∆(Ã)‖2 − c ≤ 0

using that Ã is symmetric. ¥

If directed rounding is available, we can define Ã = fl∆(A + cI). Otherwise we can avoid directed rounding
by using Lemma 2.5 and defining Ã ∈ IFn×n by

ãij :=





fl(d + ϕ|d|) with d := fl(aii + c) if i = j

aij otherwise,
(2.15)

where again ϕ := eps (1 + 2eps) ∈ IF.

3. Practical application. For the practical application of Corollary 2.4 we need an upper bound of
‖∆(A)‖2. Note that the matrix ∆(A) is symmetric and nonnegative, so the spectral radius %(A) and the
spectral norm ‖∆(A)‖2 coincide. Moreover, Perron-Frobenius Theory tells that ‖∆(A)‖2 = %(∆(A)) ≤ %(B)
for any matrix B with ∆(A) ≤ B (componentwise), and an upper bound follows by Lemma 2.6. Therefore
we will construct such matrices B which are easy to compute.

The practical success of Corollary 2.4 depends on the quality of this bound %(B) of ‖∆(A)‖2. By the
previous considerations any upper bound on s(i, j), the number of nontrivial products necessary to compute
r̃ij , determines a valid upper bound on ‖∆(A)‖2. The more we invest in bounds on s(i, j), the better the
bound on ‖∆(A)‖2 and the better the criterion. The simplest bound is

s(i, j) ≤ n− 1 and therefore αij ≤ γn+1 for all i, j. (3.1)

Using (3.1), Theorem 2.3 implies the simple bound

I) ‖∆(A)‖2 ≤ ‖γn+1ddT ‖+ nMeta = γn+1d
T d +nMeta = γn+1(1−γn+1)−1tr(A)+ nMeta ,

8 SIEGFRIED M. RUMP

where d = (d1, . . . , dn) ∈ IRn and tr(A) denotes the trace of A. This is basically the bound in [3] and [6,
Lemma 10.5]. A similar result already occurs in [12, Theorem 3.5]1, where it is formulated neglecting higher
order terms. However, for sparse matrices this is in general fairly weak. Better bounds are obtained using
the fact that nonzero elements of R must be inside the envelope of A. For a matrix A with nonzero diagonal
define

tj := j −min{i : aij 6= 0}. (3.2)

This is the number of nonzero elements above the diagonal in the j-th column of A. It is 0 ≤ tj ≤ n− 1 for
all j, and Cholesky decomposition (2.1) implies

s(i, j) ≤ min(ti, tj) for all i, j.

Defining

δi := ((1− βi)−1βiaii)1/2 with βi := γti+2 (3.3)

implies αijdidj ≤ δiδj , and δ := (δ1, . . . , δn) ∈ IRn and using Theorem 2.3 yields

II) ‖∆(A)‖2 ≤ δT δ + nMeta .

Both bounds I) and II) have the advantage that they are very easy to compute, without an extra (symbolic)
factorization of A. Bound II) can be further improved. For the Cholesky factor R of A define

t′j := |{i < j : rij 6= 0}|,
the number of nonzero elements in the j-th column of R. Since R is within the envelope of A and by the
definition of s(i, j), we have

s(i, j) ≤ min(t′i, t
′
j) ≤ min(ti, tj),

and replacing βi by β′i := γt′i+2 in the definition (3.3) of δi implies

III) ‖∆(A)‖2 ≤ δ′T δ′ + nMη for δ′i := ((1− β′i)
−1β′iaii)1/2, β′i := γt′i+2

where δ′ := (δ′1, . . . , δ
′
n.

All bounds I), II) and III) require only O(n) operations, whereas the computation of ‖∆(A)‖2 using its
original definition in Theorem 2.3 requires to form the (sparse) matrix ∆(A) and some iterations using
Collatz’s Lemma [2, 13] to compute an upper bound for %(∆(A)).

Bounds I) and II) can be directly computed from the original data, whereas bound III) requires information
from the (symbolic) Cholesky decomposition. Usually the latter is performed anyway in order to minimize
fill-in, so this represents no extra effort. The Matlab routine symbfact does not give the required information,
unfortunately. It only yields the number of elements per rows of the Cholesky factor R, not as required of
the columns.

We tested the methods on various matrices out of the Harwell-Boeing matrix market [4]. To improve the
quality of the bounds one may

a) reorder the matrix and/or
b) scale the matrix.

Suitable reordering would be simple column ordering, (reverse) Cuthill-McKee, or minimum degree. Accord-
ing to van der Sluis’ result [6, Corollary 7.6],

A → DAD with (DAD)ii ≈ 1. (3.4)

seems to be a reasonable choice for scaling. We choose proper powers of 2 near a
−1/2
ii to avoid rounding

errors. Various tests with many test matrices did not show a panacea, but suggested that it seems a good
choice to scale according to (3.4) if the variation of aii is larger than n, and to apply minimum degree
reordering. Based on that we propose the following algorithm to verify positive definiteness of a symmetric
or Hermitian matrix. The criterion is completely rigorous although we use only rounding to nearest.

1thanks to P. Batra for pointing to this reference.

VERIFICATION OF POSITIVE DEFINITENESS 9

function res = isspd(A)

%ISSPD logical function: Matrix A is positive definite

%

%Given real symmetric or Hermitian complex matrix A,

%

% res 1 Matrix A is proved to positive definite

% 0 positive definiteness could not be verified

%

% constants

n = dim(A); Eps = 2^(-53); Eta = 2^(-1074);

% diagonal check

if any(diag(A)<=0)

res = 0; return

end

% scaling

d = 2.^(-ceil(0.5*log2(diag(A))));

maxdiagA = max(d); mindiagA = min(d);

if (maxdiagA/mindiagA>sqrt(n)) & ~((maxdiagA>1e100) |

(mindiagA<1e-100)) % apply van der Sluis scaling

D = spdiags(d ,0,n,n); % D_ii are powers of 2

A = D*A*D; % 0.25 <= abs(A_ii) < 1

maxdiagA = 1;

end

% Minimum degree sorting

p = symamd(A); A = A(p,p);

[i,j] = find(A); index = find(diff(j));

t = [0 ; (2:n)’-i(index+1)]; % max #elts left of (or above) diag(A)

if any (t>3e15) % dimension check, make sure alpha<1

res = 0; return

end

% hull of A

if n<67108861 % alpha_k/(1-alpha_k) < (k+1)*Eps

alpha = (t+3)*Eps; % exact

else

alpha = (t+2)*Eps; alpha = (alpha./(1-alpha))/(1-2*Eps);

alpha = (alpha./(1-alpha))/(1-3*Eps)

end

d = sqrt(alpha.*diag(A))/(1-3*Eps);

% Upper bound for norm(dA) and shift

c = ((3*n)*(2*n+maxdiagA)/(1-3*Eps)) * Eta;

c = ((d’*d)/(1-(n+2)*Eps) + c)/(1-2*Eps); % bound II)

% floating-point Cholesky

A = A - c*speye(n); A = A-diag(diag(A)*(Eps*(1+2*Eps)))

[R,p] = chol(A); % floating-point Cholesky

res = (p==0); % p=0 <=> successful completion

Algorithm 1. Verification of positive definiteness

10 SIEGFRIED M. RUMP

Algorithm 1 is executable Matlab code [8]. The algorithm is also added to INTLAB [11], the Matlab toolbox
for verified computations, where directed roundings are available and are used. Here also interval input A is
allowed, in which case positive definiteness of all symmetric (Hermitian) X̃ ∈ A is verified by Corollary 2.7.

In Algorithm 1 we use only rounding to nearest but nevertheless the result is completely rigorous. To see
this observe that we need upper bounds for alpha, d and c. Note that alpha is a vector. All operands in
the computation of these constants are positive and cannot underflow, so we can use

0 < fl(a ◦ b) · (1− eps) ≤ a ◦ b ≤ fl(a ◦ b)/(1− eps) for a, b ∈ IF, 0 ≤ a ◦ b (3.5)

which follows by (1.1). For small enough n the computation of alpha = (t + 3) ∗ Eps is exact. For larger n
the dimension check ensures that the final value of alpha is less than 1, otherwise the criterion cannot hold.
For the estimation of rounding errors observe for 0 ≤ a, b, fl(a ◦ b) ∈ IF

a ◦ b ≤ (1− eps)2(a ◦ b)/(1− 2eps) ≤ (1− eps)fl(a ◦ b)/(1− 2eps)
≤ fl((a ◦ b)/(1− 2eps))

(3.6)

using 1− 2eps ∈ IF. We introduce intermediate variables in the computation of alpha:

c1 = (t+2)*Eps; c2 = 1-alpha; c3 = (c1./c2)/(1-2*Eps);

c4 = 1-c3; alpha = (c3./c4)/(1-3*Eps);

In the notation of Theorem 2.3 denote k := s(j, j) for fixed j ∈ {1, · · · , n}. Now k corresponds to t, the
computations of c1 and c2 are exact, and (3.6) gives γk+2 ≤ c3. Again using (3.6) yields

c3/(1− c3) ≤ (1− eps)3c3/(1− c3)/(1− 3eps) ≤ (1− eps)2c3/fl(1− c3)/(1− 3eps)
≤ (1− eps)fl(c3/(1− c3))/(1− 3eps) ≤ fl((c3/(1− c3))/(1− 3eps)) = alpha

and implies αjj/(1−αjj) ≤ alpha. The estimation of d and c follows along the same lines using the standard
estimation |∑n

i=1 d2
i − fl(

∑n
i=1 d2

i)| ≤ γn

∑n
i=1 d2

i [6, (3.5)].

With the simplified criterion II) we can also computationally verify that a matrix is not positive semidefinite,
i.e. has at least one negative eigenvalue. Following (3.3) define β′i = βi(1− βi)−1, then II) reads

‖∆(A)‖2 ≤
n∑

i=1

δ2
i + nMeta =

n∑

i=1

β′iaii + nMeta . (3.7)

For a positive constant c ∈ IF to be set define Ã = fl∆(A + cI), that is a shift with rounding upwards. Then
ãii = (aii + c)(1 + εi) with 0 ≤ εi ≤ eps for all i. Define β′′i := β′i(1 + eps), assume

∑
β′′i < 1 and let c ∈ IF

be such that

c ≥ (1−
n∑

i=1

β′′i)−1(
n∑

i=1

β′′i aii + nMeta). (3.8)

Then a little computation using (3.7) shows

‖∆(Ã)‖2 ≤
n∑

i=1

β′i(aii + c)(1 + eps) + nMeta ≤ c.

Now suppose floating-point Cholesky decomposition of Ã ends prematurely. Then Ã = A + cI + D with
diagonal D ≥ 0 and Theorem 2.8 implies

λmin(A) = λmin(Ã−D)− c ≤ λmin(Ã)− c < ‖∆(Ã)‖2 − c ≤ 0.

Corollary 3.1. Let symmetric A ∈ Mn(IF) or Hermitian A ∈ Mn(IF + iIF) be given. With tj as in (3.2)
define

βi := γti+2, β′i := βi(1− βi)−1 and β′′i := β′i(1 + eps)

for i ∈ {1, . . . , n}, assume
∑n

i=1 β′′i < 1, and let c ∈ IF with (3.8) be given. Let Ã := fl∆(A + cI) be the
floating-point computation of A + cI with rounding upwards. If floating-point Cholesky decomposition of Ã

ends prematurely, then the matrix A has at least one negative eigenvalue. This statement is also true in the
presence of underflow during Cholesky decomposition.

VERIFICATION OF POSITIVE DEFINITENESS 11

4. Computational results. For all following matrices, we first perform diagonal scaling as in Al-
gorithm 1 and reordering by symamd, the improved minimum degree reordering algorithm in Matlab [8].
Furthermore, all matrices are normed to ‖A‖1 ≈ 1 by a suitable power of 2 to have comparable results for
different matrices.2

matrix n b av nnz(A) ‖∆(A)‖2 %1 %2 %3

494bus 494 491 3.4 1666 5.22·10−15 2858.69 79.65 21.59

685bus 685 681 4.7 3249 1.54·10−14 1814.62 102.31 16.56

1138bus 1138 1137 3.6 4054 9.06·10−15 8381.51 187.94 28.60

nos1 237 156 4.3 1017 6.78·10−16 3936.69 78.18 61.55

nos2 957 636 4.3 4137 6.78·10−16 63985.74 318.93 249.80

nos3 960 952 16.5 15844 2.90·10−13 163.75 21.90 5.52

nos6 675 670 4.8 3255 4.01·10−14 622.80 57.73 9.39

nos7 729 719 6.3 4617 6.10·10−13 61.91 9.51 2.34

bcsstk08 1074 1057 12.1 12960 5.49·10−13 120.55 15.96 3.26

bcsstk09 1083 1042 17.0 18437 9.56·10−13 74.60 12.69 3.56

bcsstk10 1086 653 20.3 22070 8.44·10−14 792.63 111.00 16.37

bcsstk11 1473 1413 23.2 34241 3.65·10−13 356.67 42.19 8.49

bcsstk12 1473 1413 23.2 34241 3.65·10−13 356.67 42.19 8.49

bcsstk13 2003 1992 41.9 83883 7.93·10−12 30.91 6.76 2.27

bcsstk14 1806 1712 35.1 63454 1.35·10−12 137.58 17.34 4.55

bcsstk15 3948 3878 29.8 117816 1.12·10−11 82.83 13.31 3.59

bcsstk16 4884 4808 59.5 290378 5.69·10−12 231.25 39.41 7.39

bcsstk17 10974 10315 39.1 428650 6.62·10−11 109.69 11.89 1.00

bcsstk18 11948 11028 12.5 149090 4.10·10−11 224.99 9.83 1.00

bcsstk19 817 816 8.4 6853 1.42·10−14 2781.22 627.38 34.66

bcsstk20 485 454 6.5 3135 6.29·10−15 2368.19 84.41 30.13

bcsstk21 3600 1781 7.4 26600 8.04·10−13 1046.54 45.31 7.65

bcsstk22 138 109 5.0 696 8.08·10−15 134.36 15.37 6.02

bcsstk23 3134 3113 14.4 45178 1.07·10−11 53.99 10.14 2.46

bcsstk24 3562 3548 44.9 159910 3.49·10−12 223.30 22.62 4.98

bcsstk25 15439 15363 16.3 252241 8.89·10−11 163.21 12.85 1.00

bcsstk26 1922 1900 15.8 30336 3.76·10−13 575.28 42.14 6.83

bcsstk27 1224 1199 45.9 56126 2.99·10−13 276.13 80.28 11.10

bcsstk28 4410 4327 49.7 219024 2.95·10−12 388.25 45.13 7.13

bcsstk29 13992 13667 44.3 619488 9.24·10−11 117.21 7.48 1.00

bcsstk30 28924 28741 70.7 2043492 4.20·10−10 221.17 15.23 1.00

bcsstk31 35588 35437 33.2 1181416 5.47·10−10 256.89 10.55 1.00

bcsstk32 44609 44495 45.2 2014701 5.84·10−10 378.32 10.88 1.00

bcsstm10 1086 641 20.3 22092 9.57·10−14 768.55 113.67 16.41

bcsstm12 1473 981 13.3 19659 1.54·10−13 823.77 57.04 11.47

bcsstm27 1224 1199 45.9 56126 3.46·10−13 268.95 75.43 10.70

s1rmq4m1 5489 5347 47.8 262411 9.40·10−12 190.72 20.15 5.29

s1rmt3m1 5489 5486 39.7 217651 5.25·10−12 339.25 36.31 6.11

s2rmq4m1 5489 5396 48.0 263351 1.05·10−11 188.12 22.68 5.09

s2rmt3m1 5489 5346 39.7 217681 6.40·10−12 302.85 25.90 5.44

s3dkq4m2 90449 90160 49.0 4427725 1.50·10−9 290.89 9.55 1.00

s3dkt3m2 90449 89808 40.8 3686223 1.37·10−9 404.02 13.95 1.00

s3rmq4m1 5489 5480 47.9 262943 9.53·10−12 209.34 26.94 5.85

2All tests are performed on a Pentium M, 1.2GHz Laptop, Matlab Version 7.1 [8] and INTLAB Version 5.2 [11].

12 SIEGFRIED M. RUMP

matrix n b av nnz(A) ‖∆(A)‖2 %1 %2 %3

s3rmt3m1 5489 5487 39.7 217669 5.83·10−12 364.31 33.16 6.41

s3rmt3m3 5357 5325 38.7 207123 4.62·10−12 404.36 38.67 6.35

e40r0000 17281 17231 32.0 553216 5.23·10−11 251.34 11.15 1.00

fidapm11 22294 22057 27.7 617874 4.04·10−10 55.69 7.98 1.00

Table 4.1. ‖∆(A)‖2 and bounds I), II) and III)

The first table displays for various matrices out of [4].

name the name of the Harwell-Boeing test matrix
n the dimension
b the bandwidth after reordering
av the average number of nonzero elements per row
nnz the total number of nonzero elements
‖∆(A)‖2 for ∆(A) as given in Theorem 2.3
%1 the bound I) divided by ‖∆(A)‖2
%2 the bound II) divided by ‖∆(A)‖2
%3 the bound III) divided by ‖∆(A)‖2

The ratios %ν display the overestimation of criterion ν) compared to %(∆(A)) = ‖∆(A)‖2. This applies to all
data except for the matrices of dimension greater than 10000. These matrices where too big to perform the
symbolic Cholesky factorization on our PC2 to apply Corollary 2.4 to compute ‖∆(A)‖2. Bounds I), II) and
III) could be computed without problem for all matrices. In the cases n > 10000, bound III) is displayed in
column ‖∆(A)‖2 and the ratios refer to that bound.

The table shows that bound I) is sometimes a significant overestimation of ‖∆(A)‖2. The bounds II) and
III) are frequently not too different. Note that bound II) is obtained with significantly less computational
cost and memory. The following table shows the minimum, median, average and maximum of %1, %2 and %3

over all our test matrices (not only the ones displayed in Table 4.1).

minimum median average maximum
%1 2.4 241 1750 64000
%2 1.2 22 49 627
%3 1.2 5.4 13 250

Table 4.2. Quality of bounds I), II) and III)

Again, bound II) seems to be a reasonable compromise between quality and computational effort.

We may ask how close we can get to the smallest eigenvalue of a symmetric or Hermitian matrix by Algorithm
1 and its counterpart based on Corollary 3.1. For s := ‖A‖1 the matrix A− sI has surely only nonpositive
eigenvalues, and A+sI is positive semidefinite. We bisect the interval [−s, s] to find a narrow interval [s1, s2]
such that Algorithm 1 verifies positive definiteness of A − s1I, and its counterpart based on Corollary 3.1
verifies existence of at least one negative eigenvalue of A− s2I. It follows

s1 < λmin(A) < s2.

For the following Table 4.3 we first norm A by a suitable power of 2 to ‖A‖1 ≈ 1, and display the name of
the matrix, dimension n and average number av of elements per row, λmin(A) ≈ 1

2 (s1 + s2) and

acc :=
s2 − s1

|s1 + s2| .

For example we could calculate for the matrix “494bus” bounds for the smallest eigenvalue λmin(A) coinciding
to about 8 decimal figures. For some matrices (like “bcsstk17”) the smallest eigenvalue is enclosed to almost
maximum accuracy. Note that all matrices are scaled to ‖A‖1 ≈ 1.

Since the matrices are normed to ‖A‖1 ≈ 1, the reciprocal of λmin(A) approximates the condition number
of A. If Algorithm 1 verifies positive definiteness of A−λI for 0 < λ < λmin(A), then λ is a lower bound for

VERIFICATION OF POSITIVE DEFINITENESS 13

the smallest singular value of A and proves A to be nonsingular. For an approximate solution x̃ of a linear
system Ax = b it follows

‖A−1b− x̃‖2 ≤ λ−1‖b−Ax̃‖2, (4.1)

so for the positive definite matrices in Table 4.3 bounds for the solution of a corresponding linear system
can be computed by (4.1). For details, see [10].

matrix n b av λmin(A) acc

494bus 494 491 3.4 1.895504·10−7 4.58·10−8

685bus 685 681 4.7 1.888678·10−6 2.43·10−8

1138bus 1138 1137 3.6 5.366303·10−8 1.47·10−6

nos1 237 156 4.3 2.872064·10−8 1.80·10−10

nos2 957 636 4.3 1.122035·10−10 1.13·10−8

nos3 960 952 16.5 1.785976·10−5 2.29·10−7

nos6 675 670 4.8 1.192111·10−7 4.06·10−14

nos7 729 719 6.3 2.476047·10−10 9.85·10−4

bcsstk08 1074 1057 12.1 2.143796·10−8 6.41·10−9

bcsstk09 1083 1042 17.0 5.291573·10−5 8.75·10−8

bcsstk10 1086 653 20.3 1.271827·10−6 1.17·10−7

bcsstk11 1473 1413 23.2 2.760485·10−9 5.69·10−5

bcsstk12 1473 1413 23.2 2.760485·10−9 5.69·10−5

bcsstk13 2003 1992 41.9 3.232490·10−11 4.72·10−8

bcsstk14 1806 1712 35.1 5.820766·10−11 1.67·10−16

bcsstk15 3948 3878 29.8 1.164153·10−10 1.11·10−16

bcsstk16 4884 4808 59.5 1.164153·10−10 1.11·10−16

bcsstk17 10974 10315 39.1 2.910383·10−11 2.78·10−16

bcsstk18 11948 11028 12.5 1.806456·10−12 3.36·10−8

bcsstk19 817 816 8.4 5.095952·10−12 6.29·10−4

bcsstk20 485 454 6.5 1.798913·10−13 8.78·10−6

bcsstk21 3600 1781 7.4 2.687480·10−8 1.56·10−6

bcsstk22 138 109 5.0 6.298865·10−6 1.03·10−9

bcsstk23 3134 3113 14.4 2.368783·10−13 1.54·10−3

bcsstk24 3562 3548 44.9 2.237716·10−12 2.64·10−4

bcsstk25 15439 15363 16.3 1.067092·10−13 1.28·10−2

bcsstk26 1922 1900 15.8 3.470026·10−9 7.17·10−7

bcsstk27 1224 1199 45.9 1.711424·10−5 3.41·10−9

bcsstk28 4410 4327 49.7 7.582879·10−10 8.21·10−4

bcsstk29 13992 13667 44.3 -1.420591·10−1 2.04·10−9

bcsstk30 28924 28741 70.7 -1.037908·10−1 8.64·10−9

bcsstk31 35588 35437 33.2 -7.967106·10−2 7.28·10−9

bcsstk32 44609 44495 45.2 -1.260251·10−1 9.35·10−9

bcsstm10 1086 641 20.3 -3.144121·10−2 1.07·10−10

bcsstm12 1473 981 13.3 1.324195·10−6 1.69·10−8

bcsstm27 1224 1199 45.9 -7.273679·10−4 1.89·10−10

s1rmq4m1 5489 5347 47.8 3.621038·10−7 6.09·10−5

s1rmt3m1 5489 5486 39.7 1.810878·10−7 1.37·10−4

14 SIEGFRIED M. RUMP

matrix n b av λmin(A) acc

s2rmq4m1 5489 5396 48.0 2.956101·10−9 2.51·10−3

s2rmt3m1 5489 5346 39.7 2.956061·10−9 1.68·10−3

s3dkq4m2 90449 90160 49.0 -1.701524·10−10 1.59

s3dkt3m2 90449 89808 40.8 -1.998232·10−10 1.34

s3rmq4m1 5489 5480 47.9 4.855818·10−11 1.43·10−1

s3rmt3m1 5489 5487 39.7 2.393005·10−11 2.43·10−1

s3rmt3m3 5357 5325 38.7 2.457253·10−11 1.58·10−1

e40r0000 17281 17231 32.0 -9.763761·10−6 2.90·10−9

fidapm11 22294 22057 27.7 -1.374397·10−1 7.10·10−9

af23560 23560 23275 19.6 -3.041469·10−1 5.39·10−9

Table 4.3. Accuracy of determination of λmin(A)

Table 4.3 shows that the smallest eigenvalue of all test matrices except the two large ones “s3dkq4m2” and
“s3dkt3m2” was calculated to at least 1 decimal place, with a median of more than 7 decimal digits accuracy.

Finally we display the computing time of Algorithm 1 for the test matrices of dimension n ≥ 5000. As before,
all computations are on the Pentium M, 1.2 GHz Laptop. We display the computing time in seconds for
Algorithm 1 for the matrix A+‖A‖1 ·I to make sure that Cholesky decomposition does not end prematurely.
In the last column we display the ratio of the computing time for the whole verification and for one simple
Cholesky decomposition. Given that the Cholesky decomposition is performed anyway, the overhead for
verification is less than 1% in all cases.

matrix n b av time(isspd) time(isspd)/time(chol)

bcsstk17 10974 521 39.1 1.09 1.0024

bcsstk18 11948 1243 12.5 0.77 1.0016

bcsstk25 15439 292 16.3 1.62 1.0014

bcsstk29 13992 1157 44.3 2.15 1.0016

bcsstk30 28924 16947 70.7 5.14 1.0017

bcsstk31 35588 1668 33.2 11.30 1.0007

bcsstk32 44609 43030 45.2 6.71 1.0017

s1rmq4m1 5489 191 47.8 0.99 1.0017

s1rmt3m1 5489 191 39.7 0.51 1.0024

s2rmq4m1 5489 191 48.0 1.02 1.0023

s2rmt3m1 5489 191 39.7 0.50 1.0025

s3dkq4m2 90449 614 49.0 101.09 1.0084

s3dkt3m2 90449 614 40.8 58.88 1.0005

s3rmq4m1 5489 191 47.9 1.08 1.0016

s3rmt3m1 5489 191 39.7 0.49 1.0027

s3rmt3m3 5357 5302 38.7 0.38 1.0030

e40r0000 17281 451 32.3 0.63 1.0044

fidapm11 22294 6505 28.0 22.32 1.0004

af23560 23560 304 19.6 25.33 1.0003

Table 4.4. Computing time in seconds

Note that computing times suffer from interpretation overhead. For the big matrices “s3dkq4m” and
“s3dkt3m2” we see mainly time for swapping. Because of their size a symbolic factorization by the Matlab
routine symbfact was not possible so that we could not compute ∆(A).

5. Summary. We presented an algorithm for the verification of positive definiteness of a symmetric or
Hermitian matrix. The verification is rigorous, including all possible effects of rounding errors or underflow.
It also allows verification of positive definiteness of all symmetric (Hermitian) matrices within an interval
matrix, and the existence of negative eigenvalues can be verified as well. The verification needs only one
floating-point Cholesky decomposition, so time and memory requirements are reasonable as long as the
decomposition is efficient.

VERIFICATION OF POSITIVE DEFINITENESS 15

Acknowledgement. The author wishes to thank Per Christian Hansen for very helpful and constructive
comments.

REFERENCES

[1] R.P. Brent, C. Percival, and P. Ziemmermann. Error Bounds on complex floating-point multiplication. Math. Comp.,

2006.

[2] L. Collatz. Einschließungssatz für die charakteristischen Zahlen von Matrizen. Math. Z., 48:221–226, 1942.

[3] J.B. Demmel. On floating point errors in Cholesky. LAPACK Working Note 14 CS-89-87, Department of Computer

Science, University of Tennessee, Knoxville, TN, USA, 1989.

[4] I.S. Duff, R.G. Grimes, and J.G. Lewis. User’s guide for Harwell- Boeing sparse matrix test problems collection. Technical

Report RAL-92-086, Computing and Information Systems Department, Rutherford Appleton Laboratory, Didcot,

UK, 1992.

[5] C.A. Floudas. Deterministic Global Optimization - Theory, Methods and Applications, volume 37 of Nonconvex Opti-

mization and Its Applications. Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.

[6] N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM Publications, Philadelphia, 2nd edition, 2002.

[7] R.A. Horn and Ch. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[8] MATLAB User’s Guide, Version 7. The MathWorks Inc., 2004.

[9] J. Rohn. Checking Robust Stability of Symmetric Interval Matrices Is NP-Hard. Commentat. Math. Univ. Carol. 35,

pages 795–797, 1994.

[10] S.M. Rump. Verification Methods for Dense and Sparse Systems of Equations. In J. Herzberger, editor, Topics in Validated

Computations — Studies in Computational Mathematics, pages 63–136, Elsevier, Amsterdam, 1994.

[11] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages

77–104. Kluwer Academic Publishers, Dordrecht, 1999.

[12] H. Rutishauser. Vorlesungen über numerische Mathematik. Band 1: Gleichungssysteme, Interpolation und Approxima-

tion. Band 2: Differentialgleichungen und Eigenwertprobleme., volume 50/57 of Mathematische Reihe. Birkhäuser

Verlag, Basel - Stuttgart, 1976. English: Lectures on Numerical Analysis, Birkhäuser, 1990.

[13] R.S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1962.

