
High precision evaluation of nonlinear functions

Siegfried M. Rump

Inst. f. Computer Science III
Hamburg University of Technology

Schwarzenbergstrasse 95
21071 Hamburg, Germany

Email: rump@tu-harburg.de

Abstract—A key to the accurate solution of an ill-
conditioned system of nonlinear equations is the accurate
evaluation of the functions is use. For this purpose we
present a fast method to emulate quadruple precision for
the basic operations as well as for the elementary standard
functions. Our methods are based on a recent paper on ac-
curate evaluation of sums and dot products, which in turn
uses so-called error-free transformations. We use only dou-
ble precision floating point operations, and the code con-
tains no branches or access to mantissa or exponent. Hence
the algorithms are fast in terms of measured computing
time.

1. Introduction

Let floating point numbers and binary arithmetic accord-
ing to IEEE 754 arithemtic [2] be given. Denote the set of
double precision floating point numbers by F, and let fl(·)
denote the result of a floating point computation, where all
operations inside the parentheses are executed in double
precision. It is well known that the correction of floating
point addition and multiplication is exact. That is

a, b ∈ F, x = fl(a + b) ⇒ y = a + b − x ∈ F. (1)

Already in 1969, Knuth [3] presented a simple algorithm to
compute the correction y:

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x − a)
y = fl((a − (x − z)) + (b − z))

The algorithm requires 6 flops without branch. A sim-
ilar algorithm for multiplication has been given by G.W.
Veltkamp (see [1]):

function [x, y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x − a1 · b1) − a2 · b1) − a1 · b2))

In Proceedings of 2005 International Symposium on Nonlinear The-
ory and its Applications, Bruge, Belgium, October 18–21, pages 733–736,
2005

This algorithm uses the ingenious method by Dekker [1] to
split a 53-bit double precision number into two 26-bit parts:

function [x, y] = Split(a)
c = fl(factor · a) % factor = 227 + 1
x = fl(c − (c − a))
y = fl(a − x)

The results of this algorithm satisfy x + y = a. The trick
is that the sign is used as the additional bit. Note that the
multiplication of 26-bit floating point numbers is exact in
double precision.

In [7] we used these error-free transformations to de-
velop algorithms for summation and dot product produc-
ing a result as if computed in quadruple precision but us-
ing only double precision operations. Similar algorithms
with result of k-fold precision are presented as well. All
algorithms are without branch. The quadruple dot product
algorithm is 40 % faster than the corresponding “state-of-
the-art” XBLAS algorithm [4].

Here we develop quadruple precision algorithms for the
four basic arithmetic operations and for elementary stan-
dard functions. Again no special operations such as ac-
cess to mantissa or exponent are necessary, hence our al-
gorithms are fast in terms of measured computing time. A
Matlab toolbox [5] defining a quad data type has been writ-
ten to allow easy access to high precision operations.

Based on [7] our algorithms are easily extended to pro-
ducing results of k-fold precision.

2. High precision operations

We represent quadruple precision floating point numbers
by a pair [x, y] of double precision numbers x, y ∈ F, and
we denote the set of quad or extended precision numbers
by E.

In [7] we developed the following algorithm to calcu-
late the sum of a vector of double precision floating point
numbers. The result satisfies an accuracy estimation as if
calculated in quadruple precision and then rounded to dou-
ble precision. The following version is adapted to omit
the rounding to double but rather to give back a result of



quadruple precision.

function [x, y] = Sum2(p)
for i = 2 : n

[pi, pi−1] = TwoSum(pi, pi−1)
x = pn

y = fl
(

n−1∑
i=1

pi

)

Note that we use the Matlab convention that input and out-
put of a routine are strictly separated. In [7, Proposition
4.5 and (4.11)] we proved the following result. Due to the
fact that TwoSum is an error-free transformation, the sum∑

pi of the original vector p and the transformed vector are
identical.

Theorem 1 Suppose Algorithm Sum2 is applied to floating
point numbers pi ∈ F, 1 ≤ i ≤ n, set s :=

∑
pi ∈ R

and S :=
∑ |pi|, and suppose neps < 1. Then, also in the

presence of underflow,

|x + y − s| ≤ γn−2γn−1S , (2)

where eps = 2−53 denotes the relative rounding error unit
and γk := keps/(1 − keps).

For given two quad numbers A = [Ahi, Alo] and B =

[Bhi, Blo] this already solves the problem of addition and
subtraction by summing the vectors [Ahi, Alo, Bhi, Blo] ∈ F4

and [Ahi, Alo,−Bhi,−Blo] ∈ F4 using Sum2. The result [x, y]
satisfies

|A + B − (x + y)| ≤ 5eps2/(1 − 5eps) ,

which basically means quadruple precision.
Multiplication in quad precision could be solved using

Split and Sum2. This is roughly the way XBLAS pro-
ceeds for dot products. However, in [7, Algorithm 5.3
(Dot2)] we proposed a faster way by treating the lower or-
der terms in a better way. The adapted algorithm for the
dot product is as follows.

function [x, y] = Dot2(u, v)
[x, y] = TwoProduct(u1, v1)
for i = 2 : n

[h, r] = TwoProduct(ui, vi)
[x, q] = TwoSum(x, h)
y = fl(y + (q + r))

In [7, Proposition 5.5 and (5.4)] we proved the following
result.

Theorem 2 Suppose Algorithm Dot2 is applied to floating
point vectors u, v ∈ Fn, set s := uT v ∈ R and S := |ut ||v|,
and suppose neps < 1. Then, also in the presence of under-
flow,

|x + y − s| ≤ γ2
nS + 5n eta, (3)

where eta denotes the smallest unnormalized positive
floating point number (eta = 2−1074).

Using the idea in Dot2 we can derive the following al-
gorithm for quad precision multiplication. Input A, B ∈ E
are again quad numbers with A = [Ahi, Alo], B = [Bhi, Blo].

function [x, y] = Mul(A, B)
[p, q] = TwoProduct(Ahi, Bhi)
[x, y] = Sum2([p, q, Ahi ∗ Blo, Alo ∗ Bhi])

Note that we realize a kind of “abbreviated” multiplication
by omitting the term Alo ∗ Blo.

For quad division X = A/B we use one Newton iteration
applied to the function B ∗ X − A = 0. Starting point is an
approximation computed in double precision.

function X = Div(A, B)
C = A/Bhi

X = C − (B ∗C − A)/Bhi

The two divisions of a quad number by Bhi ∈ F are com-
puted by dividing high and low order part separately. The
approximation C is of double precision, and the residual
B ∗ C − A is computed in quad precision. Since the New-
ton iteration is quadratically convergent and the correction
(B∗C−A)/Bhi is computed and added separately to the dou-
ble precision approximation C, the final result is of quadru-
ple precision.

3. High precision standard functions

We briefly describe the evaluation of elementary stan-
dard functions is quadruple precision. The square root is
particularly elegant to handle since the inverse function, the
square of a quad number, is already available.

function X = Sqrt(A)
C =

√
Ahi

X = (C + A/C)/2

Again we apply one Newton iteration to X2 − A = 0
using quad addition and division which is already avail-
able, and the double precision square root of the high or-
der part of A as starting approximation. A little computa-
tion yields the given formula, also known as “Babylonian
square root”. Quadratic convergence of the Newton itera-
tion ensures again quad accuracy of the result.

Other standard functions are a little more involved.
However, we can use a table driven approach in combina-
tion with addition theorems and Taylor expansion. This is
described in detail in [8]. Remarkably, an accuracy of two
or three units of the last place is achieved for all common
elementary standard functions.

Here we adapt the method to quad precision. Limited
space allows only to sketch one function, the exponential
function.

We have to calculate exp(x) for −744.44 ≤ x ≤ 709.78;
outside this range over- or underflow is caused. Following
[8] we first calculate extended precision approximations of
Y = exp(i) for all integer values in that range and store



them in quad numbers Yi,−744 ≤ i ≤ 709. This reduces
the problem to calculate exp(x) for 0 < x < 1. Next we
calculate and store extended precision approximations ỹ =

exp(x̃) for x̃ = i/211 and 0 < i < 211. This reduces the
problem to calculate y = exp(δ) for 0 < δ < 2−11. This
is done by y =

∑8
i=0 δ

i/i! with an error less than exp(δ) ∗
2−99/9! < 4.35 · 10−36.

As an example of an ill-conditioned problem consider
the well known question whether exp(π

√
163) is an integer

or not. Using the Matlab operator concept for a class quad
the executable code exp(sqrt(quad(163)) ∗ quad(pi1, pi2))
yields

262537412640768743.99999999999951 .

Here pi1 and pi2 are high and low order approximations
of π. However, this is no proof that exp(π

√
163) is not

an integer. In the last section we show how to prove
exp(π

√
163) < N rigorously.

4. High precision interval arithmetic and standard
functions

The definition of IEEE 754 floating point standard in-
cludes directed roundings. This allows a simple and effi-
cient way of developing high precision interval arithmeti-
cal operations and standard functions. Switching round-
ing mode is available in Matlab through an internal routine
“system dependent(’rounding’,param)”. Here param=-inf
or param=inf switches the rounding mode to downwards
or upwards, respectively. For param=0 the rounding is set
to nearest.

Denote by IF the set of double precision intervals, such
that X = [x1, x2] ∈ IF with x1, x2 ∈ F represents X = {x ∈
R : x1 ≤ x ≤ x2}. Interval operations are well known, for
details see [6, 9]. A central property of interval operations
is the inclusion isotonicity: For A, B ∈ IF and C = A ◦ B it
holds

∀a ∈ A ∀b ∈ B : a ◦ b ∈ A ◦ B ,

where ◦ ∈ {+,−, ·, /}. The property applies similarly to
standard functions.

We represent a quadruple precision interval A by a dou-
ble precision high order part Ahi ∈ F, and an interval
Alo ∈ IF as lower part. The set of quadruple precision in-
tervals is denoted by IE.

For the development of quadruple interval operations
first note that TwoSum and TwoProduct are error-free trans-
formations. That means, [x, y] = TwoSum(a, b) and [x, y] =

TwoProduct(a, b) imply x + y = a + b and x + y = a · b,
respectively. Therefore the for-loop in Sum2 transforms the
vector p into a new vector with identical sum. In [7] we
showed that the condition number of the sum of the new
vector is decreased about a factor eps.

For a given a vector p ∈ Fn, the following algorithm
produces a quadruple precision number X ∈ E with X ≤

∑
pi for rnd=-inf and

∑
pi ≤ X for rnd=inf, respectively.

function X = Sum2rnd(p, rnd)
for i = 2 : n

[pi, pi−1] = TwoSum(pi, pi−1)
Xhi = pn

system dependent(′rounding′, rnd)

Xlo = fl
(

n−1∑
i=1

pi

)

Using this it is straightforward to compute interval sum and
difference of quadruple intervals A, B ∈ IE. Algorithm
Sum2rnd also provides the tools for interval quadruple
multiplication since the first transformation TwoProduct

in Mul is error-free.
For given A, B ∈ IE the following algorithm computes

an inclusion of A/B. Here mid(A) denotes some value near
the midpoint of A. From a mathematical point of view there
is no restriction on the difference between mid(A) and the
exact midpoint of A.

function X = Div(A, B)
C = mid(A)/Bhi

X = C − (mid(B) ∗C − A)/(Bhi + Blo)

Note that operations in the computation of X are interval
computations and that Bhi + Blo ∈ IF.

For the square root we use the fact that for a given func-
tion f : R→ R, X ∈ IR and x̃ ∈ X it holds

∃x̂ ∈ X : f (x̂) = 0quad⇒ quadx̂ ∈ x̃ − f (x̃)/ f ′(X) ,

where { f ′(x) : x ∈ X} ∈ f ′(X) (cf. [6]). With this we see
that the following algorithm calculates for given A ∈ E an
inclusion of

√
A.

function X = ISqrt(A)
x̃ =
√

Ahi

B =
√

Ahi + Alo

X = x̃ − (x̃2 − B)/(2B)

Here the computation of B is performed using double pre-
cision interval arithmetic and double precision square root
with directed rounding, a part of IEEE 754. The square
root of a quad interval uses ISqrt and the monotonicity of
the square root.

Finally, we briefly sketch the implementation of the
interval exponential function. First, quad inclusions of
exp(i) ∈ Yi for −744 ≤ i ≤ 709 are calculated and stored.
Next quad precision inclusions exp(xi) ∈ yi for xi = i/211

and 0 < i < 211 are calculated and stored. Finally an in-
clusion of exp(δ), 0 < δ < 2−11 is calculated using a Taylor
expansion as before with interval error term.

Applying this to our previous problem to decide whether
exp(π

√
163) is an integer or not, we compute X =

exp(sqrt(quad(intval(163))) ∗ quad(pi1, Pi2)). Here Pi2 ∈
IF is such that π ∈ pi1+ Pi2. Note that the previous expres-
sion is executable code using Matlab’s operator concept.



We obtain

intval quad X.in f =

262537412640768743.99999999999889
intval quad X.sup =

262537412640768743.99999999999973

showing that indeed exp(π
√

163) < N.

5. Conclusion

We showed how to implement the basic operations as
well as elementary standard functions in quadruple preci-
sion, without and with error bounds. The algorithms are
especially fast because branches are avoided and no spe-
cial operations such as access to mantissa and/or exponent
are necessary. This makes the codes highly optimizable.

The quality of a Newton step x-f(x)/f’(x) depends mainly
on the accuracy of the function value f(x). Hence the pre-
cise evaluation of function values is the key to obtain high
precision solutions of systems of nonlinear equations.

References

[1] T.J. Dekker. A Floating-Point Technique for Extend-
ing the Available Precision. Numerische Mathematik,
18:224–242, 1971.

[2] ANSI/IEEE 754-1985, Standard for Binary Floating-
Point Arithmetic, 1985.

[3] D.E. Knuth. The Art of Computer Programming:
Seminumerical Algorithms, volume 2. Addison Wes-
ley, Reading, Massachusetts, 1969.

[4] X. Li, J. Demmel, D. Bailey, G. Henry, Y. Hida, J.
Iskandar, W. Kahan, S. Kang, A. Kapur, M. Martin,
B. Thompson, T. Tung, and D. Yoo. Design, Imple-
mentation and Testing of Extended and Mixed Preci-
sion BLAS. ACM Trans. Math. Softw., 28(2):152–205,
2002.

[5] MATLAB User’s Guide, Version 7. The MathWorks
Inc., 2004.

[6] A. Neumaier. Interval Methods for Systems of Equa-
tions. Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, 1990.

[7] T. Ogita, S.M. Rump, and S. Oishi. Accurate Sum and
Dot Product. SIAM Journal on Scientific Computing
(SISC), 26(6):1955–1988, 2005.

[8] S.M. Rump. Rigorous and portable standard functions.
BIT, 41(3):540–562, 2001.

[9] S.M. Rump. Self-validating methods. Linear Algebra
and its Applications (LAA), 324:3–13, 2001.


