
handb
2005/6
page 1

�

�

�

�

�

�

�

�

Chapter 10

Computer-assisted Proofs
and Self-validating
Methods

Siegfried M. Rump

10.1 Introduction
In this chapter41 we discuss the possibility of computing validated answers to mathematical
problems. Among such approaches are so-called computer-assisted proofs, exact com-
putations, methods from computer algebra, and self-validating methods. We will discuss
common aspects and differences of these methods, as well as their potential reliability.
We present in detail some concepts for self-validating methods, and their mathematical
background, as well as implementation details.

Self-validating methods will be introduced using INTLAB, a MATLAB toolbox
entirely written in MATLAB. Due to the operator concept it is a convenient way to get
acquainted with self-validating methods. Many examples in this chapter are given in exe-
cutable INTLAB code. This toolbox is freely available from our homepage for noncom-
mercial use. To date we have an estimated number of 3500 users in more than 40 countries.

We stress that this exposition will cover only a small part of the subject, some basic
concepts of self-validating methods. Nevertheless, we hope to give some impression of this
interesting and promising area.

10.2 Proofs and Computers
Since the invention of digital computers the question has arisen (again) whether computers
can perform mathematical proofs. Put into that form the answer, in my opinion, is a simple
“No!” since computers don’t do anything without some person ordering them to do so. So
a more appropriate formulation may be whether proofs may be performed with the aid of
digital computers.

41Extended workout of the special lecture presented at the Annual Conference of Japan SIAM at Kyushu
University, Fukuoka, October 7–9, 2001; an excerpt has been published in Bull. JSIAM, 2004.
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196 Chapter 10. Computer-assisted Proofs and Self-validating Methods

Figure 10.1. IBM prime letterhead.

There are a number of famous examples where people claimed to have proven a
theorem with the aid of digital computers. And people became proud of this so that it even
found its way into letterheads and postmarks. For example, when you received a letter from
IBM Thomas J. Watson Research Center in Yorktown Heights in the 1970’s, the letterhead
appeared as pictured in Figure 10.1. At that time this was the largest known Mersenne [312]
prime, with some 600 decimals. Primality was proven in 1971 [456] by the Lucas–Lehmer
test, and this fact even found its way into the Guiness book of records. A new era in the
run for the largest explicitly known prime began with the Great Internet Mersenne Prime
Search (GIMPS). In this mutual international effort 26972593 − 1, a number with more than
two million decimal digits, was found and earned the discoverer Nayn Hajratwala some
50,000 U.S. dollars. The latest finding in 2004 is 224036583−1 with more than seven million
digits.

Figure 10.2. University of Illinois postmark.

When receiving a letter from the University of Illinois at Urbana-Champaign in the
late 1970’s or early 1980’s, next to the postage stamp you would see what is pictured in
Figure 10.2 (thanks to Bhama Srinivasan for providing the original picture), crediting the
celebrated effort of KennethAppel and Wolfgang Haken. They checked thousands of sample
graphs using some two thousand hours of computing time to attack the Four Color Theorem.
At the time there was (and still is) quite some discussion about whether their efforts really
“proved” the theorem. There are significant differences between the first and the second
example.

The first example, proving primality of a Mersenne number, uses solely long integer
arithmetic. There are numerous implementations of such packages for algebraic compu-
tations. And, the Lucas–Lehmer test for n = 19937 takes less than a minute on today’s
laptops. Moreover, the implementation is very clear and straightforward, and the arithmetic
programs have been tested innumerable times. So it seems not “likely” that there are errors
in such programs.
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10.2. Proofs and Computers 197

In contrast, the attack of the Four Color Theorem consists of very many individual
programs, seeking coloring patterns for individual graphs. The programming is by no means
straightforward, and comparatively few people have looked at the programs. Once I asked
Wolfgang Haken what would be his answer to the obvious question of whether the proof is
valid. He explained, “Well, put it this way. Every error in our programming found so far has
been repaired within 24 hours.” We tend to agree with Paul Erdös, the late ever-traveling
mathematician, who said [208], “I’m not an expert on the four color problem, but I assume
the proof is true. However, it’s not beautiful. I’d prefer to see a proof that gives insight
into why four colors are sufficient.” In fact, the proof by Appel and Haken seems ill suited
for Proofs from THE BOOK [9]. There are newer approaches to proving the Four Color
Theorem; see, for example, [384].

Before going on we collect some more examples of possibilities of proofs by com-
puters. Tarski [437] proved his famous theorem that the elementary theory of real closed
fields is decidable. Later Collins [99] developed his Quantifier elimination method, which
drastically reduces the necessary computational time to “prove” a corresponding theorem.
With this quantifier elimination method, questions from geometry can be reduced to equiv-
alent, quantifier-free formulae. The input formula is a theorem if and only if it reduces to
“1” or “always true.”

Another famous example is Risch’s algorithm [379, 173] for integration in finite terms.
This algorithm “decides” whether some function consisting of basic arithmetic operations,
roots, powers, and elementary standard functions can be integrated in finite terms, and if so,
it calculates a closed formula for the integral. It is a decision algorithm, and the maximum
computing time can be estimated in terms of the length of the input. The algorithm is
available, for example, in the computer algebra system Maple. For the input∫

xex
2
dx = 1

2
ex

2 + C,

the integral can also be easily calculated by standard methods. But that∫
ex

2
dx is not solvable

is a nontrivial result: It proves that no finite combination of arithmetic operations, powers,
or elementary standard functions can be found such that the derivative is equal to ex

2
. In

fact, the algorithm does more by calculating that∫
ex

2
dx = −1

2

√−π · erf(
√−1 · x)+ C

involving the error function, which cannot be expressed in finite terms.
Another recent example is the Kepler conjecture that the face-centered cubic packing

is the densest packing of equally sized balls. This almost 400-year-old conjecture was solved
by Hales in 1998 [188]. More examples can be found in [155].

So what is common and what are differences in the above examples? In other words,

What is a proof?

We do not want (and cannot) give a final answer to that question, but we want to offer some
relevant thoughts. The traditional mathematical proof can be followed line by line with
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198 Chapter 10. Computer-assisted Proofs and Self-validating Methods

pencil and paper. And this is still the classical way mathematicians work. As mathematicians
are human beings, they might draw false conclusions, and there are famous examples of
that. Often such “false” approaches, originally intended to prove some specific problem,
lead to other interesting and new insights. A typical and well-known example is Kummer’s
approach to prove Fermat’s Last Theorem. Although it did not prove the theorem, it led to
a deep and different understanding of the matter.

There are also examples of “theorems” that were accepted for years but proved later
to be false. A nice example is the following.

Not a Theorem. Let a C1 function f : RRR2 → RRR be given. For some given point x0,
assume that for every y ∈ RRR2 the projection fy : RRR→ RRR with fy(λ) := f (x0 + λy) has a
minimum at λ = 0. Then f has a minimum at x0.

This was presented in beginners’ courses in calculus some 100 years ago by saying
the “proof” is obvious. With today’s education we have seen too many counterexamples of
similar “theorems” and would ask for a solid proof. In this case, Peano (cf. [430]) gave the
nice counterexample f (x1, x2) = (x2

2 − 2px1)(x
2
2 − 2qx1) at the origin, where p > q > 0.

Moreover, a proof becomes a proof by human beings reading, understanding, and
accepting the proof. If a proof becomes lengthy and difficult, naturally the number of
mathematicians who really follow the ideas decreases. A famous example is the celebrated
result by Feit and Thompson, who proved in 1963 that all nonabelian finite simple groups
are of even order. They published this result in “Solvability of Groups of Odd Order,” a
250-page paper that appeared in the Pacific Journal of Mathematics, 13 (1963), pp. 775–
1029. Despite the importance of the paper several journals declined to publish it because
of its length.

Of course, we do not question the correctness of the result. The point is that acceptance
of a proof is also based on mutual trust: If trustworthy colleagues accept a proof, we also
tend to accept it—a very reasonable point of view.

So what does it mean to “follow and to accept” a proof? Consider the following story.
At the meeting of the American Mathematical Society in October 1903 in New York City,
Frank N. Cole gave a quite unusual “talk.” The story goes that when his talk was announced,
Cole went to the blackboard and wrote the following two integers

761838257287 ∗ 193707721

and multiplied them out manually. He then wrote

267 − 1

on the board and worked it out manually. The results of the two computations were equal.
Thunderous applause broke out. Cole sat down. He never spoke a word, and there were
no questions. The account of this event appeared in a letter in the February 1983 issue of
Scientific American. When asked later how long it took to find this factorization of the
Mersenne number, Cole explained, “Three years, every Sunday.”

Imagine if this happened today: how many of us would sit down and work out the
multiplications by hand? I guess many would at least use a pocket calculator or use some
computer algebra system—which can also be found on advanced pocket calculators today
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10.2. Proofs and Computers 199

(such as mupad and derive). I also guess that many of us would have no difficulty accepting
the use of such electronic equipment as part of the proof.

However, there are different levels of trust. I think it is fair to say that for the purpose
of supporting a mathematical proof,

• the use of pocket calculators is widely accepted,

• the use of computer algebra systems is more or less accepted,

• but the use of floating-point arithmetic seems questionable to many mathematicians.

But is this fair? Common sense is sometimes biased by what we want to believe. For
example, statistics tells us that the chance is higher one would be killed by a bee than by
a shark. Similarly, pocket calculators look simple enough to be reliable because—which
is of course true in a certain sense—the probability of an error may be considered to be
proportional to the complexity of the system. But does this mean that pocket calculators,
on the market for decades, are error-free?

We know that this is not true. Severe errors due to the limited length of the internal
accumulator occur in many pocket calculators (see Figure 10.3): the standard 8-digit plus-
minus-times-divide-square root pocket calculator with decimal point but without exponent,
the one you may have found as an ad in your mail for some years, are still widely in use today.

Figure 10.3. Pocket calculators with 8 decimal digits, no exponent.
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200 Chapter 10. Computer-assisted Proofs and Self-validating Methods

Calculate with any calculator of this kind

1 000 000− 999 999.99

Both numbers have 8 significant digits, so both can be stored in the calculator without any
error. If the units are Dollars, the result is obviously 1 cent, whereas the calculator will give
the result as 10 cents—a typical effect of the too short internal 8-digit accumulator: First
the numbers are adjusted according to their decimal point such that digits of equal value can
be added.

1 000 000
999 999.9 9

0.1

This implies that the subtrahend 999 999.99 has to be shifted one to the right. However, the
internal accumulator is also only 8 decimal digits long, so that the final figure 9 vanishes.
The result is a kind of catastrophic cancellation, but due to an inappropriate implementation
of the arithmetic.

So if such simple machines can produce results with a relative error of 900 %, we
might ask whether personal computers or mainframes can produce any reliable result at all.
Many would answer this question with a simple “no” meaning that “results obtained by
floating-point operations are per se not reliable.” Not long ago numerical mathematics was
considered “dirty.” And many people believe(d) that floating-point computations, where al-
most every operation is afflicted with some error, may produce some useful approximations,
but they are not suited for any kind of verification or guarantee.

The above example occurs not only in pocket calculators. For example, mainframes
such as the Univac 1108 in use until the 1980’s calculated

16777216− 16777215 = 2.

The reason is again the short accumulator of length 24 bits, the same as the working precision,
and 16777216 = 224. A similar error occurred in the early 1960’s in IBM S/360 mainframes,
and we can thank Vel Kahan that the company changed the architecture to cure this. Even
until very recently similarly poor implementations could be found in Cray supercomputers.
This is the reason why sometimes the statement

a = 2 ∗ a − a
can be found in programs. It “simulates” one bit less precision so that an accumulator of
working precision has one additional bit compared to this reduced precision.

10.3 Arithmetical Issues
To discuss whether it is at all possible to produce correct or validated results on a digital
computer, consider the following example. Let a real matrix A be given, and for simplicity
assume that all entries Aij are floating-point numbers. In other words, the matrix is exactly
representable in the computer. Can we “prove” that the matrix A is nonsingular?

A typical aspect of self-validating methods is the mutual benefit of theoretical analysis
and practical implementation. A possible theoretical approach goes as follows. Let R be an
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10.3. Arithmetical Issues 201

arbitrary real matrix, a preconditioner. If the spectral radius �(I − RA) is less than 1, then
R and A are nonsingular because otherwise C := I −RA would have an eigenvalue 1. By
Perron–Frobenius theory we know that ρ(C) ≤ ρ(|C|), where |C| denotes the nonnegative
matrix consisting of entrywise absolute values |Cij |. Moreover, a well-known theorem by
Collatz [98] says that

|I − RA|x < x (10.1)

for an arbitrary entrywise positive vector x implies ρ(|I − RA|) < 1, and therefore ρ(I −
RA) < 1 and R and A are nonsingular. In other words, if we can prove (10.1) for any
positive vector x, for example, the vector consisting of all 1’s, then we have proved A to be
nonsingular. The result remains true without any further requirements on the matrix R. A
good choice is an approximate inverse of A.

Now we aim to verify (10.1) in floating-point arithmetic. To do that we need further
information about properties of floating-point arithmetic or, as trivial as it sounds, we need
to know

How is the floating-point arithmetic in use defined?

Until the 1980’s not much information about this was available from computer manufac-
turers. This was one reason for a mutual initiative to define the first standardization of
floating-point arithmetic, the IEEE 754 binary standard in [215]. Among other things,
this standard defines the maximum relative error of all floating-point operations to be less
than or equal to the unit roundoff u. Moreover, the floating-point standard defines directed
roundings, a rounding downward and a rounding upward.

Today the IEEE 754 standard of floating-point arithmetic is implemented in the large
majority of all computers in use in scientific computation, from PCs to workstations to
mainframes. Switching the rounding mode is frequently done by setting the processor into
a specific rounding mode. For example, if the processor is switched to rounding downward,
then every subsequent floating-point operation yields as the result the unique maximal
floating-point number less than or equal to the exact result. This is quite a remarkable
property, and it is a mathematical property we can build upon.

Denote by fl(expression) the value of an expression with all operations executed as
floating-point operations. Moreover, let fl∇(expression) and fl�(expression) denote that the
rounding mode has been switched to downward or upward, respectively (if the rounding
symbol is omitted, we assume rounding to nearest). Then, we already obtain the mathemat-
ical statement

for all x, y ∈ FFF : fl∇(x + y) = fl�(x + y) ⇔ x + y ∈ FFF.

The (true, real) result of a floating-point operation is a (representable) floating-point number
if and only if the floating-point results obtained by rounding downward and rounding upward
are equal. This is also true for subtraction, multiplication, and division. It is also true for
the square root:

for all x ∈ FFF : fl∇(
√
x) = fl�(

√
x) ⇔ √

x ∈ FFF.

These results are also true in the presence of underflow; it is a mathematically reliable
statement. At this point one may argue that this, as a mathematical statement, is true only
as long as
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202 Chapter 10. Computer-assisted Proofs and Self-validating Methods

• the implementation of floating-point arithmetic actually follows the definition by the
IEEE 754 standard,

• the compiler, the operating system, and in fact all of the hardware and software
involved are working correctly,

• no external distortions, such as very short power failures, radiation, and other nasty
things occur.

This is absolutely true. In this sense we can never trust the result of any machine, and
mathematical proofs with the aid of computers are not possible at all (however, human
brains may also fail). On the other hand, the arithmetic of digital computers is tested very
thoroughly every day, and a failure, at least due to one of the first two reasons, seems unlikely.

But there is more than a “likeliness argument,” and we want to further explore this.
Years ago I was working on a rigorous implementation of elementary standard functions,
and I had an intensive discussion about the accuracy and reliability of the standard functions
provided by some library. In a nutshell, I was asked why it is necessary at all to work on
“reliable” standard functions when no example is known where the existing library produces
an error greater than one unit in the last place.

But there is a fundamental difference between the accuracy of the floating-point arith-
metic and the accuracy of standard functions in a library. The latter are implemented by
very clever techniques such as continued fractions, table-based approaches, or Cordic al-
gorithms. Everything is done to provide an accurate approximation of the result. But for
most libraries there is no rigorous error estimate valid for all possible input arguments.
And millions of nonfailing tests cannot prove that an algorithm never fails. In contrast,
the implementation of floating-point algorithms according to the IEEE 754 standard is well
understood, and the analysis shows that conclusions like (10.1) are valid for all possible
input arguments.

So the mathematical specification of the algorithms for floating-point arithmetic can
be correct and never-failing, but the implementation might not follow the specification. We
assume in the following that the implementation of floating-point arithmetic follows its
specification and therefore the IEEE 754 standard, and that the software and hardware in
use are operating correctly. Then, we may ask again whether it is possible to validate results
with the aid of digital computers.

For the above example, to validate (10.1) and therefore the nonsingularity of the matrix
A this is simple. The only additional knowledge we need is that when x is a floating-point
number, |x| is a floating-point number as well. Then, for given R,A, and x, we calculate

C2 := fl∇(R ∗ A− I ),
C1 := fl�(R ∗ A− I ),
C := max(abs(C1), abs(C2)),

y := fl�(C ∗ x).
By definition,

fl∇(rik · akj ) ≤ rik · akj ≤ fl�(rik · akj ) for all i, j, k,

and therefore
C1 ≤ RA− I ≤ C2,
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10.4. Computer Algebra Versus Self-validating Methods 203

where the comparison is to be understood entrywise. This implies

|I − RA| ≤ max(|C1|, |C2|) = C,
where maximum, absolute value, and comparison are again to be understood component-
wise. Combining this with (10.1) it follows that

y < x implies A (and R) are nonsingular.

Note that the inequalities need not to be true when replacingRA−I by I−RA. Also note that
this approach needs two switches of the rounding mode and otherwise only floating-point
operations; in particular, no branches are required. This means that matrix multiplications
can be performed by BLAS routines [285, 124, 120, 122] and thus are very fast. So in a
certain way the rounded operations create speed with rigor. In the following we want to
discuss this in more detail, particularly the domain of applicability and the distinction from
computer algebra methods.

10.4 Computer Algebra Versus Self-validating Methods
A major objective of computer algebra methods is to deliver not only correct answers but
also exact answers. For example, it is standard to calculate in algebraic number fields [173].
Then, for instance, 3

√
17 − 5

√
5 is not calculated by some numerical approximation within

hundreds of digits of accuracy but as an element of a suitable algebraic extension of the field
of rational numbers. Thus the operation is exact. This allows for the development of so-
called decision algorithms: Given an inquiry as a yes/no problem, a decision algorithm will
definitely answer this question in a finite computing time, where the latter can be estimated
in terms of the length of the input data.

We already mentioned famous examples of decision algorithms, such as quantifier
elimination and Risch’s integration in finite terms. Another famous and well-known example
for the power of computer algebra algorithms is Gröbner bases. For a given system of
multivariate polynomial equations it can be decided whether these are solvable, and the
number of solutions can be calculated as well as inclusion intervals for the roots. A major
breakthrough was the development of constructive and fast algorithms [58, 59].

Computer algebra methods generally always compute exactly. There are exceptions
in the sense that error bounds may be calculated, if this is sufficient. But in that case there
is usually a fall-back algorithm if error bounds are not of sufficient quality.

Exact computations may take quite some computing time. In contrast, self-validating
methods calculate in floating-point arithmetic. This means they are fast, with the possibility
of failure in the sense that no answer can be given. As we will see, they can never fail by
giving a false answer.

This is the reason why self-validating methods are applicable only to well-posed
problems. For example, we can verify that a matrix is nonsingular, but in general it is not
possible to verify that it is singular. If the answer to a problem can change for arbitrarily
small changes of the input data, then the problem is ill-posed and the slightest rounding
error may change the answer. But self-validating methods intentionally use floating-point
arithmetic, so such problems are beyond their scope.
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204 Chapter 10. Computer-assisted Proofs and Self-validating Methods

Similarly, it is possible to calculate an inclusion of a multiple eigenvalue [390] or of a
multiple root of a polynomial [393]. However, it is not possible to verify that the eigenvalue
or root is indeed multiple, that is, that the multiplicity is greater than one. The computation
of error bounds for a multiple root is well-posed, whereas the fact that the multiplicity is
greater than one is ill-posed: The fact may change for arbitrarily small perturbations of the
input data. So we may say that one reason for the speed of self-validating methods is the
inaccuracy (the rounding) of floating-point operations.

One example of self-validating methods is that equation (10.1) implies nonsingularity
of the matrices A and R. This is in fact a mainstream of self-validating methods, that is,

to verify the assumptions of mathematical theorems with the aid of digital computers.

This implies validity of the assertions, as in the simple example the nonsingularity of ma-
trices. Obviously, the only requirement for the arithmetic in use to verify (10.1) is the
availability of true error bounds. Using directed roundings is one possibility, using exact
arithmetic would be another, and there are more possibilities. Another possibility that is
widely used is interval arithmetic. Interval operations have the advantage of easy formu-
lation and implementation. However, interval arithmetic does not have the best reputation.
We will come to that in a moment.

10.5 Interval Arithmetic
Closed intervals are one possibility for representing sets of numbers. They were already
described in a little recognized but nevertheless very comprehensive paper by Sunaga [432];
see also [318]. For the moment we ignore rounding errors and representation on the computer
but define the set IIIRRR of real intervals as usual by

A ∈ IIIRRR :⇔ A �= ∅ and A = [a, a] = {x ∈ RRR : a ≤ x ≤ a}.
In the degenerate case a = a, the interval [a, a] represents one real number a = a = a and
can be identified with it. This defines the natural embedding of RRR into IIIRRR using so-called
point intervals [a, a]. The interval operations between real intervals are just the power set
operations. One easily verifies for all A = [a, a], B = [b, b] ∈ IIIRRR and ◦ ∈ {+,−, ·, /}
{a ◦ b : a ∈ A, b ∈ B} =⋂{C ∈ IIIRRR : a ◦ b ∈ C for all a ∈ A, b ∈ B}

= [min(a ◦ b : a ∈ A, b ∈ B),max(a ◦ b : a ∈ A, b ∈ B) ]
= [min(a ◦ b, a ◦ b, a ◦ b, a ◦ b),max(a ◦ b, a ◦ b, a ◦ b, a ◦ b) ]
=: A ◦ B,

where 0 /∈ B in case of division. It is also evident that

A+ B = [a + b, a + b],
A− B = [a − b, a − b].

The quality of an interval may be measured by its diameter d(A) = d([a, a]) = a−a. One
computes

d(A+ B) = d(A)+ d(B),
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10.5. Interval Arithmetic 205

but also d(A − B) = d([a − b, a − b]) = (a − b) − (a − b) = (a − a) + (b − b), and
therefore

d(A− B) = d(A)+ d(B). (10.2)

So the diameter of the sum and of the difference of two intervals is equal to the sum of the
diameters. This is a major reason for overestimation, as we will discuss in more detail later.

Similarly, bounds for multiplication and division can be determined by some case
distinctions depending on the operands being entirely positive, negative, or including zero,
respectively. Interval vectors can be defined equivalently by [x1, x1]

. . .

[xn, xn]

 ∈ (IIIRRR)n or X = [x, x] ∈ IIIRRRn,

where the latter uses the partial ordering of vectors by componentwise comparison. We
proceed similarly for matrices and define operations among matrices, vectors, and scalars
by replacing every operation in the usual definition by the corresponding interval operation.
For example, Y = AX for interval quantities X, Y ∈ IIIRRRn and A ∈ IIIRRRn×n is defined by

Y := AX with Yi :=
n∑
k=1

AikXk for 1 ≤ i ≤ n, (10.3)

where additions and multiplications are the corresponding (scalar) interval operations. Ob-
viously,

ỹ = Ãx̃ ∈ Y for all Ã ∈ A, x̃ ∈ X.
This is one incarnation of the fundamental underlying principle of the inclusion isotonicity
for all interval operations:

Inclusion isotonicity: For all interval quantities A,B and all operations ◦ ∈ {+,−, ·, /}
such that ã ◦ b̃ is well defined for ã ∈ A, b̃ ∈ B there holds

ã ◦ b̃ ∈ A ◦ B for all ã ∈ A, b̃ ∈ B. (10.4)

Inclusion isotonicity, the central property of interval arithmetic

We mention that the definition of interval operations is the best possible with respect
to inclusion isotonicity: Moving any of the bounds “inward” will violate (10.4). However,
there is nevertheless some overestimation. Consider

A ·X :=
(−1 2

1 2

)( [1, 2]
[1, 3]

)
=

( [0, 5]
[3, 8]

)
.

This defines a linear transformation of a rectangle resulting in a parallelogram. The
resulting interval vector is the best possible in the sense that both interval components [0, 5]
and [3, 8] cannot be narrowed without violating inclusion isotonicity. It is easy to find (real)
vectors out of X such that the bounds 0, 5, 3, and 8 of the resulting interval vector are met.
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Figure 10.4. Point matrix times interval vector.

However, Figure 10.4 displays the true rectangle AX. Obviously no vector x ∈ X can
be found such that Ax̃ = (0, 3)T for x̃ ∈ X. This illustrates a common pitfall of interval
arithmetic: GivenA ∈ RRRn×n, b ∈ RRRn, andX ∈ IIIRRRn, and check b ∈ AX to verifyA−1b ∈ X.
This is an incorrect conclusion because

for all x ∈ X : Ax ∈ AX
but not necessarily

y ∈ AX ⇒ ∃ x ∈ X : y = Ax.
These fundamentals of interval operations have been written down many times, and the inter-
ested reader is referred to [319], [340], or [11] and the literature cited therein for more details.

We briefly mention that complex interval arithmetic can be defined as well. In this
case, for function theoretical reasons, it seems more appropriate to use discs, i.e., a midpoint-
radius arithmetic (but rectangular arithmetic is also used). Define for a ∈ C, 0 ≤ r ∈ RRR,

〈a, r〉 := {z ∈ C : |a − z| ≤ r}. (10.5)

Then interval operations satisfying inclusion isotonicity have been defined in [159], for
example,

〈a, r〉 · 〈b, s〉 := 〈ab, |a|s + r|b| + rs〉. (10.6)

Corresponding complex interval vector and matrix operations are defined similarly as in
(10.3).

10.6 Directed Roundings
The definitions thus far are for real bounds and exactly performed operations. For imple-
mentation on digital computers, special care must be taken since the result of a floating-point
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operation is, in general, not a floating-point number. These problems can be solved by us-
ing directed rounding. First, recall that the set IIIFFF of intervals with floating-point bounds is
defined by

A ∈ IIIFFF :⇔ A �= ∅ and A = [a, a] = {x ∈ RRR : a ≤ x ≤ a} for a, a ∈ FFF.

Note that the two floating-point bounds a and a represent the set of all real numbers between
them. In the degenerate case a = a this is one single floating-point number, and every
floating-point number can be identified with this point interval. In other words, FFF ⊆ IIIFFF with
the natural embedding. When computing with intervals having floating-point endpoints the
same definitions as above can be used except that the lower bound is computed by rounding
downward, and the upper bound is computed by rounding upward. For example,

[a, a] + [b, b] = [fl∇(a + b), fl�(a + b)]
or

[a, a] − [b, b] = [fl∇(a − b), fl�(a − b)].
Other definitions follow the same lines. For example, definition (10.3) of Y = AX does
not change, but interval additions and multiplications are now performed with floating-point
endpoints; i.e., the operations are executed with directed roundings. One may argue that this
requires many switches of the rounding mode and may slow the computation significantly.
This is indeed true, and we will discuss how to overcome this problem later.

Before continuing we mention that the interval arithmetical operations are imple-
mented in a number of software packages. Most easy to use is INTLAB [389], a recent
implementation as a MATLAB interval toolbox. A nice introduction to INTLAB and a
tutorial can be found in [196]. INTLAB has a built-in new data type called intval, and
due to operator overloading every operation between an intval-quantity and something
else (for example, a real or complex number, or a real or complex interval) is recognized
as an interval operation and executed with directed rounding. For example, an INTLAB
implementation, i.e., executable code, of the above algorithm to verify nonsingularity of a
matrix may be as in the program in Figure 10.5.

R = inv(A);
C = abss(eye(n)-R*intval(A));
x = ones(n,1);
setround(+1)
nonsingular = all( C*x < x )

Figure 10.5. INTLAB program to check |I −RA|x < x and therefore the nonsin-
gularity of A.

We want to stress that this is executable code in INTLAB. Given a square matrix A of
dimensionn, first an approximate inverseR is computed using pure floating-point arithmetic.
Then, the multiplication R*intval(A) is performed in interval arithmetic since the type
cast intval(A) transforms the matrix A to an interval matrix. The result is of type
intval, so that the subtraction eye(n)-R*intval(A) is also an interval subtraction.
For an interval matrix C ∈ IIIFFFn×n, the function abss is defined by

abss(C) := max{|C̃| : C̃ ∈ C},
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208 Chapter 10. Computer-assisted Proofs and Self-validating Methods

where the maximum is to be understood entrywise. So abss(C)∈ FFFn×n satisfies |C̃| ≤
abss(C) for all C̃ ∈ C, and this is the entrywise smallest matrix with this property. This
implies

|I − RA| ≤ C,

where C denotes the computed (floating-point) result. The vector x is defined to be a vector
of ones, and setround(+1) switches the rounding mode to upward. So the product C*x
of the nonnegative quantities C and x is an upper bound of the true value of the product.
The assertion follows.

Note that the value nonsingular=1 proves A to be nonsingular, whereas the value
nonsingular=0 means the algorithm failed to prove nonsingularity. Rather than giving
a false answer the result is to be interpreted as “don’t know.” So this self-validating program
may fail to prove nonsingularity (for very ill-conditioned matrices), but it never gives a false
answer. In contrast, a computer algebra algorithm could always decide nonsingularity or
singularity when computing in sufficiently long arithmetic or infinite precision.

At this point we note that almost every self-validating algorithm for point data can
be transformed into a corresponding one accepting interval data. In the above case let an
interval matrix A ∈ IIIFFFn×n be given. It represents the set of all real matrices Ã within the
interval entries. The question is whether every matrix Ã within A is nonsingular. Consider
the algorithm in Figure 10.6.

R = inv(mid(A));
C = abss(eye(n)-R*intval(A));
x = ones(n,1);
setround(+1)
nonsingular = all( C*x < x )

Figure 10.6. INTLAB program for checking nonsingularity of an interval matrix.

The only difference between this and the program in Figure 10.5 is the first line. Here
mid(A) denotes the mid-point matrix of A. We claim that the result nonsingular=1
proves that every matrix Ã ∈ A is nonsingular. The proof of this fact is very simple and very
typical for self-validating methods. Let Ã ∈ A be a fixed but arbitrary (real) matrix. Then,
by the fundamental principle (10.4) of inclusion isotonicity,

I − RÃ ∈ I − RA and therefore |I − RÃ| ≤ C,

and the assertion follows. The point is to take any fixed but arbitrary data out of the input
data and apply inclusion isotonicity. What is true for interval data is true for every point
data out of the interval data.

For interval rather than floating-point input data intval in the second line of the
program in Figure 10.6 could be omitted. In the stated way the program works correctly for
interval as well as for noninterval input matrices.

We note that the proof of nonsingularity of an interval matrix is nontrivial. In fact this
is an NP-hard problem; see [365]. We also note that the present implementation is nothing
else but to check ‖I − RA‖∞ < 1, which, of course, implies nonsingularity of R and A. If
the vector x=ones(n,1) fails to prove nonsingularity, one may iterate x. This is a power
iteration to approximate the Perron vector of C.
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10.7 A Common Misconception About Interval Arithmetic
The arguments so far follow a simple but powerful pattern: If arithmetic operations are
replaced by their corresponding interval operations, then the true result must be an element
of the interval result. In our example we used this to prove |I − RA|x < x and therefore
the nonsingularity of the matrix A. This technique might be applied to any numerical al-
gorithm, for example, to Gaussian elimination for a linear system Ax= b. After execution,
the true result, the solution of the system of linear equations Ax= b must be an element
of the computed interval result, provided no pivot element contained zero, because otherwise
the algorithm would come to a premature end.

This technique is called naive interval arithmetic and represents the most common
misuse of interval arithmetic. For a general application this approach will most certainly fail.
Note that the assertion, namely, that the final interval result contains the exact solution of
the linear system, thereby also proving nonsingularity of the matrix in use, is true. However,
this approach will most certainly come to a premature end due to a pivot interval containing
zero. The reason is interval dependency, and we will explain the effects with a simple
example.

Consider a linear system with lower triangular matrix, where all elements on and
below the diagonal are equal to 1, and a right-hand side with all elements being equal to 1
except the first one, which is equal to 0.1. For n = 4 the linear system looks as follows:

1
1 1
1 1 1
1 1 1 1



x1

x2

x3

x4

 =


0.1
1
1
1

. (10.7)

The real number 0.1 is not exactly representable in binary floating point, so to treat the
original linear system it has to be replaced by some interval [β, β] containing 0.1, where

β and β are adjacent binary floating-point numbers. This is an optimal inclusion, the best
one can do in finite precision. For simplicity of the following we change this interval to
midpoint-radius notation [β, β] = α ± u, where α is the midpoint of [β, β] and u is the
radius. Now we perform a forward substitution using interval operations, and we will do this
theoretically without any further rounding, i.e., using real interval operations. Obviously,

X1 = α ± u,
X2 = 1−X1 = 1− α ± u,
X3 = 1−X1 −X2 = X2 −X2 = ±2u,
X4 = 1−X1 −X2 −X3 = X3 −X3 = ±4u.

The point is that the interval subtraction X2 −X2 does not cancel to zero but is an interval
with midpoint zero and doubled diameter. As we saw in equation (10.2), this is always the
case.

So, from X2 on, the diameter of every Xi doubles and the overestimation grows
exponentially! Unfortunately, this is the typical behavior for this kind of naive interval
approach. For the same reason it is most likely, even for small dimensions, that a pivot
interval will contain zero at an early stage of naive interval Gaussian elimination—unless
the matrix has special properties such as being an M-matrix.
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210 Chapter 10. Computer-assisted Proofs and Self-validating Methods

In Table 10.1 we show some statistics obtained for randomly generated matrices, where
all matrix elements are uniformly distributed within [−1, 1]. For matrix dimensions n =
40 . . . 70 we generate 100 samples each and monitor the average and maximum condition
number, the number of failures of naive interval Gaussian elimination, i.e., the number of
cases where a pivot element contains zero, and, for the nonfailing cases, the average and
maximum of the radius of Unn.

Table 10.1. Exponential growth of radii of forward substitution in equation (10.7)
in naive interval arithmetic.

cond(A) rad(Unn)
n average maximum failed average maximum

40 4.5280 · 102 9.7333 · 103 0 3.5633 · 10−4 4.6208 · 10−3

50 8.9590 · 102 4.5984 · 104 1 7.1158 · 10−1 3.8725 · 101

60 1.6132 · 103 9.1094 · 104 98 1.5774 · 100 1.5603 · 102

70 1.1159 · 103 4.3883 · 104 100 - -

The failure is not a question of the condition number of the matrix but of the number
of operations. The failure is due to the fact that certain computations depend on previous
computations. The previously computed results are already perturbed by some error, and
this amplifies in the next computation and so forth. This effect can also be read off the radius
of the diagonal elements Uii . Figure 10.7 shows typical behavior for a random matrix of
dimension n = 50 on a semilogarithmic scale.

0 5 10 15 20 25 30 35 40 45 50 55
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Figure 10.7. Naive interval Gaussian elimination: Growth of rad(Uii).
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10.7. A Common Misconception About Interval Arithmetic 211

These observations also give the key to the design of self-validating methods. First,
using already computed data may cause amplification of interval diameters; therefore, one
should try to use original data as much as possible. Second, the only way to decrease the
radius of result intervals is to multiply them by a small factor (or divide by a large one).
Adding and subtracting intervals add the radii. Therefore, one should try to have small
factors multiplying interval quantities where possible.

Before continuing, two things should be mentioned. First, the application of interval
methods is not restricted to linear problems and/or basic arithmetical operations. There
are libraries for the standard elementary functions available [51, 267] for real and complex
point and interval data. Also INTLAB provides rigorous interval standard functions for
real and complex input data [391]. For any elementary standard function f and for any
real or complex interval X, the computed result f (X) is a superset of all f (x) for x ∈ X.
For monotone functions such as the exponential or logarithm this requires only rigorous
standard functions for a point argument. For functions like sine some case distinctions
are necessary. For the sine and other periodic functions an accurate argument reduction is
also necessary [358] in order to maintain accuracy of the result for larger arguments. All
this is implemented in INTLAB, which is fast and accurate even for very large arguments,
following the methods presented in [391].

The second remark is that the naive interval approach may cause exponential over-
estimation, as in naive interval Gaussian elimination, but it need not. Consider the fol-
lowing example which describes exactly how it happened to us. In global optimization
there are a number of well-known test functions, among them the following example by
Griewank:

g(x) = (x2 + y2)/4000+ cos(x) cos(y)/
√

2+ 1. (10.8)

The minimum of this function in the domain

−60 ≤ x ≤ 60 and − 60 ≤ y ≤ 60

is sought. In order to obtain a first overview we plotted this function. Figure 10.8 from
MATLAB displays 20 meshpoints in each coordinate direction.

At first sight one may wonder why it should be difficult to find the minimum of
this (apparently convex) function. Calculating the minimum of the function values at the
meshpoints yields 1.7119. By nature this is in fact an upper bound for the minimum. Interval
evaluation is also very simple. The following

G = inline(’(xˆ2+yˆ2)/4000+cos(x)*cos(y)/sqrt{2}+1’)

>> X = infsup(-60,60); Y = X; G(X,Y)

is executable INTLAB code and yields

intval ans =
[ 0.2928, 3.5072]
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Figure 10.8. Plot of the function in equation (10.8) with 20 meshpoints in x- and
y-directions.

Note that the left endpoint is a true lower bound of the true minimum of the function g within
the domain under investigation. One may argue that some, though not much, overestimation
took place. However, evaluating the same function with 50 meshpoints in each direction
produces Figure 10.9.
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Figure 10.9. Plot of the function in equation (10.8) with 50 meshpoints in x- and
y-directions.
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This reveals more of the true nature of this nasty function and justifies its use as a
test function for global optimization. The minimum of the 502 function values is 0.3901,
again an upper bound for the true minimum. Evaluation at 2000 meshpoints in each di-
rection, that is, a total of 4 million meshpoints, yields the upper bound 0.2957 for the
true minimum, not too far from the valid lower bound 0.2928 obtained by naive interval
evaluation.

Although sometimes affected by overestimation, naive interval evaluation provides a
very powerful tool to estimate the range of a function over a domain. This estimation is
valid and rigorous and is obtained in a very simple way without any further knowledge of
the behavior of the function, a quite remarkable property.

This is why during the first steps of the development of verification algorithms people
were a little overwhelmed by this powerful property. So sometimes interval methods were
advocated to solve numerical problems per se in an easy and elegant way, with automatic
verification of the correctness of the results. To be fair, we must say that up to that time,
in the 1960’s, computers and programming languages were in a fairly premature state.
Compared to today’s possibilities we readily have at hand, this is more like a horse pulled
carriage compared to a sportscar. In particular, powerful interactive numerical programming
environments like MATLAB were not widely available. So testing was not as easy as we
have become accustomed to today at the push of the fingertip.

No wonder it took some time until others could try to verify the claims. Additionally,
this was hindered by the fact that interval operations were available to few. And finally,
computers were still slow. It could take a couple of minutes to solve a 100 × 100 linear
system (cf. the enlightening Table 9.2 in [205]), not to mention how much additional time
software simulation of interval operations would consume; and, of course, not everybody
had access to the fastest computers.

But then people tried standard examples, such as naive interval Gaussian elimination,
and had to assert that there is quite some overestimation. In fact, exponential overesti-
mation is not only not rare but rather typical. No wonder interval advocates were mea-
sured by their own claims, and this remains the reason for divided reputation of interval
analysis.

Naive interval arithmetic can also be regarded as an automated forward error analysis:
The worst case of every single operation is estimated. For Gaussian elimination this has
been shown in the famous paper [344]. The results were very pessimistic, as are those of
naive interval arithmetic. This paper led for some time even to the conclusion that larger
linear systems could not be solved reliably on digital computers because of accumulating
rounding errors. Here, “large” could mean dimension 10; remember that, for example, in
1947 a 10× 10 linear system was successfully solved on the Harvard Mark I in 45 minutes
of computing time [37]. This was “fast” compared to the 4 hours for a problem of the same
size on an IBM 602 in 1949 [466].

This kind of automated forward error analysis, i.e., naive interval analysis, estimates
the worst case error of every simple operation, and it treats all operations as being indepen-
dent. But rounding errors are not independent, and they are also by no means randomly
distributed (cf. the enlightening talk by Kahan [249]). Fortunately we know today how to
estimate the forward error very precisely, for example, in terms of the condition number.

However, interval analysis has developed since then, and the times of naive inter-
val approaches are long over. In addition, despite overestimation, such an easy way to
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obtain a valid inclusion of the range of a function can be useful. Moreover, the overes-
timation in naive interval Gaussian elimination for matrices with larger dimension stems
from using computed results over and over again. This is not the case when using other
algorithms.

Let us again consider an example, the computation of the determinant of a matrix.
One method is, of course, to use Gaussian elimination and to compute the product of the
diagonal elements of the factor U . This approach may work for small dimensions but
definitely not for larger ones. Another approach is given in the program in Figure 10.10,
again an executable INTLAB program.

[L U P] = lu(A);
Linv = inv(L);
Uinv = inv(U);
B = Linv*intval(P*A)*Uinv;
B0 = B;
B0(1:n+1:n*n) = 0;
G = diag(B)’ + midrad(0,abss(sum(B0)));
d = prod(G)/prod(intval(diag(Uinv)))/det(P)

Figure 10.10. INTLAB program for the inclusion of the determinant of a matrix.

Here Linv and Uinv are approximate inverses of the approximate LU-factors of
A. Then B is an inclusion of Linv*P*A*Uinv, so the determinant of B is equal to the
quantity± det(A)prod(diag(Uinv)), with the plus or minus depending on the sign
of the permutation matrix P. The next statements compute an inclusion of the product of
the Gershgorin circles of B, which is an inclusion of the product of the eigenvalues of
LinvPAUinv, which in turn is equal to the determinant. The final line then computes an
inclusion of the determinant of A.

The point is (i) to use original data where possible, (ii) to use floating-point approxima-
tions where possible, and (iii) to design the algorithm in a way that potential overestimation
is minimized. This is the fundamental difference between the naive approach and a self-
validating method. Figure 10.11 shows the accuracy by means of the relative error of the
inclusion of the determinant calculation by naive interval Gaussian elimination (depicted
by “×”) and by the above algorithm (i.e., Gershgorin applied to a preconditioned matrix,
depicted by “◦” for dimensions 10 to 500).

All matrices were generated randomly with entries uniformly distributed in [−1, 1].
Since the determinant of such random matrices of larger dimension are likely to be out of
the floating-point range, matrices are scaled by powers of 2 to avoid this. For example,
the determinant of a matrix of dimension 500 will be calculated in double precision by the
above algorithm to about 8 correct figures. The naive approach cannot handle matrices of
dimension greater than 60.

The lesson is that what works well for numerical computations need not be a good
method for interval approaches. We need individual methods for each given problem. Stan-
dard numerical methods may help (and they do), but usually something more is needed.
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Figure 10.11. Comparison of a naive interval algorithm and a self-validating
method: Naive Gaussian elimination depicted by “×,” Gershgorin for preconditioned ma-
trix by “◦.”

10.8 Self-validating Methods and INTLAB
Consider a system of nonlinear equations given by a function f : RRRn → RRRn ∈ C1, for
which we look for an inclusion of a zero x̂ near some approximation x̃. A simplified
Newton procedure transforms the function f into a function g with

g(x) := x − Rf (x)
for some preconditionerR. A standard choice forR is an approximate inverse of the Jacobian
of f at x̃. Suppose R is nonsingular and there is some interval vector X ∈ IIIRRRn with

g(X) ⊆ X.
That means the continuous function g maps the nonempty, convex, and compact set X into
itself, and Brouwer’s fixed point theorem implies existence of a fixed point x̂ of g in X:

∃ x̂ ∈ X : g(̂x) = x̂.
By definition this implies

R · f (̂x) = 0 and therefore f (̂x) = 0
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because R was supposed to be nonsingular. In other words, the set X is proved to be an
inclusion of a zero of f if we can verify that (i) R is nonsingular, and (ii) g maps X into
itself. The first problem might be solved by the previously described method, and the second
one by observing that

g(X) ⊆ X − R · f (X).
This is a naive approach, and it definitely does not work. Although it is correct that X −
R · f (X) ⊆ X implies g(X) ⊆ X and therefore there exists a zero of f in X, the condition
X − R · f (X) ⊆ X can be satisfied only if R · f (X) = 0, which in turn is possible only
if f (X) ≡ 0. The overall approach is good, but the point is that the condition g(X) ⊆ X
must be verified another way.

A convenient way to do this is by using a first-order Taylor expansion, i.e., the mean
value theorem. To do this we need the differential of a function, and this can be conveniently
calculated by automatic differentiation. We assume the reader is familiar with this tech-
nique; for an overview see [370] and [178]. The forward mode of automatic differentiation
can easily be implemented in every programming language with an operator concept. In
MATLAB version 5 and following versions there is a nice and easy-to-use operator concept
available. Consider, for example, Broyden’s test function [57]

f1(x, y) = 0.5 sin(xy)− y

4π
− x

2
,

f2(x, y) =
(

1− 1

4π

)
· (e2x − e)+ e y

π
− 2ex.

(10.9)

A MATLAB implementation of the function in equation (10.9) may use the inline concept:

>> f = inline(’[ .5*sin(x*y) - y/(4*pi) - x/2 ; ...
(1-1/(4*pi))*(exp(2*x)-exp(1)) + exp(1)*y/pi ...
- 2*exp(1)*x ]’)

Then the function value at x = 0.5 and y = 3 can be calculated by

>> f( [ .5 ; 3 ] )
ans =

0.0100
-0.1225

This is the screenshot from MATLAB. In INTLAB, we implemented automatic differenti-
ation in forward mode. The corresponding call is

>> f( gradientinit( [ .5 ; 3 ] ) )
gradient value ans.x =

0.0100
-0.1225

gradient derivative(s) ans.dx =
-0.3939 -0.0619
-0.4326 0.8653
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The computed result is an approximation of the Jacobian of f evaluated at (x, y) = (0.5, 3).
The remarkable property of interval arithmetic is the possibility of estimating the range of a
function without any further knowledge of the function. In this example we may evaluate the
range of Broyden’s function for x = 0.5 and y varying within [2.9, 3.1]. The INTLAB call is

>> Z = [ .5 ; infsup(2.9,3.1) ]; f(Z)
intval ans =

[ -0.0004, 0.0192]
[ -0.2091, -0.0359]

The result must be a superset of all function values f (0.5, y) for 2.9 ≤ y ≤ 3.1. In the
same way we may calculate the range of function values and the range of partial derivatives:

>> f(gradientinit(Z))
intval gradient value ans.x =

[ -0.0004, 0.0192]
[ -0.2091, -0.0359]

intval gradient derivative(s) ans.dx =
[ -0.4699, -0.3132] [ -0.0744, -0.0494]
[ -0.4327, -0.4326] [ 0.8652, 0.8653]

The mathematical assertion is that for every (x, y) within Z the values of the partial deriva-
tives of f are included in the intervals shown. However, this correct mathematical assertion
refers to the given function f and the given intervalZ. Here things are a little tricky because
of possible conversion errors, and we want to bring attention to this. When the user inputs
the interval Z = infsup(2.9,3.1), the set of real numbers between the real numbers
2.9 and 3.1 is anticipated. Neither 2.9 nor 3.1 is exactly representable in floating point.
So, to be on the safe side, the smallest interval with floating-point endpoints containing this
real interval is the best choice. But the function infsup, which creates an interval of the
given endpoints, requires floating-point input parameters. And the input data 2.9 and 3.1
are already converted to binary floating point when arriving at the function infsup.

This is a common problem in every programming language. In order to round the
input data correctly, seemingly the only way is to specify it as a string and to perform the
conversion in the correct way. The INTLAB input may be

Y = intval(’[2.9,3.1]’); Z = [ .5 ; Y ];

Accidentally (or luckily?) the intervals Y and infsup(2.9,3.1) coincide. This solves
the first problem that the input data are not exactly representable.

The second problem is that the original Broyden function contains the constant π .
The MATLAB constant pi is the best double precision floating-point approximation to the
transcendental number π , but, of course, is not equal to π . For floating-point evaluation of
the function or the gradient value this is no problem; in fact, it is the best one can do. But
for a valid estimation of the range, it is not enough.

The problem is a little delicate because for floating-point evaluation, i.e., floating-
point arguments, we wish to use the floating-point approximation pi, whereas for range

Chapter from Accuracy and Reliability in Scientific Computing, edited by Bo Einarsson.  
Copyright 2005, Society for Industrial and Applied Mathematics



handb
2005/6
page 2

�

�

�

�

�

�

�

�

218 Chapter 10. Computer-assisted Proofs and Self-validating Methods

estimation we wish to use a valid inclusion of the transcendental number π . So the constant
in the function depends on the type of the input argument. This is solved in INTLAB as in
the program in Figure 10.12.

function y = f(x)
y = x;
cpi = typeadj( intval(’3.14159265358979323’) , typeof(x) );
c1 = typeadj( 1 , typeof(x) );
y(1) = .5*sin(x(1)*x(2)) - x(2)/(4*cpi) - x(1)/2;
y(2) = (1-1/(4*cpi))*(exp(2*x(1))-exp(c1)) ...

+ exp(c1)*x(2)/cpi - 2*exp(c1)*x(1);

Figure 10.12. INTLAB program of the function in equation (10.9) with special
treatment of π .

The function typeof determines whether x is of type intval. Then the function
typeadj adjusts the output to the same type as the second input argument. If both argu-
ments of typeadj are of type interval or not of type interval, nothing happens. Otherwise,
the output either is the midpoint of the first argument or it is the point interval equal to the
first argument. In that way either an approximation of π or an inclusion is used, depending
on the type of the input argument x.

Note that the same is applied to the constant 1. Of course, 1 is exactly representable
in floating point. But in the function, exp(1) is calculated. The operator concept ad-
heres strictly to the type concept, which means that exp(1) computes a floating-point
approximation to the transcendental number e, whereas exp(intval(1)) calculates an
inclusion.

Let us now turn to the calculation of bounds for the solution of systems of nonlinear
equations. We mention only some characteristic points, as there are a number of well-written
surveys (see, for example, [11, 392]). We need an estimation of the range g(X). So first the
function g is expanded at some x̃, an approximate zero of f . Denote the convex union by
∪. Then for every x we have

g(x) = g(̃x )+M · (x − x̃ ), (10.10)

where Mi = ∂g

∂x
(ζi), ζi ∈ x ∪ x̃. Note that the points ζi are determined individually within

x ∪ x̃. Then, for every x ∈ X,

g(x) = g(̃x)+M · (x − x̃)
= x̃ − R · f (̃x)+ {I − R ·M}(x − x̃)
⊆ x̃ − R · f (̃x)+ {I − R · [M]}(X − x̃)
=: Kf (̃x,X) Krawczyk operator.

(10.11)

In the proof most calculations are performed over RRRn; only the last step changes to intervals.
The reason is that for interval calculations simple laws like distributivity or X −X = 0 do
not hold. Moreover, an inclusion [M] of the set of matrices M for which equation (10.10)
is true is easily calculated by interval automatic differentiation evaluation of g at X. To
complete the approach we need the nonsingularity of a preconditioning matrix R. This is
established by Theorem 10.1.
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10.8. Self-validating Methods and INTLAB 219

Theorem 10.1. Let f : RRRn → RRRn ∈ C1, x̃ ∈ RRRn, and X ∈ IIIRRRn be given. Suppose x̃ ∈ X
and Kf (̃x,X) ⊆ int(X), where the operator Kf is defined in equation (10.11). Then there
exists one and only one x̂ ∈ X with f (̂x ) = 0.

Here int(X) denotes the interior ofX; the check whether the left-hand side is enclosed
in the interior of the right-hand side means just replacing the “less than or equal” comparison
by “less than.” This is the principle of a self-validating method for systems of nonlinear
equations [386]. Of course we need to discuss many details. For example, how to construct
a suitable starting interval X and what to do if the inclusion condition Kf (̃x,X) ⊆ int(X)
is not satisfied. Such details are worked out in the routine verifynlss (cf. [387]) which
is part of INTLAB. Figure 10.13 shows the executable code with input and output.

>> xs = [ .5 ; 3 ]; verifynlss(f,xs)
intval ans =
[ 0.4999, 0.5001]
[ 3.1415, 3.1416]

>> xs = [ 0 ; 0 ]; X = verifynlss(f,xs)
intval X =
[ -0.2606, -0.2605]
[ 0.6225, 0.6226]

>> format long; X
intval X =
[ -0.26059929002248, -0.26059929002247]
[ 0.62253089661391, 0.62253089661392]

Figure 10.13. INTLAB results of verifynlss for Broyden’s function (10.9).

The number of displayed digits depends on the output format in MATLAB chosen by
the user. The first inclusions look rather crude, but this is the best that can be done in short
output format. Changing the format to long reveals the actual accuracy of the bounds.

We wrote specially designed routines for the output in INTLAB to ensure that the
displayed answer is indeed correct. For example, the real number 0.1 is not exactly repre-
sentable in binary floating point, and X=intval(’0.1’) calculates a valid inclusion of
this real number. Displaying X in short format yields

>> X=intval(’0.1’)
intval X =
[ 0.0999, 0.1001]

because this is the best possible answer using 5 decimal digits: The interval X must contain
the real number 0.1, and because this is not a floating-point number, 0.1 cannot be a bound
for X. Sometimes it may be tedious to count coinciding digits. For example,

>> X = midrad(2.718281828459045,1e-12)
intval X =
[ 2.71828182845804, 2.71828182846005]

Chapter from Accuracy and Reliability in Scientific Computing, edited by Bo Einarsson.  
Copyright 2005, Society for Industrial and Applied Mathematics



handb
2005/6
page 2

�

�

�

�

�

�

�

�

220 Chapter 10. Computer-assisted Proofs and Self-validating Methods

declares an interval of radius 10−12, which is not immediately recognizable from the output.
In that case one may switch to another output by

>> intvalinit(’display_’); X
intval X =

2.71828182846___

The rule is that subtracting one unit from the last displayed digit and adding one unit produces
a correct inclusion of the result. In this way the accuracy is easily determined by looking at
the number of displayed digits. Sometimes the format can describe vividly the convergence
rate of an iteration. Consider, for example, the interval Newton iteration, displayed in Figure
10.14 with executable code and input and output.

>> f=inline(’sqr(x)-2’), X=infsup(1,1.5);
for i=1:4, y=f(gradientinit(X)); X=X.mid-y.x.mid/y.dx, end

f =
Inline function:
f(x) = sqr(x)-2

intval X =
1.4_____________

intval X =
1.414___________

intval X =
1.4142136_______

intval X =
1.41421356237309

Figure 10.14. INTLAB example of quadratic convergence.

10.9 Implementation of Interval Arithmetic
The implementation of interval arithmetic may be performed along the lines of the definition
of interval arithmetic for scalars, vectors, and matrices as in (10.3), and this is the way it was
done for a long time. However, this may result in poor performance. When floating-point
multiplication took significantly more computing time than floating-point addition, it was
reasonable to compare the speed of algorithms by comparing the count of floating-point
multiplications (the time for additions was comparatively negligible). Also, it was not too
important whether an algorithm contained some branches.

This situation has changed completely. Today, many elementary operations, such as
addition, subtraction, multiplication, division, and even a multiplication and an addition
(multiply and add) require one cycle. This is also the reason why today multiplications and
additions are counted equally. Both statements that Gaussian elimination requires 1

3n
3 or

2
3n

3 operations are correct, the first one 20 years ago, the other today.
By far more important, the actual execution time of today’s algorithms depends on

how the data are available: in registers, in cache, in memory, or possibly on external devices.
Depending on data location the computing time may vary tremendously.

The various optimizing options in a compiler try to improve a given code as much
as possible in that respect. But sometimes it is advisable to “help” the compiler to do a
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10.9. Implementation of Interval Arithmetic 221

better job. A well-known example is the use of unrolled loops. The standard loop for the
computation of a scalar product xT y is given in Figure 10.15.

s = 0;
for i=1:n

s = s + x(i)*y(i);
end

Figure 10.15. Dot product.

An unrolled loop is given in Figure 10.16.

r = mod(n,4);
s = 0;
nmax = n-r-3;
for i=1:4:nmax

s = s + x(i)*y(i) + x(i+1)*y(i+1) + x(i+2)*y(i+2) + x(i+3)*y(i+3);
end
for i=n-r+1:n

s = s + x(i)*y(i);
end

Figure 10.16. Dot product with unrolled loop.

Here we use MATLAB notation to describe the approaches; of course, MATLAB
execution time in this case would be mainly determined by the interpretation overhead. But
executing the two versions in a compiled programming language reveals the difference.
Here we used the C programming language and Gnu compiler [165]. The performance for
non-optimized code without unrolled loops is normed to 1; i.e., a larger number indicates
better performance. The difference is significant—more than a factor 4 from plain code to
optimized unrolled code.

Table 10.2. Relative performance without and with unrolled loops.

Without unrolled loop With unrolled loop
opt. 0 1.0 1.6
opt. 2 3.0 4.4

This ansatz is well known and implemented in today’s packages, such as the BLAS [285,
124, 122] and Atlas [482]. For higher operations the differences are even more significant.
Consider, for example, matrix multiplication. A standard loop for multiplying two n × n
matricesA, B is given in the program in Figure 10.17, where the elements of C are assumed
to be initialized with zero.

Again, we use MATLAB notation to show the point. It is well known and often
exploited that the loops can be interchanged. Depending on the sequence of execution
of the i-, j -, and k-loops, the access to matrix elements is rowwise or columnwise in the
inner loop, and the data in memory may or may not be available in cache or registers.
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222 Chapter 10. Computer-assisted Proofs and Self-validating Methods

for i=1:n
for j=1:n

for k=1:n
C(i,j) = C(i,j) + A(i,k)*B(k,j);

end
end

end

Figure 10.17. ijk-loop for matrix multiplication.

Table 10.3 shows computing times in MFLOPS for the different possibilities, again for the
GNU C-compiler. The data are for 500× 500 matrices.

Table 10.3. Relative performance for different methods for matrix multiplication.

jki kji ikj kij ijk jik

opt. 0 1.0 1.0 1.4 1.4 1.4 1.4
opt. 2 2.8 2.6 12.9 11.9 29.5 29.5
BLAS 3 47.6

The BLAS3 [122] routines use, in addition, blocked routines again optimizing memory
access. So from worst to best there is a factor of almost 50 in computing time.

So far all code was rather simple. Next, we will demonstrate the disastrous effects of
branches in professionally written codes. Consider first matrix multiplication of two real
n×nmatrices, second LU decomposition of a realn×nmatrix with partial pivoting, and third
LU decomposition with complete pivoting. Counting operations+,−, ·, / and if-statements
as one flop, these routines require 2n3+O(n2), 2

3n
3+O(n2), and 4

3n
3+O(n2) operations,

respectively. In fact, each of the mentioned operations is executed in one cycle; the if-
statement, however, implies great consequences with respect to optimization of the code.

The three tasks are accomplished by the LAPACK routines DGEMM, DGETRF and
DGETC2, respectively.42 The first test is on a 933 MHz Mobile Pentium 3 CPU and
executed using MKL, the Intel Math Kernel Library. Table 10.4 shows the performance in
MFLOPS of the matrix multiplication routine DGEMM, of LU decomposition with partial
pivoting DGETRF, and of LU decomposition with complete pivoting DGETC2, for different
dimensions n.

Table 10.4 shows that matrix multiplication is executed at close to the peak perfor-
mance, that matrix multiplication executes about 10% faster than Gaussian elimination with
partial pivoting, and that complete pivoting decreases the performance by about a factor 10.

We executed the same example on a 2.53 GHz Pentium 4 CPU using the ATLAS
routines. The results are shown in Table 10.5.

Here matrix multiplication is beyond peak performance due to multiply-and-add in-
structions, and is faster by 60% to 20% compared with Gaussian elimination with partial

42Thanks to Dr. Ogita from Waseda University, Tokyo, for performing the following computations.
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10.9. Implementation of Interval Arithmetic 223

Table 10.4. Performance of LAPACK routines using Intel MKL.

Performance [MFLOPS]
n DGEMM DGETRF DGETC2

500 708 656 73
1000 746 672 68
2000 757 688 66
3000 757 707 64

Table 10.5. Performance of ATLAS routines.

Performance [MFLOPS]
n DGEMM DGETRF DGETC2

500 2778 1725 215
1000 2970 2121 186
2000 3232 2525 151
3000 3249 2663 101

pivoting. The seeming decrease of relative performance of DGEMM is rather a more rapid
increase of performance of DGETRF. This makes it even worse for Gaussian elimination
with complete pivoting: In this case if-statements slow computation up to a factor 30.

For interval operations things are even worse. Consider an implementation of Theo-
rem 10.1 for the inclusion of the set of solutions∑

(A, b) := {x ∈ RRRn : ∃A ∈ A ∃ b ∈ b with Ax = b}

of a linear system with interval dataA ∈ IIIRRRn×n and b ∈ IIIRRRn. The computation of the product
C = RA, a point matrix times an interval matrix, takes the major part of the computing
time. A standard loop is given in Figure 10.18.

for i=1:n
for j=1:n

for k=1:n
C(i,j) = C(i,j) + R(i,k)*A(k,j);

end
end

end

Figure 10.18. Top-down approach for point matrix times interval matrix.

For better readability we typed the interval quantities in boldface. Note that both the
addition and the multiplication in the inner loop are interval operations.
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224 Chapter 10. Computer-assisted Proofs and Self-validating Methods

The multiplication of a point matrix and an interval matrix is implemented this way in
many libraries. However, the inner loop is very costly in terms of computing time. Even in
an optimal implementation it requires two changes of the rounding mode, and at least one
if-statement concerning the sign ofR(i,k). The if-statement, however, frequently empties
the computation pipe and the contents of registers become unknown, so it jeopardizes any
attempt to optimize this code.

In 1993, Knüppel found a simple way to improve this computation; it is published
as BIAS [263, 264]. He interchanged the j - and the k-loops such that the element in the
R(i,k) inner loop remains constant. Then the sign can be determined in the j -loop reducing
the number of changes of rounding mode and the number of if-statements from n3 to n2.
The BIAS code in Figure 10.19 illustrates his idea.

for i=1:n
for k=1:n

if R(i,k)>=0
setround(-1)
for j=1:n

Cinf(i,j) = Cinf(i,j) + R(i,k)*Ainf(k,j);
end
setround(+1)
for j=1:n

Csup(i,j) = Csup(i,j) + R(i,k)*Asup(k,j);
end

else
setround(-1)
for j=1:n

Cinf(i,j) = Cinf(i,j) + R(i,k)*Asup(k,j);
end
setround(+1)
for j=1:n

Csup(i,j) = Csup(i,j) + R(i,k)*Ainf(k,j);
end

end
end

end

Figure 10.19. Improved code for point matrix times interval matrix.

Note that in the inner loops there is no changing of rounding mode and no if-statement.
Computing times on a Convex SPP 200 for different matrix dimensions are given in Table
10.6. The decreasing performance for higher dimensions is due to cache misses since the
BIAS routine was implemented as above, i.e., not blocked.

For the comparison of different interval libraries, Corliss [102] developed a test suite
for basic arithmetic operations, vector and matrix operations, nonlinear problems, and oth-
ers. Comparing BIAS (which is implemented in the C++ library PROFIL [265]) with other
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10.9. Implementation of Interval Arithmetic 225

Table 10.6. Performance of algorithms in Figures 10.18 and 10.19 for point matrix
times interval matrix.

[MFLOPS] n = 100 n = 200 n = 500 n = 1000
Traditional 6.4 6.4 3.5 3.5
BIAS 51 49 19 19

libraries shows a performance gain of a factor 2 to 30, depending on the application. This
is basically due to better optimizable code.

The approach has some drawbacks. It does not carry over to the multiplication of two
interval matrices, and it cannot be used for a MATLAB implementation. This is because
the interpretation overhead would be tremendous. Table 10.7 shows the performance for
a matrix product A*B implemented in MATLAB with the traditional 3 loops, with using a
scalar product in the most inner loop, with outer products, and finally with the MATLAB
command A ∗ B (using BLAS3 routines).

Table 10.7. Relative performance of MATLAB matrix multiplication with inter-
pretation overhead.

Loops 3 2 1 A ∗ B
MFLOPS 0.05 1.9 36 44

So the BIAS implementation would, besides other overheads, still be slower by more
than an order of magnitude, only because of the interpretation overhead due to the use of
loops.

Fortunately we developed another method for overcoming those problems. It uses
solely BLAS3 routines, needs no branches, is applicable to the multiplication of two interval
matrices, and is parallelizable by using parallel BLAS. The key is the midpoint-radius
representation of intervals; see (10.5). An interval matrix A ∈ IIIRRRn×n may be represented by

A = [A,A] or A = mA± rA with A,A,mA, rA ∈ RRRn×n.

Here the ± is understood to be independent for each individual component. The radius
matrix rA is nonnegative. In any case

A = {A ∈ RRRn×n : A ≤ A ≤ A} = {A ∈ RRRn×n : mA− rA ≤ A ≤ mA+ rA},
with comparison understood to be componentwise. Then, it is not difficult to see (cf. (10.6))
that

R ·A = R ·mA± |R| · rA = {C ∈ Rn×n : R ·mA− |R| · rA ≤ C ≤ R ·mA+ |R| · rA},
with the absolute value understood to be componentwise. The result is the best possible in
the sense that none of the bounds on the result can be improved without violating inclusion
isotonicity. This result, however, doesn’t take rounding errors into account. In the world
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226 Chapter 10. Computer-assisted Proofs and Self-validating Methods

of floating-point operations we face two additional problems. First, the input matrix A =
[A,A] has to be transformed into midpoint-radius form mA ± rA, with floating-point
matrices mA and rA such that [A,A] ⊆ mA± rA, and, second, the product R ·mA is, in
general, not exactly representable in floating point.

The first problem can be solved by an ingenious trick due to Oishi [353]. Consider
the INTLAB code in Figure 10.20.

setround(+1)
mA = (Ainf+Asup)/2;
rA = mA-Ainf;

Figure 10.20. INTLAB program to convert inf-sup to mid-rad representation.

Given A = [Ainf,Asup], this code computes mA and rA such that

A = [Ainf,Asup] ⊆ {A ∈ RRRn×n : mA− rA ≤ A ≤ mA+ rA}.
The second problem can be solved by computing the product R ∗ mA both in rounding
downward and rounding upward. So the entire INTLAB code for point matrix times interval
matrix is as in Figure 10.21.

setround(+1)
mA = (Ainf+Asup)/2;
rA = mA-Ainf;
rC = abs(R)*rA;
Csup = R*mA + rC;
setround(-1)
Cinf = R*mA - rC;

Figure 10.21. INTLAB program for point matrix times interval matrix.

This calculates an interval matrix C = [Cinf,Csup] with inclusion isotonicity

RA ∈ C for all A ∈ A.

The computational effort is basically three floating-point matrix multiplications, and those
can be executed in BLAS or Atlas. The interpretation overhead is negligible. So the factor
in computing time compared to one floating-point multiplication of matrices of the same
size is almost exactly three, and that is what is observed in MATLAB/INTLAB. Note that
the result is an interval matrix, so we cannot expect a factor less than two. Therefore, the
result is almost optimal. Again, note that we are talking about the actual computing time,
not about an operation count.

The concept is easily applied to the multiplication of two interval matrices. The
program in Figure 10.22 is executable INTLAB code for A ∗ B.

Note that only two switches of the rounding mode are necessary, and that in total only
four matrix multiplications are needed. Only computing the mutual products of the bounds
of A and B would require the same computing time—although this would not help much
for the computation of A ∗ B.
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setround(+1)
mA = (Ainf+Asup)/2;
rA = mA-Ainf;
mB = (Binf+Bsup)/2;
rB = mB-Binf;
rC = abs(mA)*rB + rA*(abs(mB)+rB);
Csup = mA*mB + rC;
setround(-1)
Cinf = mA*mB - rC;

Figure 10.22. INTLAB program for interval matrix times interval matrix.

In MATLAB/INTLAB we observe exactly this factor four. In a compiled language,
in this case C, the results on the Convex SPP 200 for the multiplication of two interval
matrices are given in Table 10.8. Here, we can also use the parallel processors just by
linking the parallel BLAS routines to our MidRad approach. The other approaches might
be parallelized, but this would require a lot of programming. Note that there is almost no
difference between the traditional and the BIAS approaches. The lower performance of the
MidRad approach for n = 500 may be due to suboptimal utilization of the cache.

Table 10.8. Performance of interval matrix times interval matrix.

[MFLOPS] n = 100 n = 200 n = 500 n = 1000
Traditional 4.7 4.6 2.8 2.8
BIAS 4.6 4.5 2.9 2.8
MidRad 91 94 76 99
MidRad 4 proc. 95 145 269 334

The implementation of complex interval arithmetic follows the same lines. Note that
midpoint-radius arithmetic causes some overestimation compared to the infimum-supremum
arithmetic. An example is

[3.14, 3.15] ∗ [2.71, 2.72] = [8.5094, 8.5680],
(3.145± 0.005) ∗ (2.715± 0.005) = 8.538675± 0.029325 = [8.50935, 8.56800].

However, one can show that the overestimation is limited to a factor 1.5 in the worst case, and
it is in general much smaller, as in the example above, depending on the relative accuracy of
the input intervals. This is true for scalar, vector, and matrix operations, real and complex,
and independent of the size of the numbers. Those results can be found with various other
details in [387].

Sometimes it may be useful to calculate inner products with higher precision (and
then to round the result to working precision). For example, in the residual iteration

xk+1 = xk − A\(Axk − b),
the residual Axk − b is exposed to severe cancellation (we use MATLAB notation A\y
to indicate the solution of a linear systems with matrix A and right-hand side y). It has

Chapter from Accuracy and Reliability in Scientific Computing, edited by Bo Einarsson.  
Copyright 2005, Society for Industrial and Applied Mathematics



handb
2005/6
page 2

�

�

�

�

�

�

�

�
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been shown by Skeel [418] that a residual iteration with the residual calculated in working
precision suffices to produce a backward stable result. However, for a small forward error,
higher precision accumulation of dot products is necessary. This may be interesting in case
of exactly given and exactly representable input data; otherwise the input error is amplified
by the condition number and a highly accurate forward error does not make much sense.
There are various algorithms available [40, 275, 289] as well as a discussion of hardware
implementations [274]. A practical implementation by means of a coprocessor board is
presented in [441, 442].

Recently, new and very fast summation and dot product routines have been developed
in [351]. They use only double precision floating point addition, subtraction, and multipli-
cation. Nevertheless they compute a result of an accuracy as if computed in quadruple or
even higher precision. The reason is the extensive use of so-called error-free transforma-
tions. The algorithms do not contain a single branch so that the compiled code can be highly
optimized. Therefore they are not only fast in terms of flop count but, more importantly, in
terms of measured computing time. Apparently, these are the fastest dot product algorithms
currently available, some 40 % faster than the corresponding XBLAS routines [289], while
sharing similar error estimates.

Other design and implementation details of INTLAB can be found in [389]. For a
tutorial and applications see [196]. INTLAB is comprised of

• real and complex interval scalars, vectors, and matrices,

• dense and sparse interval matrices,

• real and complex (interval) elementary functions,

• automatic differentiation (gradients and Hessians),

• automatic slopes,

• univariate and multivariate (interval) polynomials,

• a rudimentary (interval) long arithmetic.

Finally we mention that INTLAB is entirely written in MATLAB. All algorithms are
designed to minimize interpretation overhead. Under Windows operating systems, they
do not depend on assembly language routines since the switch of the rounding mode is
provided by MATLAB (thanks to Cleve Moler). For other operating systems such a routine
is provided, and this is the only non-MATLAB routine. For details see our home page [389].

10.10 Performance and Accuracy
Measuring computing time in MATLAB is a little unfair because of the interpretation over-
head. However, with the fast implementation of interval arithmetic as described in the
previous section there is, at least when solving linear systems, not much overhead. Notice
that a pure flop count for a self-validating algorithm for linear systems along the lines of
Theorem 10.1 needs 6n3 + O(n2) operations, with additions and multiplications counted
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separately. These are 2n3 operations to calculate the approximate inverse R and 4n3 oper-
ations to calculate the lower and upper bound of the inclusion of RA. So we may expect
a factor 9 compared to the 2

3n
3 + O(n2) floating-point operations for Gaussian elimina-

tion. Applying Theorem 10.2 to linear systems yields the computing times in Table 10.9,
measured in INTLAB.

Table 10.9. Measured computing time for linear system solver.

INTLAB computing time (n = 500, 300 MHz Laptop)
5 sec for A\b (built-in solver)

27 sec with verification as in Theorem 10.2
16 sec verification by Oishi’s method [353]

The first line in Table 10.9 refers to the built-in linear system solver in MATLAB 6.5,
about the fastest we can get. The second line is the total computing time for the verification
routine verifylss available in INTLAB, which is based on the methods described above.
The last line is an improvement described in [353].

So the measured computing times of our self-validating methods are significantly
better than can be expected. This is because the 2n3 floating-point operations for matrix
multiplication do not take 6 times the time for 2

3n
3 floating-point operations of Gaussian

elimination due to better optimized code.
There is no question that one has to pay for an inclusion. However, the final result

is verified to be correct, under any circumstances. If the matrix of the linear system is too
ill-conditioned to be solved in the precision available, a corresponding error message is
given rather than a false result.

It may happen that pure floating-point routines deliver false answers, i.e., severely
wrong approximations are computed without a corresponding error message. A first, though
not really fair, example is the following. Foster [146] describes a linear system arising from
the integration of

ẋ = x − 1 with x(0) = x(T ). (10.12)

His example is in fact a little more general. He uses the trapezoidal rule to obtain a linear
system, which he solves by MATLAB. This is an example derived from the work of [493]
to show that there are other than constructed examples where partial pivoting may result in
exponential growth of the pivot elements. Foster’s paper contains the MATLAB code for the
resulting linear systemAx = b. For n = 70 and T = 40, for example, the MATLAB solver
A\b delivers the results in Table 10.10, where only the first five and last ten components of
x are displayed.

But the true solution not only of the defining equation (10.12) and also of the generated
linear system is xi ≡ 1 for all components! This “approximation” is given without any
warning or error message. This is not due to ill-conditioning of the system matrix but
solely due to the exponential increase of the growth factor for partial pivoting. In fact,
the condition number of the matrix in this example is about 30. The self-validating method
verifylss of INTLAB computes an inclusion of 1 with relative error less than 2.2 ·10−16

in all components.
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230 Chapter 10. Computer-assisted Proofs and Self-validating Methods

Table 10.10. MATLAB solution of a linear system derived from (10.12) for n = 70
and T = 40.

>> x([1:5 61:70])
ans =

1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000

...
1.40816326530612
2.81632653061224
4.22448979591837
5.63265306122449
11.26530612244898
11.26530612244898
22.53061224489796

0
0

1.00000000000000

As mentioned before the comparison is not really fair. This is because obviously the
MATLAB routine does not perform a single residual iteration. As has been shown by Skeel
[418] this would yield a backward stable result, even if the residual iteration is performed in
working precision. The verification does perform iteration steps before starting the inclusion
step. In that sense the comparison is not quite fair. Nevertheless the result computed by
MATLAB is grossly wrong and delivered without any warning.

When solving systems of nonlinear equations it is much easier to find examples where
the computed approximation is afflicted with severe errors but is delivered without an error
message. We will return to such examples later.

10.11 Uncertain Parameters
Next we discuss nonlinear systems with uncertain parameters. This is at the heart of interval
extensions and self-validating methods. Consider a function

f : RRRk×n→ RRRn, f (p̃, x̃) ≈ 0,

and assume the parameter p varies within a certain interval P . We wish to calculate an
inclusion X such that for all p ∈ P there exists some x ∈ X with f (p, x) = 0. This is
surprisingly simple by the following theorem.

Suppose an interval extensionF(P,X), F : IIIRRRk×n→ IIIRRRn of f is given such that for
P ∈ IIIRRRk ,X ∈ IIIRRRn and for all p ∈ P , x ∈ X it holds that f (p, x) ∈ F(P,X). Furthermore,
define

LF (P, x̃, X) := −R · F(P, x̃)+ {I − RM}X,
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10.11. Uncertain Parameters 231

where M is computed by automatic differentiation applied to F at P and X. Then the
following is true [386].

Theorem 10.2. Let f : RRRk×n → RRRn ∈ C1, P ∈ IIIRRRn, and x̃ ∈ RRRn be given. Suppose
x̃ ∈ X and LF (P, x̃, X) ⊆ int(X). Then for all p̂ ∈ P there exists one and only one
x̂ = x̂(p̂) ∈ x̃ +X with f (p̂, x̂) = 0.

The proof is trivial: just consider some fixed but arbitrary p ∈ P , and apply Theorem
10.1 to f (p, x̃ + x). Using this approach for given values of a parameter also gives a clue
to the sensitivity of the zeros with respect to this parameter. Replacing, for example, the
constant pi in Broyden’s function by

>> Pi = midrad( 3.141592653589793, 1e-15 )

yields the result in Table 10.11.

Table 10.11. INTLAB example of verifynlss for Broyden’s function (10.9)
with uncertain parameters.

>> xs = [ .6 ; 3 ]; verifynlss(f,xs)
intval ans =
[ 0.49999999999740, 0.50000000000260]
[ 3.14159265357934, 3.14159265360025]

>> xs = [ 0 ; 0 ]; y = verifynlss(f,xs)
intval ans =
[ -0.26059929002903, -0.26059929001592]
[ 0.62253089659741, 0.62253089663041]

Obviously, both zeros do not react very sensitively to changes in that parameter.
Note that we used a formulation of the inclusion theorem, where the interval X includes
the difference of the approximation x̃ rather than the solution itself. This turns out [387] to
produce inclusions of better quality than the original operator Kf in Theorem 10.1.

So far the application has been restricted to continuously differentiable functions. This
allows us to use automatic differentiation and also ensures the uniqueness of the computed
zero within the computed bounds. It also implies that it is impossible to calculate an inclusion
of a multiple zero. For a real root of even multiplicity of a univariate function this is clear
because an arbitrarily small perturbation can move the roots into the complex plane. But
also for odd multiplicities greater than one this approach does not allow us to calculate an
inclusion. We mention that inclusion of multiple zeros of continuous but not necessarily
differentiable functions is possible using slopes (see [269] and improvements described in
[388]).

We return to parameterized problems with data varying within some tolerances. The
aim is to investigate whether the amount of overestimation can be estimated. Consider the
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232 Chapter 10. Computer-assisted Proofs and Self-validating Methods

following simple model problem.

A =
( [−0.5796,−0.5771] [ 0.2469, 0.2581]

[ 0.2469, 0.2581] [−0.4370,−0.4365]
)
,

b =
(

0.5731
−0.4910

)
.

(10.13)

An inclusion of the set of all solutions∑
(A, b) := {x ∈ RRR2 : Ãx = b̃, Ã ∈ A, b̃ ∈ b} (10.14)

may be computed by Theorem 10.3, much along the lines of the previous discussion.

Theorem 10.3. Let A ∈ IIIMn(RRR), b ∈ IIIRRRn, R ∈ Mn(RRR), X ∈ IIIRRRn be given and suppose

R(b − Ax̃)+ (I − RA)X ⊆ int(X).

Then for all Ã ∈ A and for all b̃ ∈ b, Ã and R are nonsingular and Ã−1b̃ ∈ x̃ +X.

Theorem 10.3 is a direct consequence of Theorem 10.1 applied to Ax = Ax̃ − b.
The definition and solution of our model problem in INTLAB is Table 10.12. A plot of the
inclusion interval X is given in Figure 10.23.

Table 10.12. INTLAB example of verifylss for a linear system with uncertain data.

>> A = infsup( [-0.5796 0.2469 ; 0.2469 -0.4370 ] , ...
[-0.5771 0.2581 ; 0.2581 -0.4365 ] );

b = [ 0.5731 ; -0.4910 ];
>> X = verifylss(A,b)
intval X =
[ -0.6862, -0.6517]
[ 0.7182, 0.7567]

First remember that this result includes the proof that all matrices Ã ∈ A are nonsin-
gular, and this is, in general, an NP-hard problem. But, we may ask how much the interval
X overestimates the true solution set

∑
(A, b). The latter is known to be convex in every

orthant.43 Indeed a so-called inner inclusion can be calculated by Theorem 10.4 [388],
which is based on ideas developed in [339].

Theorem 10.4. Let A ∈ IIIRRRn×n, b ∈ IIIRRRn, x̃ ∈ RRRn, R ∈ RRRn×n, X ∈ IIIRRRn be given and define

Z := R(b − Ax̃) and � := {I − RA} ·X.

43Orthant is the generalization of quadrant (2D) and octant (3D) to higher dimensions.
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Figure 10.23. Inclusion as computed by verifylss for the example in Table 10.12.

Let the solution set
∑
(A, b) be defined as in (10.14) and assume

Z +� ⊆ int(X).

Then ∑
(A, b) ⊆ x̃ + Z +�,

or, in coordinate notation, for all x ∈∑
(A, b) and all i ∈ {1, . . . , n},

x̃i + inf Zi + inf �i ≤ xi ≤ x̃i + supZi + sup�i.

Furthermore, for all i ∈ {1, . . . , n} there exist x, x ∈∑
(A, b), with

xi ≤ x̃i + inf Zi + sup�i and x̃i + supZi + inf �i ≤ xi.

Theorem 10.4 estimates every component of the solution set from the outside and
the inside. For our model problem, the inner rectangle has the property that the projection
to every coordinate is an inner inclusion of the corresponding projection of the true solu-
tion set

∑
(A, b). The outer and inner inclusions together with the true solution set (the

parallelogram) are displayed in Figure 10.24.
Of course, this approach has its limits. When widening the interval components of

the linear system, the inner inclusion becomes smaller and smaller, and finally vanishes
(which means nothing can be said about the quality of the outer inclusion), and, when
further widening the input intervals, the inclusion will fail at a certain point. This happens,
in general, before a singular matrix enters the input intervals. This is to be expected because
the self-validating algorithm for an n × n linear system requires some O(n3) operations,
whereas, as has been mentioned before, the problem of determining whether an interval
matrix contains a singular matrix is NP-hard [365].

The model problem above looks pretty simple. However, a nontrivial problem has
been solved: the determination of the maximum variation of the individual components of
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Figure 10.24. Inner and outer inclusions and true solution set for the linear system
with tolerances in Table 10.12.

a linear system when varying the input data within a certain range, and the computation of
an upper bound and a lower bound for this variation. Using traditional numerical methods
such as Monte Carlo to determine similar information may be difficult.

In order to demonstrate this, consider an interval matrix A and interval right-hand
side b, for which we wish to estimate

∑
(A, b). A Monte Carlo approach may be like in the

program of Figure 10.25.

for i = 1 : K
choose Ã ∈ A
choose b̃ ∈ b
compute x̃ = Ã\b̃
xmin = min(xmin, x̃)

xmax = max(xmax, x̃)

end

Figure 10.25. Monte Carlo approach to estimate the solution set of a parameter-
ized linear system.

Consider a linear system with randomly generated matrix Ã and right-hand side b̃,
both with entries within [−1, 1]. Then an interval matrix A and interval right-hand side b
are defined by perturbing each component of Ã and b̃with a relative error 10−4, respectively.
The Monte Carlo approach is improved by choosing Ã and b̃ only on the boundary of A
and b, respectively, in order to achieve a best possible (i.e., as wide as possible) result. For
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Figure 10.26. Result of Monte Carlo approach as in the program in Figure 10.25
for 100× 100 random linear system with tolerances, projection of 1st and 2nd component
of solution.

K = 100 samples the projection of the first and second components of the result is shown
in Figure 10.26.

Figure 10.26 shows the variation achieved by the Monte Carlo method (the black cloud
of asterisks) and the outer and inner inclusions computed by the self-validating method based
on Theorem 10.4. The computing times on our 300 MHz laptop are as follows.

Self-validating method 0.39 sec,
Monte Carlo method 11.9 sec.

Note that 100 samples have been used for a 100 × 100 linear system. These results
are typical. Although the computed inclusions are almost sharp, they are usually achieved
only for a very few choices of input data.

This good news is shadowed by the bad news that the self-validating method assumes
the input data vary independently within the tolerances. This assumption is frequently not
fulfilled. For example, the restriction of variation to symmetric matrices may shrink the
size of the solution set significantly. However, this and other linear dependencies between
the input data can be handled by self-validating methods. The following shows a plot of
example (10.13) with symmetric matrices; see [237, 387].

The plot in Figure 10.27 shows the previous unsymmetric solution set (big parallel-
ogram) as well as the true symmetric solution set (in bold). The latter can be calculated
exactly using methods described in [10]. Moreover, the outer and inner inclusions for
the symmetric solution set are displayed. In the same way, Toeplitz, Hankel, tridiagonal
symmetric, and other linear structures can be handled [387]. However, the Monte Carlo
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Figure 10.27. Inner and outer inclusions of symmetric solution set for the example
in Table 10.12.

approach easily allows almost arbitrary dependencies between the input data, for which no
self-validating method is known.

We mention that there are self-validating algorithms for sparse systems of linear and
nonlinear equations [387]. Of course, they do not use an approximate inverse as in Theorem
10.1 but are based on a lower bound of the smallest singular value of the system matrix or the
Jacobian matrix, respectively. Figure 10.28 shows a matrix from the Harwell/Boeing test
suite [128]. It has 3948 unknowns and comes from a static analysis in structural engineering
of some offshore platform. Computing times for this example for the MATLAB built-in
sparse linear system solver and INTLAB routine verifylss are given in Table 10.13.

Table 10.13. Computing time without and with verification.

Time [sec]
MATLAB 2.5
verifylss 6.3

So verification is still slower by a factor of 3, which is partly due to interpretation over-
head in MATLAB. However, verified linear system solvers are still based on factorizations.
For matrices with large fill-in these methods are not applicable. In particular, practically no
self-validating methods based on iterative approaches are known.

As stated earlier, a numerical method may deliver a poor approximate answer with-
out warning. Problems may occur when using this information for further computations.
Consider, for example, the matrix in Table 10.14.
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Figure 10.28. Nonzero elements of the matrix from Harwell/Boeing BCSSTK15.

Table 10.14. Matrix with ill-conditioned eigenvalues.

A =
170 122 -52 -317 -247 265 86
-38 -28 13 71 56 -59 -21
-90 -64 27 167 130 -140 -46
61 42 -16 -111 -85 94 31
-7 -4 1 11 8 -10 -5
-26 -19 9 49 39 -41 -14
-51 -37 16 96 75 -80 -25

The question is “What are the eigenvalues of that matrix?” When entering this matrix
into MATLAB, the approximations in Figure 10.29 depicted by the plus signs are computed
without warning or error message. When computing the eigenvalues ofAT , the approximate
“eigenvalues” depicted by the circles are computed, again without warning or error message.
Notice the scale of the plot: the approximations of eigenvalues of A and AT differ by about
0.005. The reason for the inaccuracy is that this matrix has a multiple (7-fold) eigenvalue
zero of geometric multiplicity 1. This implies a sensitivity of 7

√
εM ≈ 0.006 for changes of

the input data of order εM , the machine precision 2−52 ≈ 2.2 · 10−16.
The circle is a verified inclusion of all eigenvalues of the matrix. It has been computed

by the methods described in [390] for the inclusion of multiple eigenvalues and the corre-
sponding invariant subspace. In view of the previous discussion the circle gives reasonable
information about the sensitivity of the eigenvalues. It is a little pessimistic, but it is correct
information. Taking only the approximations (depicted by the plus signs or the circles) one
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Figure 10.29. Approximation of eigenvalues of the matrix in Table 10.14 computed
by MATLAB.

might be led to the conclusion that these are accurate approximations to the eigenvalues of
the matrix—neglecting their sensitivity.

Another interesting point is testing. In our experience, testing self-validating algo-
rithms is different from testing traditional numerical algorithms. Consider an algorithm
for solving systems of linear equations. A standard test suite would randomly generate
some matrices of different condition numbers. Then, for given solution vector x̂, one would
calculate b := Ax̂ and test for the difference of the computed approximation x̃ and x̂.

However, in general the productAx̂ would be perturbed by rounding errors, such that
x̂ would not be the solution of the linear system Ax = b. Accordingly, the test suite could
only check for

‖x̂ − x̃‖/‖x̃‖ ≤ ϕ · eps · cond(A) (10.15)

with a moderate factor ϕ. Such a test suite would not be suitable for testing a self-validating
algorithm because the solution of the given linear systemAx = b is not known. In contrast,
one would make sure that the productAx̂ = b is exactly representable in floating point (and
is computed exactly). One way to achieve this is to round A (and x̂ ) such that only a few
(leading) digits of all entries are nonzero. Then, for a computed inclusion X, one can test
for x̃ ∈ X—a more stringent test than (10.15).

Another, even more stringent, test for robustness and accuracy is the following. Sup-
pose we have a model problem, and the exact solution is π . Moreover, suppose a self-
validating method produces the result

[3.141592653589792, 3.141592653589793].
Each of the bounds would be an approximation of superb quality, and any numerical algo-
rithm delivering one of the two bounds as final result would pass any test with flying colors.
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But a self-validating algorithm delivering these bounds would fail, because the transcen-
dental number π is not enclosed in the above interval! Such tests are powerful for detecting
erroneous implementations of self-validating methods.

10.12 Conclusion
We have tried to show that self-validating methods may be used to compute true and verified
bounds for the solution of certain problems. There would be much more to say to that, and
many more examples could be given. Because of the limited space we could in particular
show only some small examples and applications. But self-validating methods have been
applied to a variety of larger problems with tens of thousands of unknowns, particularly in
connection with computer-assisted proofs.

Examples of those include

- verification of the existence of the Lorenz attractor [455],

- the verification of the existence of chaos [343],

- the double-bubble conjecture [199],

- verification of the instability for the Orr–Sommerfeld equations with a Blasius profile
[278],

- dynamics of the Jouanolou foliation [63],

- solution of the heat convection problem [335],

- verified bounds for the Feigenbaum constant [133],

- existence of an eigenvalue below the essential spectrum of the Sturm–Liouville prob-
lem [56],

- eigenfrequencies of a turbine (Kulisch et al., unpublished),

- SPICE program for circuit analysis (Rump, unpublished),

- extreme currents in Lake Constance (Rump, unpublished),

- forest planning [236].

A more detailed description of some of these can be found in [155]. Also, self-validating
methods have been designed for various other areas of numerical mathematics. They include

- global optimization [52, 86, 171, 179, 182, 238, 239, 240, 241, 265, 320, 341, 374,
375, 461],

- all the zeros of a nonlinear system in a box [182, 265, 375, 396, 461, 498],

- least squares problems [268, 302, 386],
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- sparse linear and nonlinear problems [387],

- ordinary differential equation initial value and boundary value problems [294, 337],

- partial differential equations [25, 334, 335, 362, 363, 364].

Most recently, efforts were started to design self-validating methods which require in
total the same computing time as a traditional numerical algorithm; see [353].

We started with the question “What is a proof?” As mentioned earlier, we did not
intend to (and cannot) give an answer to that. However, we have shown why using self-
validating methods, executed in floating-point arithmetic, can be considered as a serious
way to ascertain the validity of mathematical assertions. Self-validating methods are by no
means intended to replace a mathematical proof, but they may assist. A lot has been done,
but there is much more to do; see, for example, [342].

As a final remark we want to stress that self-validating methods are also not designed to
replace traditional numerical methods. This fact is quite obvious as (i) most self-validating
methods rely on a good numerical approximation to start a verification, and (ii) in direct
comparison an interval computation must include the floating-point result. This applies to
the direct solution of numerical problems such as systems of nonlinear equations or partial
differential equations. However, self-validating methods do more: They verify existence
and possibly uniqueness of a solution within computed bounds. This is outside the scope
of traditional numerical algorithms.

A different regime is global optimization methods, where sophisticated inclusions of
the range of functions may be used to discard certain boxes by proving that they cannot
contain a global minimum. This is a very promising area with recent and quite interesting
results.

The MATLAB toolbox INTLAB is a simple way to get acquainted with self-validating
methods and to solve problems. It is freely available from our homepage for noncommercial
use. Every routine comes with a header explaining input, output, and behavior of the
routines. To date we have an estimated number of 3500 users in more than 40 countries.

In conclusion, we want to say that self-validating methods are an option; they are a
possibility to verify the validity of a result, when necessary. In that sense they deserve their
space in the realm of computational mathematics.
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