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Abstract. In the second part of this paper we study condition numbers with respect to com-
ponentwise perturbations in the input data for linear systems and for matrix inversion, and the
distance to the nearest singular matrix. The structures under investigation are linear structures,
namely symmetric, persymmetric, skewsymmetric, symmetric Toeplitz, general Toeplitz, circulant,
Hankel, and persymmetric Hankel structures. We give various formulas and estimations for the con-
dition numbers. For all structures mentioned except circulant structures we give explicit examples
of linear systems Aεx = b with parameterized matrix Aε such that the unstructured componentwise
condition number is O(ε−1) and the structured componentwise condition number is O(1). This is
true for the important case of componentwise relative perturbations in the matrix and in the right-
hand side. We also prove corresponding estimations for circulant structures. Moreover, bounds for
the condition number of matrix inversion are given. Finally, we give for all structures mentioned
above explicit examples of parameterized (structured) matrices Aε such that the (componentwise)
condition number of matrix inversion is O(ε−1), but the componentwise distance to the nearest sin-
gular matrix is O(1). This is true for componentwise relative perturbations. It shows that, unlike the
normwise case, there is no reciprocal proportionality between the componentwise condition number
and the distance to the nearest singular matrix.
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1. Motivation. In the first part of this paper we investigated structured per-
turbations with respect to normwise distances. There is some drawback to that. For
example, many matrices arising from some discretization are sparse. When using
a normwise distance, system zeros may be altered by a perturbation into nonzero
elements, which usually does not correspond to the underlying model.
System zeros can be modeled in the context of normwise distances such as, for

example, symmetric tridiagonal or tridiagonal Toeplitz matrices (see section 7 of Part
I of this paper). If components differ much in size, there is the problem that normwise
distances alter small components relatively more often than larger components.
To overcome this difficulty a common approach is to use componentwise dis-

tances. Consider a linear system Ax = b. For some (structured) weight matrix E,
structured perturbations A + ∆A with |∆A| ≤ ε|E| are considered, where absolute
value and comparison are to be understood componentwise. This offers much free-
dom. For example, for E being the matrix of all 1’s, the inequality above is equivalent
to ||∆A||m ≤ ε, where ||A||m := max |Aij |, so that there is a finite ratio between this
(structured) componentwise condition number and the (structured) normwise con-
dition number (as considered in Part I). That means, in a way, the componentwise
approach includes the normwise.
But componentwise perturbations offer much more freedom. For example, for

Toeplitz perturbations one need not change the structure when dealing with banded
or triangular Toeplitz matrices; in fact, for the common case of componentwise relative
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perturbations such a structure is preserved per se. Also, the sensitivity with respect
to one, or a couple of, components fits easily into the concept. Therefore, there
has been quite some interest in componentwise perturbations in recent years; cf.
[13, 14, 2, 10, 20, 22].
However, this much freedom implies drastic consequences for the ratio between

the structured and the unstructured condition numbers. It has been mentioned as an
advantage in the application of componentwise perturbations that certain components
may be excluded from perturbations by setting the corresponding weights to zero. But
zero weights change the structure of the perturbations and they lower the degree of
freedom of perturbations.
One of the most common weights is E = |A|, corresponding to componentwise

relative perturbations in the matrix A. In this case, zero components of the ma-
trix shrink the space of admissible perturbations. Consider, for example, symmetric
Toeplitz perturbations. Then for a specific n×n symmetric Toeplitz matrix with two
nonzero components in the first row, normwise distances allow n degrees of freedom,
whereas for componentwise distances the specific matrix reduces the degrees of free-
dom to 2. On the other hand, if this is the given data and if the zeros in the matrix
are intrinsic to the model, then there is no more freedom for the perturbation of the
input data.
As a consequence there are examples where the structured condition number is

near 1, whereas the unstructured condition number can be arbitrarily large. Surpris-
ingly, this is even the case for symmetric linear systems and the case of componentwise
relative perturbations of the matrix and the right-hand side. This fact does not cre-
ate much hope that algorithms can be found at all that are stable with respect to
componentwise (relative) perturbations. We add more comments about that in the
last section.

2. Introduction and notation. Let nonsingular A ∈ Mn(R) and x, b ∈ R
n,

x �= 0, be given with Ax = b. The componentwise condition number of this linear
system with respect to a weight matrix E ∈ Mn(R) and a weight vector f ∈ R

n is
defined by

condE,f (A, x) := lim
ε→0
sup

{‖∆x‖∞
ε‖x‖∞ : (A+∆A)(x+∆x) = b+∆b,∆A∈Mn(R),

∆b ∈ R
n, |∆A| ≤ ε|E|, |∆b| ≤ ε|f |

}
.

(2.1)

Note that the weights E, f may have negative entries, but only |E|, |f | is used. Other
definitions assume nonnegative weights beforehand. Usually this does not cause prob-
lems. In the following, however, we will use skewsymmetric E as well; therefore we
choose the definition as in (2.1).
We use the same symbol ‖ ·‖∞ for the vector maximum norm and the matrix row

sum norm. Here and throughout the paper we use absolute value and comparison of
vectors and matrices always componentwise. For example, |∆A| ≤ ε|E| is equivalent
to |∆Aij | ≤ ε|Eij | for all i, j. It is well known [16, Theorem 7.4] that

condE,f (A, x) =
‖ |A−1| |E| |x|+ |A−1| |f | ‖∞

‖x‖∞ .(2.2)

This generalizes the Skeel condition number [24]

condA(A, x) =
‖ |A−1| |A| |x| ‖∞

‖x‖∞ ,(2.3)
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where E = A depicts componentwise relative perturbations in A, and the omitted
f indicates that the right-hand side is unchanged. As usual we use ‖ · ‖∞ in case
of componentwise perturbations, whereas the spectral norm ‖ · ‖2 is used in case of
normwise perturbations (see Part I of this paper).
For specific right-hand sides the normwise and componentwise condition number

can be arbitrarily far apart. For instance, for the well-known example by Kahan [18]

A =


 2 −1 1

−1 ε ε
1 ε ε


 and x =


 ε

−1
1


(2.4)

one computes for normwise and componentwise relative perturbations in the matrix
and the right-hand side

κ|A|,|Ax|(A, x) = 1.4ε−1 but cond|A|,|Ax|(A, x) = 2.5.

In case of linear systems with special matrices such as Toeplitz or band matrices,
algorithms are known that are faster than a general linear system solver. For such
a special solver only structured perturbations are possible, for example, Toeplitz or
band. Therefore one may ask whether the sensitivity of the solution changes when
restricting perturbations to structured perturbations.
Let M struct

n (R) ⊆ Mn(R) denote a set of matrices of a certain structure. In this
paper we will focus on linear structures, namely

struct ∈ {sym,persym, skewsym, symToep,Toep, circ,Hankel,persymHankel},(2.5)

that is, symmetric, persymmetric, skewsymmetric, symmetric Toeplitz, general
Toeplitz, circulant, Hankel, and persymmetric Hankel matrices. We define, similarly
to (2.1), the structured componentwise condition number by

condstructE,f (A, x) := lim
ε→0
sup

{‖∆x‖∞
ε‖x‖∞ : (A+∆A)(x+∆x)=b+∆b,∆A∈M struct

n (R),

∆b∈R
n, |∆A| ≤ ε|E|, |∆b| ≤ ε|f |

}
.

(2.6)

We mention that for A ∈ M struct
n (R) and all structures under investigation ∆A ∈

M struct
n (R) is equivalent to A + ∆A ∈ M struct

n (R). Therefore it suffices to assume
∆A ∈ M struct

n (R) in (2.6).
For a specialized solver, for example, for symmetric Toeplitz A, only symmetric

Toeplitz perturbations of A are possible because only the first row of A is input to
the algorithm. A considerable factor between the structured condition number (2.6)
and the general, unstructured condition number (2.1) may shed light on the stability
of an algorithm.
Indeed, there may be huge factors between (2.1) and (2.6). Let, for example,

A =



2 −1
−1 2 −1

−1 2
. . .

. . .
. . .


 ∈ Mn(R) and x = (1,−1, 1,−1, . . .)T ∈ R

n.
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Then for n = 200 we have

condA(A, x) = 2.02 ·104, cond
sym
A (A, x) = 1.02 ·104, and cond

symToep
A (A, x) = 1.

In this example no perturbations in the right-hand side are allowed. This does not
conform with Wilkinson’s classical ansatz of error analysis, where he relates the com-
putational error to a perturbation in the input data. It may seem artificial to allow
variations of some input data, namely the input matrix A, and not of others such as
the right-hand side b. However, this depends on the point of view. The right-hand
side may be given exactly where perturbations do not make sense, for example, when
solving Ax = e1 for computing the first column of A

−1, where e1 denotes the first
column of the identity matrix. For this problem, and also in case the problem is solved
through Ax = e1, the input of the problem is only A.
A numerical algorithm solves a nearby problem, and for the judgment of stability

of an algorithm disregarding perturbations in some input data seems inadequate.
However, in case of banded A, for example, the zeros outside the band are not input to
a band solver, and therefore perturbations in those should not be taken into account.
Among others, these are motivations for looking at componentwise perturbations.
However, we will see that things change significantly in the rugged world of com-

ponentwise perturbations compared to the smooth world of normwise perturbations.
We are especially interested in the estimation of condstruct/cond, a question also posed
in [13]. Even for handsome structures such as symmetric matrices there are examples
where condA,b(A, x) is arbitrarily large compared to condsymA,b (A, x) ∼ 1. Note that
this is true for the important case of componentwise relative perturbations in the
matrix and in the right-hand side.
We will give similar examples for all structures in (2.5) except circulant matrices.

In the latter case we give almost sharp estimations for condstruct/cond. As we will see,
for circulant structures the ratio may only become small for ill-conditioned matrices.
The worst case is about condstruct ∼ √

cond.
The examples mentioned above are valid for a specific solution x and correspond-

ing right-hand side. The worst case structured condition number for componentwise
relative perturbations, the supremum over all x, however, will be shown to be not
far away from the corresponding unstructured condition number for all structures in
(2.5).
Moreover, bounds for the condition number of matrix inversion are given. Finally,

we give for all structures in (2.5) explicit examples of parameterized (structured) ma-
trices Aε such that the condition number of matrix inversion is O(ε−1), but the
componentwise distance to the nearest singular matrix is O(1). This is again true for
the important case of componentwise relative perturbations. It shows that, unlike in
the normwise case, there is no reciprocal proportionality between the componentwise
condition number and distance to the nearest singular matrix. Recall that for norm-
wise perturbations the structured condition number is equal to the reciprocal of the
(structured) distance to the nearest singular matrix (Part I, Theorem 12.1).
We will use the following notation:
Mn(R) set of real n× n matrices
M struct

n (R) set of structured real n× n matrices
‖ · ‖∞ infinity or row sum norm
E some (weight) matrix, E ∈ Mn(R)
f some (weight) vector, f ∈ R

n

I, In identity matrix (with n rows and columns)
e vector of all 1’s, e ∈ R

n
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(1) matrix of all 1’s, (1) = eeT ∈ Mn(R)
S signature matrix, i.e., |S| = I or S = diag(±1, . . . ,±1)
J , Jn permutation matrix mapping (1, . . . , n)T into (n, . . . , 1)T

σmin(A) smallest singular value of A
λmin(A) smallest eigenvalue of symmetric A
In this paper we treat explicitly the important (linear) structures in (2.5). How-

ever, we also derive formulas for general linear structures similar to those derived in
[13]. We mention that this includes structures in the right-hand side by treating an
augmented linear system of dimension n+1. Such structures appear, for example, in
the Yule–Walker problem [11, section 4.7.2].

3. Componentwise perturbations. Throughout this paper let nonsingular
A ∈ Mn(R) be given together with 0 �= x ∈ R

n and weights E ∈ Mn(R), f ∈ R
n.

Denote b := Ax.
The standard proof [16, Theorem 7.4] of (2.2) uses that (A+∆A)(x+∆x) = b+∆b

and Ax = b imply

∆x = A−1(−∆Ax+∆b) +O(ε2).(3.1)

This is true independent of ∆A, structured or not. It follows that

condstructE,f (A, x) = sup

{‖A−1∆Ax+A−1∆b‖∞
‖x‖∞ : ∆A ∈ M struct

n (R),∆b ∈ R
n,

|∆A| ≤ |E|, |∆b| ≤ |f |
}
.

(3.2)

This is again true for all structures including the unstructured caseM struct
n (R) =

Mn(R). For the estimation of ‖∆x‖∞, in case of structured perturbations of ∆A we
use the ansatz as in [13] (see also Part I of this paper). All structures in (2.5) are linear
structures. That means for given “struct” every matrix ∆A in M struct

n (R) depends
linearly on some k parameters ∆p ∈ R

k. The number of parameters k depends on the
structure; see Table 6.1 in Part I of this paper. Denote the vector of stacked columns
of ∆A by vec(∆A) ∈ R

n2

. Then there is a bijective correspondence

vec(∆A) = Φstruct ·∆p(3.3)

between vec(∆A) and the parameters ∆p by some matrix Φstruct ∈ Mn2,k(R). Note
that Φstruct is fixed for every structure and given size n ∈ N. Also note that Φstruct

contains for all structures in (2.5) exactly one nonzero entry in each row.
In case of structured componentwise perturbations it seems natural to assume

E ∈ M struct
n (R). This implies existence of pE ∈ R

k with vec(E) = Φstruct · pE ,
and because Φstruct contains exactly one nonzero entry per row we have the nice
equivalence

(3.4)

∆A ∈ M struct
n (R) and |∆A| ≤ |E| ⇔ vec(∆A) = Φstruct ·∆p and |∆p| ≤ |pE |.

That means the set of all |∆p| ≤ |pE | maps one-to-one to the set of ∆A allowed in
(3.2). In that respect structured componentwise perturbations are easier to handle
than structured normwise perturbations. Finally, observe ∆Ax = (xT ⊗ I)Φstruct∆p
for ⊗ denoting the Kronecker product, and with the abbreviation

Ψstructx := (xT ⊗ I)Φstruct(3.5)
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we obtain the following formula for condstructE,f (A, x), which was also observed in [13].

Theorem 3.1. For nonsingular A ∈ Mn(R), 0 �= x ∈ R
n, E ∈ M struct

n (R) ⊆
Mn(R), and f ∈ R

n such that vec(E) = ΦstructpE for pE ∈ R
k we have

condstructE,f (A, x) =
‖ |A−1Ψx| |pE |+ |A−1| |f | ‖∞

‖x‖∞ .(3.6)

We note that Theorem 3.1 contains (2.2) for unstructured perturbations. In that
case it is just Φ = In2 and Ψx = xT ⊗ In. Then vec(E) = pE implies |A−1(xT ⊗
I)| |pE | = |xT ⊗ A−1| |pE | = (|xT | ⊗ |A−1|)|pE | = |A−1| |E| |x| using [17, Lemmas
4.2.10 and 4.3.1].
In Part I of this paper, we concluded in Corollary 6.6 of the corresponding Theo-

rem 6.5 that a lower bound on the ratio of the structured and unstructured normwise
condition number only depends on the solution vector x and not on the matrix A.
This is not possible in the componentwise case. In the normwise case the factor ‖E‖
cancelled, whereas in the componentwise case pE may consist of components large in
absolute value corresponding to columns of |A−1Ψx| being small in absolute value.
This does indeed happen, as we will see in the explicit examples in the next sections.
For the structures in (2.5) the matrix Ψx is large but sparse. A mere count of

operations shows that A−1Ψx requires not more than n
3 multiplications and additions

for all structures in (2.5). Moreover, frequently it is not the exact value but rather an
approximation of (3.6) that is sufficient. For that purpose efficient methods requiring
some O(n2) flops are available; see, for example, [12, 15].
To simplify and focus the discussion we observe that

A ∈ M sym
n (R)⇔ JA ∈ Mpersym

n (R)⇔ AJ ∈ Mpersym
n (R),

A ∈ M symToep
n (R)⇔ JA ∈ M

persymHankel
n (R)⇔ AJ ∈ M

persymHankel
n (R),

A ∈ M
Toep
n (R)⇔ JA ∈ MHankel

n (R)⇔ AJ ∈ MHankel
n (R).

(3.7)

By rewriting (3.1) into

∆x = (JA)−1(−J∆Ax+J∆b)+O(ε2) and J∆x = (AJ)−1(−∆AJ ·Jx+∆b)+O(ε2)

and observing |∆A| ≤ |E| ⇔ |J∆A| ≤ |JE| ⇔ |∆AJ | ≤ |EJ | and |∆b| ≤ |f | ⇔
|J∆b| ≤ |Jf | we obtain the following.

Theorem 3.2. For nonsingular A ∈ Mn(R) and 0 �= x ∈ R
n there holds

condsymE,f (A, x) = condpersymJE,Jf (JA, x) = condpersymEJ,f (AJ, Jx),

condsymToep
E,f (A, x) = condpersymHankel

JE,Jf (JA, x) = condpersymHankel
EJ,f (AJ, Jx),

cond
Toep
E,f (A, x) = condHankelJE,Jf (JA, x) = condHankelEJ,f (AJ, Jx).

Therefore we will focus our discussion on symmetric, symmetric Toeplitz, and
Hankel matrices, and the results will, mutatis mutandis, be valid for persymmetric,
persymmetric Hankel, and general Toeplitz matrices, respectively.

4. Condition number for general x. For the case of unstructured compo-
nentwise relative perturbations E = A and f = b it does not make much difference
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whether perturbations in the right-hand side are allowed or not. Indeed, (2.2) and
|b| = |Ax| ≤ |A| |x| imply

condA(A, x) ≤ condA,b(A, x) ≤ 2condA(A, x).(4.1)

A similar estimation is valid for the condition number under normwise perturba-
tions (see Part I, equation (4.1)). Since the normwise condition number κE(A, x) =
‖A−1‖2‖E‖2 without perturbations in the right-hand side does not depend on x,
condition is an inherent property of the matrix—at least for unstructured normwise
perturbations. This is no longer the case for componentwise perturbations. Consider

A :=


 1 0 0
0 1 1
0 1 1 + ε


 and x =


 11
1


 and y =


 10
0


 .(4.2)

Then (2.2) implies

condA(A, x) = 4ε−1 +O(1) but condA(A, y) = 1, and
condA,b(A, x) = 8ε−1 +O(1) but condA,b(A, y) = 2.

(4.3)

So condition subject to componentwise perturbations is no longer an intrinsic matrix
property but depends on the solution x (and therefore on the right-hand side). Note
that the norms of rows and columns of A in (4.2) are of similar size.
There are similar examples for structured perturbations. For instance, the same

data (4.2) yield for symmetric perturbations

cond
sym
A,b (A, x) = 6ε−1 +O(1) and condsymA,b (A, y) = 2,

and there are similar examples for the other structures in (2.5).
We may ask what is the worst case condition number for all x. We first observe

the following.
Lemma 4.1. For nonsingular A ∈ Mn(R) and M struct

n (R) ⊆ Mn(R) we have

sup
x�=0
condstructE,f (A, x) = sup

|x|=e

condstructE,f (A, x).(4.4)

Proof. In view of (3.2) the supremum over all 0 �= x ∈ R
n in (4.4) can obviously

be replaced by the supremum over all ‖x‖∞ = 1, the same as |x| ≤ e with at least
one |xi| = 1. The assertion follows easily.
For unstructured perturbations, formula (2.2) and Lemma 4.1 imply

sup
x�=0
condE,f (A, x) = condE,f (A, e) = ‖ |A−1| |E|e+ |A−1| |f | ‖∞,(4.5)

and for no perturbations in the right-hand side

sup
x�=0
condE(A, x) = condE(A, e) = ‖ |A−1| |E| ‖∞.

For some structures the supremum for structured perturbations (4.4) is equal to the
worst case (4.5) for unstructured perturbations.

Theorem 4.2. Let M struct
n (R) ⊆ Mn(R) and nonsingular A ∈ M struct

n (R), E ∈
M struct

n (R), and f ∈ R
n be given. If, for every signature matrix S, B ∈ M struct

n (R)
implies SBS ∈ M struct

n (R), then

sup
x�=0
condstructE,f (A, x) = sup

x�=0
condE,f (A, x) = ‖ |A−1| |E| e+ |A−1| |f | ‖∞.(4.6)
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Proof. Let i denote the row of |A−1| |E| e + |A−1| |f | for which the maximum
is achieved in the ∞-norm, and denote by S the signature matrix with Sνν :=
sign(A−1)iν . Then

(A−1 · S|E|S · Se)i = (|A−1| |E| e)i,
and the result follows by (3.2), choosing ∆A := S|E|S ∈ M struct

n (R) with |∆A| = |E|
and the obvious choice of ∆b.

Corollary 4.3. For struct ∈ {sym,persym, skewsym} and nonsingular A ∈
M struct

n (R), E ∈ M struct
n (R), f ∈ R

n, it follows that

sup
x�=0
condstructE,f (A, x) = sup

x�=0
condE,f (A, x) = condE,f (A, e)

= ‖ |A−1| |E| e+ |A−1| |f | ‖∞ ,

and therefore

sup
x�=0
condstructE (A, x) = ‖ |A−1| |E| ‖∞

for no perturbations in the right-hand side.
Proof. For struct ∈ {sym, skewsym} the result follows by Theorem 4.2, and for

persymmetric matrices by Theorem 3.2.
For other structures things change if the structure imposes too many restrictions

on the choice of the elements. If not, the following theorem gives at least two-sided
bounds for the worst case condition number for all x.

Theorem 4.4. Let M struct
n (R) ⊆ Mn(R) be given such that for every individual

column there is no dependency between the elements; in other words, for every c ∈ R
n

and every index i ∈ {1, . . . , n} there exists B ∈ M struct
n (R) with the ith column

Bi of B equal to c. For such M struct
n (R) and given nonsingular A ∈ M struct

n (R),
E ∈ M struct

n (R), f ∈ R
n, it follows that

n−1α ≤ sup
x�=0
condstructE,f (A, x) ≤ α,(4.7)

where

α := condE,f (A, e) = sup
x�=0
condE,f (A, x) = ‖ |A−1| |E| e+ |A−1| |f | ‖∞.

Estimation (4.7) is especially true for struct ∈ {circ,Toep,Hankel}.
Proof. Denote by i ∈ {1, . . . , n} an index with

α = sup
‖x‖∞=1

condE,f (A, x) = ‖ |A−1| |E| e+ |A−1| |f | ‖∞ = (|A−1| |E| e+ |A−1| |f | )i.

There is j ∈ {1, . . . , n} with (|A−1| |E| e)i ≤ n(|A−1| |E|)ij . Choose ∆A ∈ M struct
n (R)

with |∆A| ≤ |E| such that ∆Aνi = sign((A−1)iν) · |Eνj |. Then (A−1∆A)ij =
(|A−1| |E|)ij , and for suitable x with |x| = e and for suitable ∆b we obtain

|(A−1∆Ax+A−1∆b)i| ≥ (|A−1| |E|)ij + (|A−1| |f |)i
≥ n−1(|A−1| |E| e+ |A−1| |f |)i = n−1α.

Now the left inequality in (4.7) follows by (3.2), and the right inequality is obvi-
ous.
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The assumptions on M struct
n (R) are also satisfied for struct ∈ {sym,persym,

skewsym}, where we already obtained the sharp result in Corollary 4.3. However, the
assumptions are not satisfied for symmetric Toeplitz structures of dimension n ≥ 3,
and therefore also are not for persymmetric Hankel structures. Indeed, we will give
general examples of symmetric Toeplitz matrices of dimension n = 3 and n ≥ 5 such
that

condA(A, e) = ε−1 +O(1) but sup
x�=0
condsymToep

A (A, x) = 1 +O(ε).(4.8)

Note that we use the weight matrix E = A but do not allow perturbations in the
right-hand side. Of course, after introducing some small weight f for a perturbation
in the right-hand side formula, (4.8) is still valid in weaker form.
Let us explore this example for n = 3 in more detail. Consider (for small α ∈ R)

A =


 0 1 α
1 0 1
α 1 0


 such that A−1 = (2α)−1


 −1 α 1

α −α2 α
1 α −1


 .(4.9)

General ∆A ∈ M symToep
3 (R) with |∆A| ≤ |A| is of the form

∆A =


 0 a αb

a 0 a
αb a 0


 with |a| ≤ 1, |b| ≤ 1.

Then

A−1∆A =
1

2


 a+ b 0 a− b

α(b− a) 2a α(b− a)
a− b 0 a+ b


 such that ‖A−1∆A‖∞ ≤ 1 +O(α).

But

|A−1| |A| =

 1 α−1 1

α 1 α
1 α−1 1


 implies ‖ |A−1| |A| ‖∞ = α−1 +O(1)

such that (3.2) and (2.2) imply

sup
x�=0
cond

symToep
A (A, x) ≤ 1 +O(α) but condA(A, e) = α−1 +O(1).(4.10)

Note that condA(A, x) ∼ α−1 is true for all x ∈ R
n with |x2| not too small.

The situation as in (4.10) cannot happen if perturbations in the right-hand side
are allowed, at least not for the important case of relative perturbations E = A, f = b.
In that case the worst case condition number is of the order of ‖ |A−1| |A| ‖∞, as shown
by the following theorem.

Theorem 4.5. Let arbitrary M struct
n (R) be given and nonsingular A∈M struct

n (R).
Then for componentwise relative perturbations in the matrix and in the right-hand
side, i.e., for E = A and f = Ax, we have

n−1‖ |A−1| |A| ‖∞ ≤ sup
x�=0
condstructA,Ax (A, x) ≤ 2‖ |A−1| |A| ‖∞.
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Remark 4.6. Note that the weight f = Ax for the right-hand side depends on
x. This problem does not occur in the normwise case because in that case the worst
case structured condition number (for all x) is equal to the unstructured condition
number for all weights E, f (see Part I, Theorem 4.1).

Proof. On the one hand, (3.2) implies

sup
x�=0
condstructA,Ax (A, x) ≥ sup

|x|=e

‖ |A−1| |Ax| ‖∞ ≥ n−1‖ |A−1| |A| ‖∞.

On the other hand, (3.2) and (2.2) yield

sup
x�=0
condstructA,Ax (A, x) ≤ sup

x�=0
condA,Ax(A, x) = condA,Ae(A, e)

= ‖ |A−1| |A|e+ |A−1| |Ae| ‖∞ ≤ 2‖ |A−1| |A| ‖∞.

We mention that

‖ |A−1| |A| ‖∞ = inf
D1,D2

κ∞(D1AD2) = �(|A−1| |A|),(4.11)

where � denotes the spectral radius and the infimum is taken over nonsingular diag-
onal Di. So this quantity is the infimum ∞-norm condition number with respect to
unstructured and normwise perturbations in the matrix. The right equality in (4.11)
was proved by Bauer [3] for the case where |A| and |A−1| have positive entries. The
proof gives D1 and D2 explicitly by using the right Perron vector of |A−1| |A|. The
argument is also valid for general A, as shown by [23].
The question remains of whether at least some of the previous results for the

worst case structured condition number (for all x) can be shown for specific x, i.e.,
specific right-hand side. A worst case scenario in that respect would be if for the
natural weights E = A and f = b, i.e., componentwise relative perturbations in the
matrix and the right-hand side, there exist A, b, and x with condA,b(A, x) arbitrarily

large, whereas condstructA,b (A, x) = O(1). Indeed, we will show that for all structures
mentioned in (2.5) except circulants there are such general examples.

5. Symmetric, persymmetric, and skewsymmetric matrices. For the case
of no perturbations in the right-hand side it is fairly easy to find parameterized
A = Aε and x such that condA(A, x) = O(ε−1) and condstructA (A, x) = O(1) for
struct ∈ {sym,persym, skewsym}. We found it more difficult to find such examples
with perturbations in the right-hand side; in fact, we did not expect there to be any;
however, they do exist. We illustrate the first example in more detail. Consider

A = Aε =



0 1 1 0 −1
1 0 1 −1 0
1 1 0 1 1
0 −1 1 ε 1
−1 0 1 1 0


 and x =



1
1
0
1
1


 .

Then

A−1 = ε−1




1 −1 + ε
2 0 1 −1− ε

2−1 + ε
2 1− ε

2
ε
2 −1 1

0 ε
2 0 0 ε

2
1 −1 0 1 −1

−1− ε
2 1 ε

2 −1 1 + ε
2


 .
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Furthermore,

|A−1| |A| |x| = ε−1



8 + 3ε
8 + 5ε
2ε
8 + ε
8 + 5ε


 and |A−1| |Ax| = |A−1|



0
0
4
ε
0


 =



1
3
0
1
3


 .(5.1)

Note that |A−1| |Ax| is of size O(1) because the third column of A−1, which meets the
component 4 in |Ax|, is of size O(ε). This is important because this term |A−1| |Ax|
occurs in both the unstructured condition number (2.2) and the structured condition
number (cf. Theorem 3.1). Now (2.2) implies

condA,Ax(A, x) = 8ε−1 +O(1).(5.2)

On the other hand, according to (3.5),

Ψsymx =



1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 1 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 1 0 0 0 0 1 1


 ,

such that A−1Ψsymx has large elements of size O(ε−1) in columns 1, 4, 6, 9, 13, and 15,
whereas all other columns are comprised of elements of magnitude O(1). However, the
parameter vector pA such that vec(A) = Φ

sym · pA has zero elements in components
1, 4, 6, 9, 10, 15, a value ε in component 13, and ±1’s otherwise. Therefore

|A−1Ψsymx | · |pA| =



3
4
2
1
4


+O(ε)

such that (5.1) and Theorem 3.1 imply

condsymA,Ax(A, x) = 7 +O(ε).(5.3)

The numbers in (5.2) and (5.3) do not change when replacing A by A ⊕ B and pro-
longing x by k zeros, where B ∈ Mk(R) denotes any symmetric matrix. Furthermore,
Theorem 3.2 implies that the same example applies for persymmetric structures. We
proved the following result.

Theorem 5.1. For n ≥ 5, there exist parameterized symmetric A := Aε ∈
M sym

n (R) and x ∈ R
n such that

condA,Ax(A, x) = 8ε−1 +O(1) and condsymA,Ax(A, x) = 7 +O(ε).

For the persymmetric matrix JA ∈ Mpersym
n (R) similar assertions are true.

For the skewsymmetric matrix A = Aε ∈ M skewsym
n (R) with

A :=



0 1 0 −1
−1 0 ε 1
0 −ε 0 0
1 −1 0 0


 and x =



1
1
1
1



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one computes using (2.2) and Theorem 3.1

condA,Ax(A, x) = 6ε−1 +O(1) and cond
skewsym
A,Ax (A, x) = 4 +O(ε).(5.4)

Skewsymmetric nonsingular matrices are of even dimension. So replacing A by A⊕B

and prolonging x by 2k zeros, where B ∈ M skewsym
k (R) denotes any skewsymmetric

matrix, does not change the numbers in (5.4). We have the following result.
Theorem 5.2. For even n ≥ 4, there exist parameterized skewsymmetric A :=

Aε ∈ M
skewsym
n (R) and x ∈ R

n such that

condA,Ax(A, x) = 6ε−1 +O(1) and condskewsymA,Ax (A, x) = 4 +O(ε).

This result shows a major difference between normwise and componentwise per-
turbations. In Part I, Theorem 5.3 we proved that for struct ∈ {sym,persym, skewsym}
and for all x the structured normwise condition number is equal to the unstructured
normwise condition number. For componentwise perturbations and specific x the
condition numbers can be arbitrarily far apart, although Corollary 4.3 shows that in
the worst case they are identical. We had similar results for normwise perturbations
for the other structures in (2.5) (Part I, Theorems 8.4, 9.2, and 10.2). However, the
worst case was essentially κstruct ∼ κ1/2; i.e., a big ratio κ/κstruct was only possi-
ble for ill-conditioned matrices. For componentwise perturbations, condstructA,Ax ∼ 1 is
possible compared to arbitrarily large condA,Ax—always for the important case of
componentwise relative perturbations in the matrix and the right-hand side.

6. Toeplitz and Hankel matrices. Symmetric Toeplitz matrices depend only
on n parameters. That makes it less difficult to find examples in the spirit of the
previous section. Consider

A = Aε := Toeplitz(0, 0, 1 + ε,−1, 1) and x = (1, 1, 0, 1, 1)T

such that A is the symmetric Toeplitz matrix with first row [0, 0, 1 + ε,−1, 1]. Then

condA,Ax(A, x) = 4ε−1 +O(1) and condsymToep
A,Ax (A, x) = 5 +O(ε).

In case of Toeplitz structures it is a little more subtle to find general n×n examples.
The structure does not permit us to use a simple direct sum as in the previous section.
We found the following examples. For even order greater than or equal to 6 consider

A = Toeplitz(0, 0, z,−1, 1, z, 1, ε) ∈ M symToep
6+2k (R) and

x = (1, 0, z,−1,−1, z, 0, 1) ∈ R
6+2k,

where z ∈ R
k denotes a vector of k ≥ 0 zeros. Then (2.2) and Theorem 3.1 yield

condA,Ax(A, x) = 4ε−1 +O(1) and condsymToep
A,Ax (A, x) = 6 +O(ε)

for all k ≥ 0. For odd order greater than or equal to 7 consider

A = Toeplitz(ε,−ε, 0, 0, 0, 0, z, 1, z) ∈ M symToep
7+2k (R) and

x = (z, 0, 1, 1, 0, 1, 1, 0, z) ∈ R
7+2k,
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where z ∈ R
k denotes again a vector of k zeros. Then

condA,Ax(A, x) = 4ε−1 +O(1) for n = 7,

condA,Ax(A, x) = 4ε−2 +O(ε−1) for odd n ≥ 9 but

condsymToep
A,Ax (A, x) = 5 +O(ε) for odd n ≥ 7.

For persymmetric Hankel structures we use Theorem 3.2 and, summarizing, we have
the following result.

Theorem 6.1. For n ≥ 5, there exist parameterized symmetric Toeplitz matrices

A := Aε ∈ M
symToep
n (R) and x ∈ R

n such that

condA,Ax(A, x) ≥ 4ε−1 +O(1) and cond
symToep
A,Ax (A, x) ≤ 6 +O(ε).

For the persymmetric Hankel matrix JA ∈ M
persymHankel
n (R) similar assertions are

true.
For Hankel structures consider

A = Hankel([0, ε,−1 + ε,−1, 0], [0, 1, 1, 0, 0]) ∈ MHankel
5 (R) and

x = (1, 1, 0, 1, 1)T ∈ R
5,

where Hankel(c, r) denotes the Hankel matrix with first column c and last row r.
Then (2.2) and Theorem 3.1 give

condA,Ax(A, x) = 8ε−1 +O(1) and condHankelA,Ax (A, x) = 8 +O(ε).(6.1)

For general even n ≥ 6 consider
A = Hankel([ε, 1, z, 1,−1, z, 0, 0], [0, 0, z,−1, 1, z, 1, 0]) ∈ MHankel

6+2k (R),

x = (1, 0, z,−1,−1, z, 0, 1)T ∈ R
6+2k,

where z denotes a vector of k ≥ 0 zeros. Then
condA,Ax(A, x) = 8ε−1 +O(1) and condHankelA,Ax (A, x) = 7 +O(ε)

for all even n ≥ 6. For general odd n ≥ 7 define
A = Hankel([ε, z, 0,−1,−1, 0, z], [z, 0, 1− ε, 1, 0, 0, z]) ∈ MHankel

5+2k (R) and

x = (1, 1, z, 0, z, 1, 1)T ∈ R
5+2k,

where z denotes a vector of k ≥ 1 zeros. Then (6.1) is valid as well. Using Theorem
3.2 for general Toeplitz structures we have the following result.

Theorem 6.2. For n ≥ 5, there exist parameterized Hankel matrices A := Aε ∈
MHankel

n (R) and x ∈ R
n such that

condA,Ax(A, x) = 8ε−1 +O(1) and condHankelA,Ax (A, x) ≤ 8 +O(ε).

For the general Toeplitz matrix JA ∈ MToep(R) similar assertions are true.
In summary, for all of the structures struct ∈ {sym,persym, skewsym, symToep,

Toep,Hankel,persymHankel} there are general n× n examples, n ≥ 5, such that the
unstructured condition number is arbitrarily large, whereas the structured condition
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number is O(1). Note that this includes perturbations in the right-hand side. The
only exception of the structures in (2.5) to this statement are circulant structures, as
we will see in the next section.
For no perturbations in the right-hand side things are even worse. Consider

A := Aε = Toeplitz(ε, v, 1, v, 0) for odd n ≥ 3 and
A := Aε = Toeplitz(ε, w, 1, w, 0, 0) for even n ≥ 6,(6.2)

where v ∈ R
k−1 and w ∈ R

k−2 denote zero vectors for k := �n/2�. We will show
that for these matrices a linear system Ax = b is always well conditioned with respect
to componentwise symmetric Toeplitz perturbations, that is, for all x. On the other
hand, the linear system is ill conditioned for generic x with respect to componentwise
general perturbations. We illustrate the proof for n = 5. Let x ∈ R

5 with ‖x‖∞ = 1
be given. According to (3.5) and (3.6) we calculate

A−1 =
1

2




ε−1 0 1 0 −ε−1

0 0 0 2 0
1 0 0 0 1
0 2 0 0 0

−ε−1 0 1 0 ε−1


+O(ε) and

ΨsymToep
x =




x1 x2 x3 x4 x5

x2 x1 + x3 x4 x5 0
x3 x2 + x4 x1 + x5 0 0
x4 x3 + x5 x2 x1 0
x5 x4 x3 x2 x1


 ,

and from this

A−1Ψx =
1

2
ε−1




x1 − x5 x2 − x4 0 x4 − x2 x5 − x1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

x5 − x1 x4 − x2 0 x2 − x4 x1 − x5


+O(1).

By construction (3.3) we have vec(A) = ΦsymToep · pA with pA = (ε, 0, 1, 0, 0)
T . The

only element of pA of size 1 meets the zero column in A
−1Ψx, so |A−1Ψx| |pA| = O(1),

and by (3.6)

cond
symToep
A (A, x) = O(1) for all 0 �= x ∈ R

n.

By (3.6) this remains true without the assumption ‖x‖∞ = 1. On the other hand,

|A−1| |A| =



1 0 ε−1 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 ε−1 0 1


+O(eps).

So (2.2) implies

condA(A, x) ≥ ε−1|x3|.
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The computation above extends to all matrices in (6.2) and we have the following
result.

Theorem 6.3. Let ε > 0 and a matrix A := Aε according to (6.2) be given. Then
the following are true:

(i) For all 0 �= x ∈ R
n we have condsymToep

A (A, x) = O(1).
(ii) Let x∈R

n be given and denote α := |xk+1| for odd n and α :=max(|xk|, |xk+1|)
for even n, where k = �n/2�. Then

condA(A, x) ≥ ε−1α.

The example is possible because the symmetric Toeplitz structure imposes severe
restrictions on the possible perturbations so that the assumptions of Theorem 4.4 are
not satisfied.

7. Circulant matrices. Better estimations of the ratio condcirc/cond of the
componentwise condition numbers are possible because circulant matrices commute
(because they are diagonalized by the Fourier matrix; cf. [7, 11]). This implies for
A,∆A ∈ Mcirc

n (R) that A−1∆A = ∆A ·A−1 and therefore

∆x = −∆A ·A−1x+A−1∆b+O(ε2).

This implies the following nice characterization.
Theorem 7.1. Let nonsingular A ∈ Mcirc

n (R), x ∈ R
n, E ∈ Mcirc

n (R), f ∈ R
n

be given. Then

condcircE,f (A, x) =
‖ |E| |A−1x|+ |A−1| |f | ‖∞

‖x‖∞ .

To estimate the ratio condcirc/cond we first show that

‖ |A| |x| ‖∞ ≥ n−1‖A‖∞‖x‖2 for A ∈ Mcirc
n (R).(7.1)

For A ∈ Mcirc
n (R) we have

∑
i |Aij | = ‖A‖1 for any j and ‖A‖1 = ‖A‖∞, and therefore

‖ |A| |x| ‖∞ ≥ n−1
∑
i

(|A| |x|)i = n−1
∑
i

∑
j

|Aij | |xj | = n−1
∑
j

‖A‖1|xj |
= n−1‖A‖1‖x‖1 ≥ n−1‖A‖∞‖x‖2.

This implies

‖ |A| |A−1x| ‖∞ ≥ n−1‖A‖∞‖A−1x‖2 and

‖ |A−1| |Ax| ‖∞ ≥ n−1‖A−1‖∞‖Ax‖2.

For x ∈ R
n we have

‖x‖2
2 = xTA−1Ax ≤ ‖xTA−1‖2‖Ax‖2 = ‖A−1x‖2‖Ax‖2

using ‖CTx‖2 = ‖Cx‖2 for C ∈ Mcirc
n (R); see Part I, Lemma 8.2. Putting things

together we obtain for relative perturbations E = A and f = Ax

condcircA,Ax(A, x) = ‖ |A| |A−1x|+ |A−1| |Ax| ‖∞/‖x‖∞
≥ n−1max(‖A‖∞‖A−1x‖2, ‖A−1‖∞‖Ax‖2)/‖x‖∞
≥ n−1

√‖A‖∞‖A−1‖∞‖A−1x‖2‖Ax‖2/‖x‖∞

≥ n−1
√‖A‖∞‖A−1‖∞ ‖x‖2

‖x‖∞ .

(7.2)
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With this and (4.1) and (2.3) we also obtain a lower bound on the ratio condcircA,Ax/condA,Ax

by

condcircA,Ax(A, x) ≥ n−1
√‖ |A−1| |A| ‖∞ ‖x‖2

‖x‖∞

≥ n−1

√
‖ |A−1| |A|x‖∞

‖x‖∞ · ‖x‖2

‖x‖∞
≥ n−1

√
1

2
condA,Ax(A, x) · ‖x‖2

‖x‖∞
≥ 2−1/2n−1

√
condA,Ax(A, x).

(7.3)

We have the following result.
Theorem 7.2. Let a nonsingular circulant A ∈ Mcirc

n (R) and 0 �= x ∈ R
n be

given. Then

condcircA,Ax(A, x) ≥ n−1
√‖A‖∞‖A−1‖∞ · ‖x‖2

‖x‖∞
≥ 2−1/2n−1

√
condA,Ax(A, x) · ‖x‖2

‖x‖∞ .

We think that the factor n−1 in both lower bounds of Theorem 7.2 can be replaced
by the factor n−1/2. If this is true, it is easy to find examples verifying that the
overestimation in either case is bounded by a small constant factor.
The ratio condcircA,Ax/condA,Ax can only become large for ill-conditioned linear

systems. The question remains of whether this changes if we forbid perturbations in
the right-hand side. This is indeed the case, and it is very simple to find examples.
Just take a vector r ∈ R

n with uniformly distributed random first n− 1 components
in [−1, 1] and set rn := −∑n−1

i=1 ri + ε. Then define A = [circ(r)]−1 and x = e.
Obviously circ(r)e = εe, so A has an eigenvalue ε−1 to the eigenvector e; one can see

that most likely A > 0, so Theorem 7.1 implies condcircA (A, e) = ‖ |A| |A−1e| ‖∞ = 1.
On the other hand, (2.3) implies condA(A, e) = ‖ |A−1| |A|e‖∞ = ‖ |A−1| |A| ‖∞, and
extensive numerical experience shows that it is likely that condA(A, x) ∼ ε−1. An
explicit example is a matrix A constructed as above with r1 = · · · = rn−1 = 1. Then

condA(A, e) = (2n− 2)ε−1 +O(1) and condcircA (A, e) = 1

for n ≥ 2.
Theorem 7.3. Given n ≥ 2, there exists A ∈ Mcirc

n (R) with

condA(A, e) ≥ O(ε−1) and condcircA (A, e) = 1.

The results show that with respect to normwise and componentwise perturbations
circulants behave similarly (Part I, Theorems 8.1, 8.4, and equation (8.1)). Besides
normality, a reason for that is that circulants commute.

8. Inversion of structured matrices. Similar to the structured component-
wise condition number for linear systems, the structured component-
wise condition number for matrix inversion is defined for A ∈ M struct

n (R) and given
weight matrix E ∈ M struct

n (R) by

µstructE (A) := lim
ε→0
sup

{‖(A+∆A)−1 −A−1‖∞
ε‖A−1‖∞ ; ∆A ∈ M struct

n (E), |∆A| ≤ ε|E|
}
.

(8.1)
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The unstructured condition number µE(A), that is, forM
struct
n (R) =Mn(R), satisfies

the following bounds:

n−1α ≤ µE(A) ≤ α for α :=
‖ |A−1| |E| |A−1| ‖∞

‖A−1‖∞ .(8.2)

This follows by the well-known ansatz (see, for example, [16, proof of Theorem 6.4])

(A+∆A)−1 −A−1 = −A−1∆AA−1 +O(‖∆A‖2).(8.3)

From this the right inequality in (8.2) is obvious. Denoting the ith row and jth
column of A−1 by A−1

i,: and A−1
:,j , respectively, we have

(8.4)

(A−1∆AA−1)ij=(|A−1| |E| |A−1|)ij for ∆A :=diag(sign(A−1
i,: ))|E|diag(sign(A−1

:,j )),

which implies the left inequality of (8.2).
In case of normwise perturbations the condition numbers for matrix inversion and

for an arbitrary linear system with the same matrix (for no perturbations in the right-
hand side) are both equal to ‖A−1E‖2. In case of componentwise perturbations the
condition number depends on the solution (see (4.2) and (4.3)). We may ask whether
there is a relation between µE(A) and the supremum of condE(A, x) over all x.

Definition 8.1. Let nonsingular A ∈ M struct
n (R) and E ∈ M struct

n (R) be given.
Then

condstructE (A) := sup
x�=0
condstructE (A, x).

In Corollary 4.3 we saw

condE(A)=cond
struct
E (A)=‖ |A−1|E‖∞ for struct ∈ {sym,persym, skewsym}.(8.5)

Obviously (8.2) implies

µE(A) ≤ condE(A).

However, this inequality may be arbitrarily weak. Consider

A = Aε =


 ε 1 0
1 ε 1
0 1 ε


 with

‖ |A−1| |A| |A−1| ‖∞
‖A−1‖∞ = 3,

but condA(A, e) = ‖ |A−1| |A| ‖∞ = ε−1.

(8.6)

Note that this is for componentwise relative perturbations, i.e., E = A. Denote
b := Ae. Then (8.6) implies that the linear system Ax = b is ill conditioned for small
ε, but matrix inversion of A is well conditioned for every ε > 0. This might lead to
the apparent contradiction that solving the linear system by x = A−1b removes the
ill-conditionedness. This is of course not the case. In our example we have

A−1 = (2ε)−1


 1 ε −1

ε 0 ε
−1 ε 1


+O(1),
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so an O(1) change in A−1 is a small perturbation. However, b = Ae = (1 + ε, 2 +
ε, 1 + ε)T , so an O(1) change in A−1 causes an O(1) perturbation in x = A−1b = e,
which is of the order of 100% change.
The condition number µE(A) depends on diagonal scaling of A (and E). We may

ask for the optimal condition number with respect to two-sided diagonal scaling. For
this we obtain the following result.

Theorem 8.2. Let nonsingular A ∈ Mn(R) and E ∈ Mn(R) be given. Denote

µ
opt
E (A) := inf

D1,D2

µD1ED2
(D1AD2),(8.7)

where the infimum is taken over nonsingular diagonal matrices. Define

r := min
i,j

(|A−1| |E| |A−1|)ij
|A−1|ij ,(8.8)

where α/0 :=∞ for α ≥ 0. Then

n−1r ≤ µoptE (A) ≤ r.(8.9)

Proof. Let i, j be indices realizing the minimum in the definition (8.8) of r and let
D(ν) := diag(ε, . . . , ε, 1, ε, . . . , ε) with the 1 at the νth position. Defining D−1

1 := D(j)

and D−1
2 := D(i) we obtain by (8.2)

µ
opt
E (A) ≤ µD1ED2

(D1AD2) ≤ ‖D(i)|A−1| |E| |A−1|D(j)‖∞
‖D(i)A−1D(j)‖∞

=
(|A−1| |E| |A−1|)ij

|A−1|ij + βε = r + βε

for a constant β not depending on ε. This proves the right inequality in (8.9). Denote
C := |A−1| |E| |A−1| and let ‖A−1‖∞ =

∑
ν |A−1|iν and ‖C‖∞ =

∑
ν Cjν . Then by

(8.2) and the definition (8.8) of r

nµE(A) ≥ ‖C‖∞
‖A−1‖∞ =

∑
ν
Cjν∑

ν
|A−1|iν ≥

∑
ν
Ciν∑

ν
|A−1|iν ≥

r
∑
ν
|A−1|iν∑

ν
|A−1|iν = r.

We note that one may measure the componentwise relative perturbation of (A+∆A)−1

versus A−1 subject to componentwise perturbations of A. Then (cf. [4, 16])

µ̃E(A) := lim
ε→0
sup

{ |(A+∆A)−1 −A−1|ij
ε|A−1|ij : ∆A ∈ Mn(R), |∆A| ≤ ε|E|

}

= max
ij

(|A−1| |E| |A−1|)ij
|A−1|ij .

The structured componentwise condition number for the inverse can be bounded by
adapting the approach for linear systems. Let A,∆A ∈ M struct

n (R), vec(∆A) =
Φstructp∆A, and vec(E) = Φ

structpE . Then |∆A| ≤ |E| is equivalent to |p∆A| ≤ |pE |.
In view of (8.5) we note that (see [17, Lemma 4.3.1])

vec(A−1∆AA−1) = (A−T ⊗A−1)vec(∆A) = (A−T ⊗A−1)Φstructp∆A.(8.10)

This implies the following.
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Theorem 8.3. Let nonsingular A ∈ M struct
n (R) and E ∈ M struct

n (R) be given.
Let B ∈ Mn(R) with

vec(B) = |(A−T ⊗A−1)Φstruct| |pE |(8.11)

and denote

α :=
‖B‖∞

‖A−1‖∞ .

Then

n−1α ≤ µstructE (A) ≤ α.(8.12)

Remark 8.4. The result includes (8.2) because, in the unstructured case, Φ = In2

and vec(B) = |A−T ⊗A−1| |pE | = (|A−T | ⊗ |A−1|)|pE | = vec(|A−1| |E| |A−1|) by [17,
Lemma 4.3.1].

Proof. Let dA ∈ M struct
n (R) such that ‖A−1dAA−1‖∞ = sup{‖A−1∆AA−1‖ :

|∆A| ≤ |E| }, and denote vec(dA) = ΦstructpdA. Then |pdA| ≤ |pE | implies
|vec(A−1dAA−1)| = |(A−T ⊗ A−1)Φstruct · pdA| ≤ vec(B), and the right inequal-
ity in (8.12) follows by (8.10), (8.3), and the definition (8.1). On the other hand,
let the index k, 1 ≤ k ≤ n2, be such that maxµ,ν |Bµν | = (vec(B))k. Denote
C := (A−T ⊗A−1)Φstruct and set diagonal D ∈ Mn2(R) with Dνν := sign(Ckν). Fur-
thermore, define p∆A := D|pE | and let ∆A ∈ M struct

n (R) with vec(∆A) = Φstructp∆A.
Then

β := (vec(A−1∆AA−1))k = ((A
−T ⊗A−1)Φstructp∆A)k = (|C| |pE |)k = (vec(B))k

and

µstructE (A) ≥ ‖A−1∆AA−1‖∞
‖A−1‖ ≥ β

‖A−1‖ ≥ n−1 ‖B‖∞
‖A−1‖ .

The question remains of whether, as for normwise perturbations, there is a relation be-
tween the reciprocal of the matrix condition number and the componentwise distance
to the nearest singular matrix. This question will be treated in the next section.

9. Distance to singularity. For normwise and unstructured perturbations the
condition number is equal to the reciprocal of the distance to the nearest singular
matrix. Moreover, we showed in Part I, Theorem 12.1 that this is also true for
structured (normwise) perturbations, that is,

δstructE (A) = κE(A)
−1,

which is true for all our structures (2.5) under investigation. In the limit, a matrix
has condition number ∞ iff it is singular, that is, the distance to singularity is 0.
The question arises of whether a similar result can be proved for componentwise

perturbations, unstructured or structured. The componentwise (structured) distance
to the nearest singular matrix is defined by

dstructE (A) := min{α : ∆A ∈ M struct
n (R), |∆A| ≤ α|E|, A+∆A singular}.(9.1)

For normwise perturbations, the distance to singularity δstructE (A) as well as the con-
dition number κE(A) depend on row and column diagonal scaling of the matrix. This
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is no longer true for componentwise perturbations. The unstructured distance to sin-
gularity dE(A) as well as the structured distance is independent of row and column
diagonal scaling (as long as, of course, the scaled matrix remains in the structure).
That is, for positive diagonal D1, D2,

dD1ED2(D1AD2) = dE(A),

and for A,E,D1AD2, D1ED2 ∈ M struct
n (R),

dstructD1ED2
(D1ED2) = d

struct
E (A).

This is simply because |∆A| ≤ α|E| ⇔ |D1∆AD2| ≤ αD1|E|D2 and det(A+∆A) =
0 ⇔ det(D1AD2 +D1∆AD2) = 0. Furthermore, A+ Ẽ = A(I + A−1Ẽ) is singular
iff −1 is an eigenvalue of A−1Ẽ so that definition (9.1) implies

(9.2)

dstructE (A) =
[
max{|λ| : Ẽ ∈ M struct

n (R), |Ẽ| ≤ |E|, λ real eigenvalue of A−1Ẽ}
]−1

.

Note that the maximum is taken only over real eigenvalues of A−1Ẽ. For unstructured
perturbations the linearity of the determinant in each matrix element implies that the
matrices Ẽ can be restricted to the boundary |Ẽ| = |E|, i.e., finitely many matrices:

dE(A) =
[
max{|λ| : Ẽ ∈ Mn(R), |Ẽ| = |E|, λ real eigenvalue of A−1Ẽ}

]−1

.(9.3)

This is not true for structured perturbations; that is, the maximum may only be
achieved for some |Ẽ| �= |E|. An example for symmetric structures was given in [20].
With respect to the condition number things are even more involved. In the

normwise case, we have κstructE (A) = ‖A−1‖ ‖E‖ (see Part I, Theorem 11.1) for all
structures in (2.5), and it is the same condition number for matrix inversion as for
linear systems when taking the supremum over all x. This is no longer true in the
componentwise case. Here the condition numbers for matrix inversion and a linear
system with the same matrix may be arbitrarily far apart (cf. the example in (8.6)).
So if there is a relation at all between distance to singularity and the reciprocal of a
condition number we first have to discuss which is the “right” condition number to
choose.
Let us first consider the condition number µE(A) of the matrix inverse as defined

in the previous section. Consider

A = Aε =




−ε 1 0 1
1 0 1 1
0 1 0 1
1 1 1 1


 and E = A.

By (9.3) we calculate

dA(A) =
1

4
ε1/2 +O(1).

On the other hand (8.2) yields

µA(A) ≤ ‖ |A−1| |A| |A−1| ‖∞
‖A−1‖∞ ≤ 8.(9.4)
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Note that this is true for the most common case E = A of componentwise relative
perturbations. The same example applies to structured perturbations. The pertur-
bation ∆A with |∆A| = dA(A)|A| and det(A+∆A) = 0 is a symmetric matrix. That
means

d
sym
A (A) =

1

4
ε1/2 +O(1) and µsymA (A) ≤ µA(A) ≤ 8.

So the condition number of the matrix inverse does not seem appropriate for our
anticipated results.
To proceed let us first consider unstructured componentwise perturbations.

Then, by Corollary 4.3, the worst case condition number for all x is condE(A) =
supx�=0 condE(A, x) = condE(A, e) = ‖ |A−1| |E| ‖∞. We choose no perturbations in
the right-hand side because we are interested in the matrix property of distance to
singularity. By column diagonal scaling, ‖ |A−1| |E| ‖∞ may become arbitrarily large.
Therefore we choose optimal diagonal scaling for which [3, 9, 23]

inf
D1,D2

condD1ED2
(D1AD2) = �(|A−1| |E|),(9.5)

the infimum taken over nonsingular diagonal Dν , � denoting the spectral radius. Note
that �(|A−1| |E|) is also equal to the minimum normwise condition number κE,∞(A)
with respect to the ∞-norm achievable by diagonal scaling. For this minimum con-
dition number we could indeed show an inverse proportionality to dE(A) as by [21,
Proposition 5.1]

1

�(|A−1| |E|) ≤ dE(A) ≤
(3 + 2

√
2)n

�(|A−1| |E|) .(9.6)

The left inequality is an equality for large classes of matrices, e.g.,M -matrices. More-
over, explicit n × n examples, n ≥ 1, were given [21] with dA(A) = n�(|A−1| |A|)−1,
so there is not much room for improvement in (9.6).
The question remains of whether a similar result is possible in case of structured

componentwise perturbations. Unfortunately, for all structures in (2.5) the answer is
no. Following we give a sequence of examples showing that. The first example for the
symmetric case will be treated in more detail; the rest follow similarly. All examples
will be given for the important case of componentwise relative perturbations of the
matrix entries.
Let

A = Aε =




ε 0 1 1
0 0 1 1
1 1 0 ε
1 1 ε 0


 ∈ M sym

4 (R)

be given for ε > 0. A general symmetric perturbation of A subject to componentwise
relative perturbations is

Ã =




ε(1 + δ1) 0 1 + δ2 1 + δ3
0 0 1 + δ4 1 + δ5

1 + δ2 1 + δ4 0 ε(1 + δ6)
1 + δ3 1 + δ5 ε(1 + δ6) 0


 ∈ M

sym
4 (R).
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Then d
sym
A (A) is the smallest α such that |δν | ≤ α and det Ã = 0. With Maple [25]

we calculate

det Ã = c0 + c2ε
2 with

c0 = ((1 + δ2)(1 + δ5)− (1 + δ3)(1 + δ4))
2,

c2 = 2(1 + δ1)(1 + δ4)(1 + δ5)(1 + δ6).

In order to move det Ã into zero, the second summand c2ε
2 must be zero or negative.

This implies dsymA (A) ≥ 1 and therefore, of course

dsymA (A) = 1

because Ã ≡ 0 for δν ≡ −1. On the other hand,

condA(A) = cond
sym
A (A) = ‖ |A−1| |A| ‖∞ = 4ε−1 +O(1).

Moreover, (9.5) implies

inf
D
condsymDAD(DAD) ≥ �(|A−1| |A|) = 2.8ε−1 +O(1) and dA(A) = �(|A−1| |A|)−1

so that there are arbitrarily ill-conditioned, though optimally scaled, symmetric ma-
trices with dsymA (A) = 1. In other words, no relative perturbation less than 100%
may move A into the manifold of (symmetric) singular matrices. The example above
is extendable to higher dimensions by choosing A⊕ I. By Theorem 3.2 the example
extends also to persymmetric structures.
For the skewsymmetric case consider

A = Aε =




0 0 −1 1− ε 0 0
0 0 −ε 0 1 + ε 1
1 ε 0 −1 0 0

−1 + ε 0 1 0 0 0
0 −1− ε 0 0 0 −ε
0 −1 0 0 ε 0




∈ M
skewsym
6 (R).

Here and in the following examples we define Ã (as for the symmetric case) by mul-
tiplying the components of A by 1 + δν with rowwise numbering of the δν . Then

det Ã = ε4(1− ε)2(1 + δ2)
2(1 + δ3)

2(1 + δ7)
2,

implying

dskewsymA (A) = 1.

On the other hand,

condA(A) = 6ε
−2 +O(ε−1) and condskewsymA (A) = 2ε−2 +O(ε−1),

whereas

inf
D
condskewsymDAD (DAD) ≥ �(|A−1| |A|) = 6ε−3/2 +O(ε1/2) and

dA(A) = �(|A−1| |A|)−1
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such that A is truly ill conditioned for arbitrary diagonal scaling with respect to
relative componentwise skewsymmetric perturbations. Now (8.5) and (9.5) imply for
struct ∈ {sym,persym, skewsym}

inf
D
condstructDED (DAD) = inf

D
condDED(DAD) = �(|A−1| |E|),

the infimum taken over positive diagonal D. So we have the following result.
Theorem 9.1. Let struct ∈ {sym,persym, skewsym}. Then for every ε > 0 there

exists A := Aε ∈ M struct
n (R) with

inf
D
condstructDAD (DAD) > ε−1 and dstructA (A) = 1.

For the symmetric Toeplitz case consider

A = Aε = Toeplitz(0, 1, 1,−ε) ∈ M symToep
4 .(9.7)

Then defining Ã as before yields

det Ã = c0 + c1ε+ c2ε
2 with

c0 = (2 + δ1 + δ2)
2(δ2 − δ1)

2,
c1 = 2(1 + δ1)(1 + δ3)((1 + δ1)

2 + (1 + δ2)
2), and

c2 = (1 + δ1)
2(1 + δ3)

2.

For |δν | < 1, c0 is nonnegative, whereas both c1 and c2 are positive. Therefore

dsymToep
A (A) = 1.

On the other hand, for x = (1,−1, 1,−1)T ,

condA(A) = 2ε
−1 +O(1) and

sup
x�=0
condsymToep

A (A) ≥ condsymToep
A (A, x) = 2ε−1 +O(1)

such that A is truly ill conditioned subject to relative componentwise symmetric
Toeplitz perturbations. For Toeplitz structures, diagonal scaling is, in general, not
possible. For completeness we note

�(|A−1| |A|) = 2ε−1/2 +O(1) = [dA(A)]−1.

The same example applies, according to Theorem 3.2, to persymmetric Hankel struc-
tures.
For the general Toeplitz case consider

A = Aε = Toeplitz([0, 1,−1, 0], [0, 1,−1,−ε]) ∈ MToep
4 (R),

where Toeplitz(c, r) denotes the (general) Toeplitz matrix with first column c and first
row r. Defining Ã as before yields

det Ã = c0 + c1ε with
c0 = ((1 + δ1)(1 + δ4)− (1 + δ1)(1 + δ5))

2 and
c1 = (1 + δ3)(1 + δ4)

3 + (1 + δ1)(1 + δ3)(1 + δ5)
2.
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For |δν | < 1 the determinant is positive, so

dToepA (A) = 1.

On the other hand,

condA(A, e) = 4ε−1 +O(1) = condToepA (A, e),

so A is truly ill conditioned subject to relative componentwise general Toeplitz per-
turbations. By Theorem 3.2 this also covers the Hankel case. For completeness we
note

�(|A−1| |A|) = 2
√
2ε−1/2 +O(1) = [dA(A)]−1.

Finally, define for the circulant case

A = Aε = circ(1, ε, 1, 0) ∈ Mcirc
4 (R).

For Ã defined as before we get

det Ã = αβ with
α = (2 + δ1 + δ3)

2 − ε2(1 + δ2)
2 and

β = (δ1 − δ3)
2 + ε2(1 + δ2)

2.

For small ε both factors are nonzero for |δν | < 1, so

dcircA (A) = 1.

On the other hand, for x = (1, 1, 1,−1)T ,

condA(A, x) = 2ε−1 +O(1) = condcircA (A, x) and
�(|A−1| |A|) = 2ε−1 +O(1) = [dA(A)]−1.

Summarizing, we have the following result.
Theorem 9.2. Let struct ∈ {symToep,Toep, circ,Hankel,persymHankel}. Then

for every ε > 0 there exists A := Aε ∈ M struct
n (R) and x ∈ R

n with |x| = e such that

condstructA (A, x) > ε−1 and dstructA (A) = 1.

10. Conclusion. Summarizing, depending on the perturbation in use, we face
severe differences in the sensitivity of the solution of a linear system. An extreme
example is symmetric Toeplitz perturbations. In that case, Theorem 6.3 implies
that for the matrices defined in (6.2) the solution A−1b is well conditioned subject
to structured componentwise perturbations in the matrix for all right-hand sides
b. However, for unstructured componentwise perturbations it is ill conditioned for
generic right-hand side b. This is true when perturbations are restricted to the matrix.
We saw similar examples with a perfectly well-conditioned linear system with re-

spect to componentwise structured perturbations in the matrix and the right-hand
side, but being arbitrarily ill conditioned with respect to componentwise general (un-
structured) perturbations. We presented such examples for all perturbations under
investigation except circulants, for which almost sharp estimations for the ratio be-
tween the structured and unstructured condition numbers were derived.
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So far it seems that componentwise perturbations may produce some quite un-
expected and unwanted effects. One reason, as mentioned in the first section, is that
zero weights produce certain substructures of the given structure. In particular, the
degrees of freedom may be significantly reduced. Then a problem may become well
conditioned because not much room is left to produce “bad” perturbations.
This may lead to the conclusion that it is rather unlikely we will find algorithms

for the problems and structures under investigation in this paper that are stable with
respect to componentwise perturbations. One might even conclude that this seems to
be an intrinsic property of componentwise perturbations.
Fortunately, this seems not to be the case. There are other structures for which

very fast and accurate algorithms have been developed for the solution of linear sys-
tems or matrix inversion and also for other problems such as LU-decomposition and
the computation of singular values. For example, those problems can be solved with
small componentwise relative backward error for Vandermonde-like or Cauchy matri-
ces [16, section 22], [5, 8, 6]. This is especially remarkable because Vandermonde and
Cauchy matrices are reputed for being persistently ill conditioned (with respect to
unstructured perturbations; see [3] in Part I).
This is of course a question of exploiting the data, or of developing the “right”

algorithms, but also is sometimes facilitated by choosing a clever set of input data.
Consider, for example, the problem of matrix inversion, LU-decomposition, or compu-
tation of singular values for weakly diagonally dominant M-matrices. Small perturba-
tions in the diagonal elements can cause arbitrarily large perturbations in the result.
However, another choice of input data changes the situation [19, 1]: The mentioned
problems are well conditioned with respect to the off-diagonal elements and the row
sums as input data.
The problem with stability with respect to componentwise (relative) perturba-

tions, structured or not, is that in the course of a computation one single subtraction
producing some cancellation may ruin the result in the componentwise backward
sense. The backward error of the result of the subtraction is small with respect to
uncorrelated perturbations of the operands. However, perturbations are correlated if
the operands are the result of previous computations. A typical example can be seen
when solving (2.4) with Gaussian elimination.
It seems more and more difficult to design structured solvers for linear systems

over the structures in (2.5) being stable with respect to structured componentwise
perturbations. Are there such algorithms?
A candidate might be circulant matrices because of their rich algebraic properties.

In fact, a normwise stable algorithm already exists [26]. Moreover, in contrast to the
other perturbations under investigation, the worst case unstructured componentwise
condition number in this case is at most about the square of the structured condition
number (for perturbations in the matrix and the right-hand side; see Theorem 7.2).
Finally, there does not seem to be much relation between the distance to singu-

larity and the reciprocal of a condition number in case of componentwise structured
perturbations. This is the case for the matrix inverse condition number µE(A) as
well as for condstructE (A), the supremum of condstructE (A, x) for all x. But maybe an
appropriate structured componentwise condition number for that purpose is still to
be defined.
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