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Abstract. In this paper we study the condition number of linear systems, the condition number
of matrix inversion, and the distance to the nearest singular matrix, all problems with respect to
normwise structured perturbations. The structures under investigation are symmetric, persymmetric,
skewsymmetric, symmetric Toeplitz, general Toeplitz, circulant, Hankel, and persymmetric Hankel
matrices (some results on other structures such as tridiagonal and tridiagonal Toeplitz matrices,
both symmetric and general, are presented as well). We show that for a given matrix the worst
case structured condition number for all right-hand sides is equal to the unstructured condition
number. For a specific right-hand side we give various explicit formulas and estimations for the
condition numbers for linear systems, especially for the ratio of the condition numbers with respect
to structured and unstructured perturbations. Moreover, the condition number of matrix inversion
is shown to be the same for structured and unstructured perturbations, and the same is proved for
the distance to the nearest singular matrix. It follows a generalization of the classical Eckart–Young
theorem, namely, that the reciprocal of the condition number is equal to the distance to the nearest
singular matrix for all structured perturbations mentioned above.
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1. Motivation. Consider a numerical problem inm input parameters producing
k output parameters, that is, a function f : R

m → R
k. An algorithm to solve the

problem, i.e., to compute f, in finite precision may be considered as a function f̃ .
A finite precision arithmetic for general real numbers may be defined to produce the
best finite precision approximation to the (exact) real result (with some tie-breaking
strategy). This includes the definition of the arithmetic for finite precision numbers.
Then, for given input data p ∈ R

m, the numerical result f̃(p) will in general be
the same for all p̃ in a small neighborhood of p. So we cannot expect more from a
numerical algorithm than its producing the exact function value f(p̃) for some p̃ near
p. An algorithm with this property is commonly called backward stable. For example,
the standard method for solving an n × n dense system of linear equations, namely,
Gaussian elimination with partial pivoting, is backward stable.

But is it always possible that f̃(p) = f(p̃) for some p̃ near p? Consider the
computation in double precision floating point arithmetic according to IEEE standard
754 [30] of the square of a matrix, for example, of A =

(1 + u 4
4 −1

)
, where u = 2−52

such that 1 and 1+u are adjacent floating point numbers. The result is B̃ = fl(A2) =(
17 4u
4u 17

)
. For a perturbation ∆A =

(
α β
γ δ

)
we obtain

(A+ ∆A)2 =

(
(1 + u+ α)2 + (4 + β)(4 + γ) (4 + β)(u+ α+ δ)

(4 + γ)(u+ α+ δ) (4 + β)(4 + γ) + (1 − δ)2
)
.

But (A+∆A)2 = B̃ is impossible for a small perturbation ∆A because this implies,
by comparing with B̃11 and B̃22, that (1 + u+α)2 = (1− δ)2, so that u+α = −δ for
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a small perturbation ∆A. But then (A+∆A)12 = 0. In other words, ordinary matrix
multiplication yields the best double precision floating point approximation B̃ to the
exact result A2 but is not backward stable. A similar behavior is not uncommon for
other structured problems.

Consider, for example, a linear system Cx = b with a circulant matrix C. Many
algorithms take advantage of such information, in terms of computing time and stor-
age. In this case only the first row of the matrix and the right-hand side are input
to a structured solver, so m = 2n input data are mapped to k = n output data. By
nature, a perturbation of the matrix must be a circulant perturbation.

It is easy to find examples of Cx = b such that for a computed solution x̃ it is likely
that (C + ∆C)x̃ �= b+ ∆b for all small perturbations ∆C and ∆b such that C + ∆C
is a circulant. This happens although, as above, x̃ may be very close to the exact
solution of the original problem Cx = b. The reason is that, in contrast to general
linear systems, the space of input data is not rich enough to produce perturbed input
data with the desired property. Or, in other words, there is some hidden structure in
the result in contradiction to a computed approximation x̃.

In such a case, about all an algorithm can do in finite precision is to produce
some x̃ such that (C + ∆C)(x̃ + ∆x) = b + ∆b. In our previous setting this means
that for given input data p we require an algorithm f̃ to produce q = f̃(p) with
q+∆q = f(p+∆p). An algorithm f̃ with this property is called stable (more precisely,
mixed forward-backward stable) with respect to the distance measure in use [27,
section 1.5]. Indeed, there are (normwise) stable algorithms to solve a linear system
with circulant matrix [40]. This leads to structured perturbations and structured
condition numbers.

There has been substantial interest in algorithms for structured problems in recent
years (see, for example, [1, 22, 15, 19, 33, 10, 40, 5] and the literature cited therein).
Accordingly, there is growing interest in structured perturbation analysis; cf. [36,
8, 24, 25, 2, 16, 4, 15, 7, 39, 37, 38, 14]. Moreover, different kinds of structured
perturbations are investigated in robust and optimal control, for example, the analysis
of the µ-number or structured distances [11, 13, 34, 41, 35, 29].

Particularly, many very fast structured solvers have been developed. Frequently,
however, perturbation and error analysis for structured solvers are performed with
respect to general perturbations. This is obviously improvable because usually for a
structured solver nothing else but structured perturbations are possible.

However, structured perturbations are not as easy to handle, and a perturbation
analysis of an algorithm concerning structured perturbations is generally difficult. Be-
fore investing too much into solving a problem, it seems wise to estimate its worth. In
our case that means estimating the ratio between the structured and the unstructured
sensitivities of a problem. For example, it is known that for a symmetric linear system
and for normwise distances it makes no difference at all whether matrix perturbations
are restricted to symmetric ones or not. In such a case the “usual” (unstructured)
perturbation analysis is perfectly sufficient.

Explicit formulas for other structured condition numbers are known, but not too
much is known about the ratio between the structured and the unstructured condition
numbers. The aim of this two-part paper is to investigate this problem for a number
of common (linear) perturbations for linear systems and for matrix inversion. Part I
deals with normwise distances and Part II with componentwise distances.

One result of this first part is that for normwise distances, and for structures that
are symmetric Toeplitz or circulant, the general (unstructured) condition number of
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a linear system may be up to about the square of the structured condition number,
much as it is when solving a least squares problem using normal equations rather than
some numerically stable method. Although for many structures there seems currently
no stable algorithm in sight, that is, stable with respect to structured perturbations,
this creates a certain challenge (see also the last section of Part II of this paper).

2. Introduction and notation. Let nonsingular A ∈Mn(R) and x, b ∈ R
n, x �=

0 be given with Ax = b. The (normwise) condition number of this linear system with
respect to a weight matrix E ∈Mn(R) and a weight vector f ∈ R

n is defined by

κE,f (A, x) := lim
ε→0

sup

{‖∆x‖
ε‖x‖ : (A+ ∆A)(x+ ∆x) = b+ ∆b, ∆A ∈Mn(R),

∆b ∈ R
n, ‖∆A‖ ≤ ε‖E‖, ‖∆b‖ ≤ ε‖f‖

}
.

(2.1)

In definition (2.1) the parameters E and f are only used as scaling factors and may
be replaced by ‖E‖ and ‖f‖, respectively. However, in Part II of this paper we treat
componentwise perturbations, and there we need the matrix and vector information
in E and f . So we use the indices E, f in (2.2) to display certain similarities between
normwise and componentwise perturbations.

Throughout this paper we always use the spectral norm ‖ · ‖2, where we denote
the matrix norm and the vector norm by the same symbol ‖ · ‖. It is well known [27,
Theorem 7.2] that

κE,f (A, x) = ‖A−1‖ ‖E‖ +
‖A−1‖ ‖f‖

‖x‖ .(2.2)

Note that the (unstructured) condition number does not depend on x but only on ‖x‖.
For no perturbations in the right-hand side is the condition number even independent
of x. That means ill-conditioning is a matrix intrinsic property. This will change for
structured perturbations.

By definition (2.1), a perturbation of size eps in the input data A and b creates
a distortion of size κ · eps in the solution. Therefore, we cannot expect a numerical
algorithm to produce an approximation x̃ better than that; that is, ‖x̃− x‖/‖x‖ will
not be much less than κ · eps. On the other hand, we may regard an algorithm to be
stable if it produces an approximation x̃ of this quality, i.e., ‖x̃− x‖/‖x‖ ∼ κ · eps.

In case the matrix A has an additional structure such as symmetry or Toeplitz,
the structure may be utilized to improve performance of a linear system solver. For
example, we have the remarkable fact that the inverse of a (symmetric) Toeplitz
matrix can be calculated in O(n2) operations, the time it takes to print the entries of
the inverse [18, Algorithm 4.7.3].

Usually, such a specialized solver utilizes only part of the input matrix, for exam-
ple, only the first row in the symmetric Toeplitz case—the other entries are assumed
to be defined according to the given structure. This implies that only structured
perturbations of the input matrix are possible. Perturbations of the input matrix are
structured by nature as, for example, symmetric Toeplitz. Accordingly, perturbation
theory may use a structured condition number defined similarly to (2.1):

κstructE,f (A, x) := lim
ε→0

sup

{‖∆x‖
ε‖x‖ : (A+ ∆A)(x+ ∆x) = b+ ∆b, ∆A ∈M struct

n (R),

∆b ∈ R
n, ‖∆A‖ ≤ ε‖E‖, ‖∆b‖ ≤ ε‖f‖

}
.

(2.3)
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For other definitions of structured condition numbers see [16] and [17]. The set
M struct

n (R) depicts the set of n × n real matrices with a certain structure struct. In
this paper we will investigate the linear structures

struct ∈ {sym,persym, skewsym, symToep,Toep, circ,Hankel,persymHankel}(2.4)

depicting the set of symmetric, persymmetric, skewsymmetric, symmetric Toeplitz,
general Toeplitz, circulant, Hankel, and persymmetric Hankel matrices. In view of
(2.3) note that for A ∈ M struct

n (R) for any of the structures in (2.4) it is ∆A ∈
M struct

n (R) equivalent to A + ∆A ∈ M struct
n (R). We will derive explicit formulas or

estimations for κstruct. Particularly, we will investigate the ratio κstruct/κ.
Consider, for example, the tridiagonal matrix

A =




2 −1
−1 2 −1

−1 2
. . .

. . .
. . .


 .(2.5)

The traditional (unstructured) condition number (2.1), (2.2) for the natural weights
E = A and f = b satisfies

κA,Ax(A, x) > 4 · 1011

for A as in (2.5) of size 106 rows and columns and for arbitrary solution x, and hence
arbitrary right-hand side. For the specific solution x = (xi), xi = sin(yi) with yi
equally spaced in the interval [a, kπ − a] for a = 13/6000, k = 690, we have

κsymtridiagToep
A,Ax (A, x) < 9.6 · 105,(2.6)

where perturbations are symmetric Toeplitz and tridiagonal. Note that in this case
the matrix depends only on two parameters. For x = (1,−1, 1,−1, . . .)T and no
perturbations in the right-hand side we get

κsymtridiagToep
A (A, x) < 0.6.(2.7)

We will derive methods to estimate and compute structured condition numbers. We
will especially focus on the ratio κstruct/κ. We will prove (see Theorem 5.3)

κstructE,f (A, x) = κE,f (A, x) for struct ∈ {sym,persym, skewsym}
and all 0 �= x in R

n. This extends a result in [24]. By estimations and examples we
show that the ratio can be significantly less than 1 for perturbations subject to the
other structures in (2.4). Among others, we will prove (see Theorems 8.4, 9.2, and
10.2)

1 ≥ κstructA,Ax (A, x)

κA,Ax(A, x)
≥ 1

2
√

2
√‖A−1‖ ‖A‖

for struct ∈ {symToep,Toep, circ,Hankel,persymHankel}. On the other hand, we will
show that to every structure an easy-to-calculate matrix Ψx is assigned, depending
only on the structure and the solution x, with the surprising result that the ratio
κstruct/κ can only become small when the smallest singular value σmin(Ψx) is small. So
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the ratio can only become small for certain solutions, independent of the (structured)
matrix.

Furthermore, we will investigate the structured condition number for matrix in-
version

κstructE (A) := lim
ε→0

sup

{‖(A+ ∆A)−1 −A−1‖
ε‖A−1‖ : ∆A ∈M struct

n (R), ‖∆A‖ ≤ ε‖E‖
}
.

The definition includes the traditional (unstructured) condition number κE(A) for
matrix inversion by setting M struct

n (R) := Mn(R). It is well known that κE(A) =
‖A−1‖ ‖E‖ [27, Theorem 6.4]. Here we will show that

κstructE (A) = ‖A−1‖ ‖E‖ for all structures as in (2.4).

In most cases this is not difficult to prove. However, for Hankel and general Toeplitz
perturbations we have to show that

for all x ∈ R
n ∃H ∈MHankel

n (R) : Hx = x and ‖H‖ ≤ 1.

It seems natural to consider an ill-conditioned matrix to be “almost singular.” Indeed,
for normwise and unstructured perturbations the distance to singularity

δE(A) := min

{‖∆A‖
‖E‖ : A+ ∆A singular

}
(2.8)

is well known to be equal to the reciprocal of the condition number (with no pertur-
bation in the right-hand side) [27, Theorem 6.5]:

δE(A) = κE(A)−1 = (‖A−1‖ ‖E‖)−1.

We may ask whether this carries over to structured perturbations. The structured
(normwise) distance to singularity is defined accordingly by

δstructE (A) := min

{‖∆A‖
‖E‖ : A+ ∆A singular, ∆A ∈M struct

n (R)

}
.(2.9)

Indeed we will show that for all structures (2.4) under consideration δstructE is equal
to κstructE (A)−1.

We will use the following notation:
Mn(R) set of real n× n matrices
M struct

n (R) set of structured real n× n matrices, struct as in (2.4)
‖ · ‖ spectral norm
‖A‖F Frobenius norm (

∑
A2
ij)

1/2

E some (weight) matrix, E ∈Mn(R)
f some (weight) vector, f ∈ R

n

I, In identity matrix (with n rows and columns)
e vector of all 1’s, e ∈ R

n

(1) matrix of all 1’s, (1) = eeT ∈Mn(R)
J , Jn permutation matrix mapping (1, . . . , n)T into (n, . . . , 1)T

σmin(A) smallest singular value of A
λmin(A) smallest eigenvalue of symmetric A
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3. Normwise perturbations. Throughout this paper we let nonsingular A ∈
Mn(R) be given together with 0 �= x ∈ R

n. Denote b := Ax and let E ∈ Mn(R), f ∈
R
n.

We first prove (2.2) in a way which is suitable for general as well as structured
perturbations. The standard proof [27, Theorem 7.2] for (2.2) uses the fact that
Ax = b and (A+ ∆A)(x+ ∆x) = b+ ∆b imply

∆x = A−1(−∆Ax+ ∆b) + O(ε2).(3.1)

For given ∆A with ‖∆A‖ ≤ ε‖E‖ define ∆b := − ‖f‖
‖E‖ ‖x‖∆Ax. Then ‖∆b‖ ≤ ε‖f‖,

and (3.1) implies

∆x = −A−1∆Ax

(
1 +

‖f‖
‖E‖ ‖x‖

)
+ O(ε2).(3.2)

This is satisfied for arbitrary ∆A with ‖∆A‖ ≤ ε‖E‖, the perturbations ∆A being
structured or unstructured. This gives a reason for the following definition.

Definition 3.1. For nonsingular A ∈ Mn(R), 0 �= x ∈ R
n, and M struct

n (R) ⊆
Mn(R) we define

ϕstruct(A, x) := sup{‖A−1∆Ax‖ : ∆A ∈M struct, ‖∆A‖ ≤ 1}.

For M struct
n (R) =Mn(R) we omit the superindex struct: ϕ(A, x).

Now the special choice of ∆b that led to (3.2) and the definition (2.3) imply

ϕstruct(A, x)

‖x‖
(
‖E‖ +

‖f‖
‖x‖

)
≤ κstructE,f (A, x)(3.3)

for all M struct
n (R) ⊆ Mn(R). Furthermore, an obvious norm estimation using (2.3)

and (3.1) yields

κstructE,f (A, x) ≤ ‖A−1‖ ‖E‖ + ‖A−1‖‖f‖‖x‖ ,(3.4)

again for allM struct
n (R) ⊆Mn(R). Therefore, we have equality in (3.4) if ϕstruct(A, x) =

‖A−1‖ ‖x‖. This is true (and well known) for unstructured perturbations

ϕ(A, x) = ‖A−1‖ ‖x‖(3.5)

by choosing orthogonal ∆A with ∆Ax = ‖x‖y for ‖A−1‖ = ‖A−1y‖ and ‖y‖ = 1.
Theorem 3.2. For nonsingular A ∈ Mn(R), 0 �= x ∈ R

n, and M struct
n (R) ⊆

Mn(R) we have

ϕstruct(A, x)

‖x‖
(
‖E‖ +

‖f‖
‖x‖

)
≤ κstructE,f (A, x) ≤ ‖A−1‖ ‖E‖ + ‖A−1‖‖f‖‖x‖ .(3.6)

Particularly, ϕstruct(A, x) = ‖A−1‖ ‖x‖ implies

κstructE,f (A, x) = κE,f (A, x) = ‖A−1‖ ‖E‖ + ‖A−1‖‖f‖‖x‖ .



STRUCTURED PERTURBATIONS PART I 7

As we will see, the latter equality is true for symmetric, skewsymmetric, and
persymmetric perturbations. For other perturbations the lower bound in (3.6) is usu-
ally too weak because ϕstruct(A, x) can be much less than ‖A−1‖ ‖x‖. An immediate
upper bound by (2.3) and (3.1) is

κstructE,f (A, x) ≤ ϕstruct(A, x)‖E‖‖x‖ + ‖A−1‖‖f‖‖x‖ .(3.7)

Although we are free in the perturbations ∆b, the structure in ∆A may not allow
equality in (3.7). However, for u, v ∈ R

n it is max(‖u+v‖, ‖u−v‖) ≥√‖u‖2 + ‖v‖2 ≥
2−1/2(‖u‖ + ‖v‖) such that

u, v ∈ R
n implies max(‖u+ v‖, ‖u− v‖) = c(‖u‖ + ‖v‖),

where 2−1/2 ≤ c ≤ 1. We are free in choosing the sign of ∆b, so (3.7), u = −A−1∆Ax,
v = A−1∆b together with (3.1) imply the following result.

Theorem 3.3. Let A ∈Mn(R), 0 �= x ∈ R
n, and M struct

n (R) ⊆Mn(R) be given.
Then the structured (normwise) condition number as defined in (2.3) satisfies

κstructE,f (A, x) = c ·
[
ϕstruct(A, x)

‖E‖
‖x‖ + ‖A−1‖‖f‖‖x‖

]
,(3.8)

where 2−1/2 ≤ c ≤ 1. For no perturbations in the right-hand side we have

κstructE (A, x) = ϕstruct(A, x)
‖E‖
‖x‖ .

This moves our focus from analysis of structured condition numbers to the anal-
ysis of ϕstruct(A, x). In the following we will use Definition 3.1 of ϕstruct together
with Theorems 3.2 and 3.3 to establish formulas and bounds for structured condition
numbers.

4. Condition number for general x. For general perturbations and for the

natural choice E = A, f = b, we have ‖A−1‖ ‖b‖
‖x‖ ≤ ‖A−1‖ ‖A‖ such that (2.2) yields

κA(A, x) = ‖A−1‖ ‖A‖ ≤ κA,Ax(A, x) ≤ 2‖A−1‖ ‖A‖.(4.1)

In other words, in case of general perturbations it does not make a big difference
whether we allow perturbations in the right-hand side or leave it unchanged. More-
over, the general condition number κA(A, x) is independent of x. So the condition is
an inherent property of the matrix.

This may change in case of structured condition numbers. A first result in this
respect is that for all structures (2.4) the worst case structured (normwise) condi-
tion number, i.e., the supremum over all x, is equal to the worst case unstructured
condition number.

Theorem 4.1. Let nonsingular A ∈Mn(R) be given and M struct ⊆Mn(R) such
that one of the following conditions is satisfied:

(i) I ∈M struct
n (R).

(ii) J ∈M struct
n (R).

(iii) J̃ :=
( 0 I
−I 0

) ∈M struct
n (R) in case n even.
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Let fixed 0 < γ ∈ R be given. Then for all ‖x‖ = γ,

sup
‖y‖=γ

κstructE,f (A, y) = κE,f (A, x) = ‖A−1‖ ‖E‖ + ‖A−1‖‖f‖‖x‖ ,(4.2)

so the worst case structured condition number is equal to the general condition number.
Equation (4.2) is especially true for all structures in (2.4). It is of course also true
for M struct

n (R) =Mn(R).
Remark 4.2. Note that a nonsingular skewsmmetric matrix must be of even

order.
Proof. Let ‖A−1‖ = ‖A−1y‖ with ‖y‖ = 1. Choosing ∆A = I, ∆A = J , or

∆A = J̃ in case (i), (ii), or (iii), respectively, observing ∆A2 = ±I, and setting
x := γ∆Ay imply A−1∆Ax = ±γA−1y and ‖x‖ = γ. Hence Definition 3.1 yields
‖A−1‖ ‖x‖ ≥ ϕstruct(A, x) ≥ ‖A−1‖ ‖x‖ for that choice of x, and Theorem 3.2 finishes
the proof.

For specific x things may change significantly, at least if the structure imposes se-
vere restrictions on ∆A. For symmetric, persymmetric, and skewsymmetric structures
this is not yet the case.

5. Symmetric, persymmetric, and skewsymmetric perturbations. In
the following we will show that those perturbations do not change the condition num-
ber at all. For symmetric perturbations this was already observed in [24]; see also [8].
In other words, “worst” perturbations may be chosen in the setM sym

n (R),Mpersym
n (R),

or M
skewsym
n (R). We prove this by investigating our key to structured perturbations,

the function ϕstruct. We first prove a lemma which will be of later use. For the
symmetric case this was observed in [8].

Lemma 5.1. Let x, y ∈ R
n be given with ‖x‖ = ‖y‖ = 1 and let struct ∈

{sym, persym}. Then there exists A ∈M struct
n (R) with

y = Ax and ‖A‖ = 1.(5.1)

If, in addition, yTx = 0, then there exists A ∈M skewsym
n (R) with (5.1).

Proof. For symmetric structure the Householder reflection H along x+ y satisfies
H = HT , ‖H‖ = 1, and Hx = y. A matrix B is persymmetric iff B = JBTJ . Let
H be the Householder reflection along x+ Jy and set A := JH. Then A = JATJ is
persymmetric, ‖A‖ = 1, and Ax = JHx = J · Jy = y.

For skewsymmetric structure and x, y orthonormal there is orthogonalQ ∈Mn(R)
with [x|y] = Q[e1| − e2], ei denoting the ith column of the identity matrix. Define

D := diag
((

0 1
−1 0

)
, 0, . . . , 0

)
and A := QDQT . Then A = −AT , ‖A‖ = 1, and

Ax = QDe1 = −Qe2 = y.
Lemma 5.2. Let nonsingular A ∈Mn(R) and 0 �= x ∈ R

n be given. Then

ϕstruct(A, x) = ϕ(A, x) = ‖A−1‖ ‖x‖(5.2)

for struct ∈ {sym,persym}. Relation (5.2) is also true for struct = skewsym and

A ∈M skewsym
n .

Proof. By Definition 3.1 and (3.5), ϕstruct(A, x) ≤ ϕ(A, x) = ‖A−1‖ ‖x‖, so
it remains to show ϕstruct(A, x) ≥ ‖A−1‖ ‖x‖. Without loss of generality, assume
‖x‖ = 1 and let ‖A−1‖ = ‖A−1y‖ for ‖y‖ = 1. It suffices to find ∆A ∈ M struct with
‖∆A‖ ≤ 1 and ∆Ax = y. This is exactly the content of Lemma 5.1 for struct ∈
{sym, persym}.



STRUCTURED PERTURBATIONS PART I 9

For skewsymmetric structure suppose A ∈ M skewsym. Eigenvalues of A are con-
jugate purely imaginary, and nonsingularity of A implies that n is even, and also
implies that all singular values are of even multiplicity. That means there are orthog-
onal y1, y2 ∈ R

n with ‖y1‖ = ‖y2‖ = 1 and ‖A−1y1‖ = ‖A−1y2‖ = ‖A−1‖. Choose
y ∈ span{y1, y2} with xT y = 0 and ‖y‖ = 1. By construction, ‖A−1y‖ = ‖A−1‖, and
Lemma 5.1 finishes the proof.

Together with Theorem 3.2 this proves the following.
Theorem 5.3. Let nonsingular A ∈ Mn(R) and 0 �= x ∈ R

n be given. For
struct ∈ {sym,persym, skewsym} we have

κstructE,f (A, x) = κE,f (A, x),

where in case struct = skewsym we suppose additionally A ∈M skewsym
n (R).

The result was observed for symmetric structures in [24, 23]. As we will see, this
nice fact is no longer true for the other structures. In fact, there may be quite a factor
between κstruct and κ.

6. Exploring the structure. Before we proceed we collect some general obser-
vations on structured condition numbers. To establish bounds for the ratio κstruct/κ
we need a relation between ‖E‖ and ‖f‖. Therefore we especially investigate the
natural choice E = A and f = b. The first statement is a useful lower bound.

Lemma 6.1. Let nonsingular A ∈ Mn(R), 0 �= x ∈ R
n, and some M struct

n (R) ⊆
Mn(R) be given. Suppose

ϕstruct(A, x) ≥ ω‖A−Tx‖(6.1)

for 0 ≤ ω ∈ R. Then

κstructA,Ax (A, x) ≥
√
ω

2
‖A−1‖ ‖A‖.

Proof. Without loss of generality assume ‖x‖ = 1. Then

1 = xTA−1Ax ≤ ‖xTA−1‖ ‖Ax‖ = ‖A−Tx‖ ‖Ax‖.(6.2)

In view of (3.8) for E = A, f = b, ‖x‖ = 1, and Ax = b, we are finished if we can
show

ϕstruct(A, x)‖A‖ + ‖A−1‖ ‖Ax‖ ≥
√
ω‖A−1‖ ‖A‖.

This is true if ‖Ax‖ ≥ √
ω‖A‖/‖A−1‖. On the contrary, (6.2) yields ‖A−Tx‖ ≥

‖Ax‖−1 >
√
ω−1‖A−1‖/‖A‖, and combining this with (6.1) finishes the proof.

The symmetric Toeplitz matrices are related to persymmetric Hankel matrices by

T ∈M symToep
n ⇔ JT ∈MpersymHankel

n ⇔ TJ ∈MpersymHankel
n .(6.3)

Similarly, (general) Toeplitz matrices are related to general Hankel matrices by

T ∈MToep
n ⇔ JT ∈MHankel

n ⇔ TJ ∈MHankel
n .(6.4)

By rewriting (3.1) into

∆x = (JA)−1(−J∆Ax+ J∆b) + O(ε2)
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and

J∆x = (AJ)−1(−∆AJ · Jx+ ∆b) + O(ε2)

and observing ‖J∆A‖ = ‖∆AJ‖ = ‖∆A‖ and ‖J∆b‖ = ‖∆b‖, definition (2.3) yields
the following.

Theorem 6.2. For nonsingular A ∈Mn(R) and 0 �= x ∈ R
n we have

κsymToep
E,f (A, x) = κ

persymHankel
E,f (JA, x) = κ

persymHankel
E,f (AJ, Jx)

and

κ
Toep
E,f (A, x) = κHankelE,f (JA, x) = κHankelE,f (AJ, Jx).

Therefore we will concentrate in the following on symmetric Toeplitz and Hankel
structures. Every result for those is valid mutatis mutandis for persymmetric Hankel
and general Toeplitz structures, respectively.

To further explore the structure we derive two-sided explicit bounds for ϕstruct(A, x).
For linear structures in the matrix entries of A ∈ Mn(R), every Aij depends linearly

on some k parameters. Denote by vec(A) = (A11, . . . , A1n, . . . , An1, . . . , Ann)T ∈ R
n2

the vector of stacked columns of A. Then for every dimension there is some fixed
structure matrix Φstruct ∈Mn2,k(R) such that

A ∈M struct
n (R) ⇔ ∃ p ∈ R

k : vec(A) = Φstruct · p.(6.5)

This idea was developed in [24]. For our structures (2.4) the number of independent
parameters k is as shown in Table 6.1.

Table 6.1
Number of independent parameters.

Structure sym persym skewsym circ symToep Toep Hankel persymHankel
k (n2 + n)/2 (n2 + n)/2 (n2 − n)/2 n n 2n− 1 2n− 1 n

For the structures in (2.4) the structure matrix Φstruct is sparse with entries 0/1
except for skewsymmetric matrices with entries 0/ + 1/ − 1. We can make Φstruct

unique by defining the parameter vector “columnwise”; i.e., p ∈ R
k is the unique

vector of the first k independent components in vec(A).
It is important to note that Φstruct defines for every dimension n a one-to-one

mapping between R
k and M struct

n (R). To compute bounds on ϕstruct we relate the
matrix norm ‖A‖2 to the vector norm ‖p‖2.

Lemma 6.3. Let A ∈ M struct
n (R) and p ∈ R

k be given such that vec(A) =
Φstructp. Then

α‖A‖ ≤ ‖p‖ ≤ β‖A‖(6.6)

with constants α, β according to the following table:

Structure α β
circ 1/

√
n 1

symToep 1/
√
2n− 2 1

Toep 1/
√
n

√
2

Hankel 1/
√
n

√
2

persymHankel 1/
√
2n− 2 1
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All upper bounds and the lower bound for circulants are sharp, and the other lower
bounds are sharp up to a factor

√
2.

Proof. For A ∈Mcirc
n we have

‖p‖ = ‖Ae1‖ ≤ ‖A‖ ≤ ‖A‖F =
(
n
∑
p2i

)1/2

=
√
n‖p‖.

The left and right estimations are sharp for A = I and A = (1), respectively. For

A ∈M symToep
n ,

‖p‖ = ‖Ae1‖ ≤ ‖A‖ ≤ ‖A‖F ≤
(
(2n− 2)

∑
p2i

)1/2

=
√

2n− 2‖p‖.

For A = I it is ‖A‖ = ‖p‖ = 1, and for A = (1) it is ‖A‖ =
√
n‖p‖ = n. For

A ∈MHankel
n we have

‖p‖2 ≤ 2 max(‖Ae1‖2, ‖eT1 A‖2) ≤ 2‖A‖2

and

‖A‖ ≤ ‖A‖F ≤
(
n
∑
p2i

)1/2

=
√
n‖p‖.

For A = (1) it is ‖A‖ = n = n√
2n−1

‖p‖, and for the Hankel matrix with A11 = Ann = 1

and zero entries elsewhere it is ‖p‖ =
√

2 =
√

2‖A‖. The other estimations follow by
(6.3) and (6.4).

The bounds for circulants are noted for completeness; we will derive better meth-
ods to estimate κcircE,f in the next section. The difficulty in estimating ϕstruct =

sup{‖A−1∆Ax‖ : ∆A ∈ M struct, ‖∆A‖ ≤ 1} is that the supremum is taken only
over structured matrices ∆A. With Lemma 6.3 this can be rewritten to the supre-
mum over all parameter vectors ∆p ∈ R

k, ‖∆p‖ ≤ const, where k is the number of
independent parameters according to Table 6.1 and const follows by Lemma 6.3. We
have

{∆A ∈Mn(R) : vec(∆A) = Φstruct∆p, ∆p ∈ R
k, ‖∆p‖ ≤ α}

⊆ {∆A ∈M struct
n (R) : ‖∆A‖ ≤ 1}

⊆ {∆A ∈Mn(R) : vec(∆A) = Φstruct∆p, ∆p ∈ R
k, ‖∆p‖ ≤ β},

(6.7)

where ∆p varies freely in a norm ball of the R
k. So (6.7) is the key to obtaining

computable lower and upper bounds for the structured condition number, the bounds
not being far apart.

To estimate ϕstruct(A, x) we use the following ansatz as in [24]. Note that ∆A·x =
(xT ⊗ I) vec(∆A), ⊗ denoting the Kronecker product. For vec(∆A) = Φstruct∆p this
implies

∆A · x = (xT ⊗ I)Φstruct · ∆p.(6.8)

The matrix (xT ⊗ I)Φstruct ∈ Mn,k(R) depends only on x for every dimension. This
leads us to the definition

Ψstruct
x := (xT ⊗ I)Φstruct ∈Mn,k(R),(6.9)
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the dimension k as in Table 6.1. This definition holds for every linear structure. For
the structures in (2.4), the matrices Ψstruct

x can be calculated explicitly. For example,
for the Hankel matrix

H =


 1 2 3

2 3 4
3 4 5




we have ΦHankel ∈Mn2,k =M9,5, a column block matrix with n blocks Φi ∈Mn,k, 1 ≤
i ≤ n, and

Φi =

(
0 . . . 0
. . .

0 . . . 0︸ ︷︷ ︸
1

. . .

1

0 . . . 0
. . .

0 . . . 0︸ ︷︷ ︸
)

∈M3,5,

i− 1 n− i

so that Ψstruct
x = (xT ⊗ I)Φstruct implies

ΨHankel
x =

∑
xiΦi =


 x1 x2 x3

x1 x2 x3

x1 x2 x3


 ∈Mn,k.(6.10)

We mention

Ψcirc
x = circ(xT )T ,

Ψ
symToep
x = T (x) + JT (Jx) − xeT1 ,

ΨHankel
x = Toeplitz([x1, z], [x

T , z]),

(6.11)

where z = zeros(1, n − 1) and T (x) := Toeplitz(x, [x1, z]) in Matlab [32] notation;
that is, Toeplitz(c, r) denotes the Toeplitz matrix with first column c and first row r.
With this we have explicit bounds for ϕstruct.

Lemma 6.4. Let nonsingular A ∈Mn(R) and 0 �= x ∈ R
n be given. Let struct be

one of the structures mentioned in Lemma 6.3. Then

ϕstruct(A, x) = γ‖A−1Ψstruct
x ‖,

where α ≤ γ ≤ β and α, β as in Lemma 6.3.
Proof. Combining (6.9), (6.8), and (6.7) with Definition 3.1 yields

α‖A−1Ψstruct
x ‖ = sup{‖A−1Ψstruct

x ∆p‖ : ∆p ∈ R
k, ‖∆p‖ ≤ α}

≤ sup{‖A−1∆Ax‖ : ∆A ∈M struct
n (R), ‖∆A‖ ≤ 1}

= ϕstruct(A, x)
≤ sup{‖A−1Ψstruct

x ∆p‖ : ∆p ∈ R
k, ‖∆p‖ ≤ β}

= β‖A−1Ψstruct
x ‖.

Combining this with Theorem 3.3 yields computable bounds for the structured con-
dition number.

Theorem 6.5. Let nonsingular A ∈Mn(R) and 0 �= x ∈ R
n be given. Let struct

be one of the structures mentioned in Lemma 6.3. Then

κstructE,f (A, x) = c
γ‖A−1Ψstruct

x ‖ ‖E‖ + ‖A−1‖ ‖f‖
‖x‖ ,(6.12)
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where 2−1/2 ≤ c ≤ 1 and α ≤ γ ≤ β for α, β as in Lemma 6.3. In case of no
perturbations in the right-hand side,

κstructE (A, x) = γ
‖A−1Ψstruct

x ‖
‖x‖ ‖E‖.(6.13)

This implies the following remarkable property of the ratio between the structured
and unstructured condition numbers.

Corollary 6.6. Let nonsingular A ∈ Mn(R) and 0 �= x ∈ R
n be given. Let

struct be one of the structures mentioned in Lemma 6.3. Then

κstructE,f (A, x)

κE,f (A, x)
≥ 2−1/2

α‖A−1‖σmin(Ψstructx )
‖x‖ ‖E‖ + ‖A−1‖ ‖f‖

‖x‖
‖A−1‖ ‖E‖ + ‖A−1‖ ‖f‖

‖x‖
,(6.14)

for α as in Lemma 6.3. Moreover, for no perturbations in the right-hand side,

21/2
κstructE,f (A, x)

κE,f (A, x)
≥ κstructE (A, x)

κE(A, x)
≥ ασmin(Ψstruct

x )

‖x‖ .(6.15)

Proof. We have Ψstruct
x ∈ Mn,k(R) with k ≥ n; therefore ‖A−1Ψstruct

x ‖ ≥
‖A−1‖σmin(Ψstruct

x ). Now (2.2) and Theorem 6.5 finish the proof.
This result allows us to estimate the minimum ratio of κstruct/κ independent of

the matrix A only by examining the smallest singular value of Ψstruct
x , where the latter

can be computed, for example, by (6.11). So we have the surprising result that a small
ratio κstruct/κ is only possible for certain solutions x, independent of the (structured)
matrix. It also shows that for fixed x an arbitrarily small ratio of κstruct/κ is only
possible if rank(Ψstruct

x ) < n. From a practical point of view this means that standard
unstructured perturbation analysis suffices at least for all cases where σmin(Ψstruct

x )
is not too small.

The statistics in Table 6.2 show how often a small ratio κstruct/κ can occur.
Note that this is a lower estimate of the ratio for all matrices A; it need not be
attained for a specific matrix A. Table 6.2 shows the minimum and median of τ(x) :=
σmin(Ψstruct

x )/‖x‖ for some 104 samples of x with entries uniformly distributed within
[−1, 1]. Also note that, in order to obtain the lower estimate for κstruct/κ, by (6.15)
the displayed numbers have to be multiplied by α according to the table in Lemma
6.3.

Table 6.2
Minimum value and median of τ(x) = σmin(Ψ

struct
x )/‖x‖.

Symmetric Toeplitz Circulant

n min(τ(x)) median(τ(x)) min(τ(x)) median(τ(x))
10 2.4 · 10−7 4.9 · 10−2 1.3 · 10−5 2.6 · 10−1

20 5.0 · 10−7 2.2 · 10−2 3.9 · 10−5 2.0 · 10−1

50 1.1 · 10−6 8.8 · 10−3 3.1 · 10−5 1.4 · 10−1

100 1.5 · 10−6 4.3 · 10−3 7.5 · 10−5 1.0 · 10−1

Table 6.2 shows that small ratios are possible but seem to be rare. We mention
that rank-deficient Ψstruct

x is possible, for example, for x = (1, . . . , 1)T and n ≥ 2.
That means that for this solution vector x the ratio κstruct/κ may become arbitrarily
small. This is indeed the case, as we will see in the following sections. However, it
changes for Hankel structures, as we will show in section 10.
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Explicit computation of (6.12) is possible in O(n3) flops. However, the compu-
tationally intensive part ‖A−1Ψstruct

x ‖ can be estimated in some O(n2) flops using
well-known procedures for condition estimation as by [20]; see also [26].

The concept of Φstruct and Ψstruct
x applies to all linear structures. Before we

proceed, we give in the next section some examples of structures other than those in
(2.4).

7. Some special structures. The concept of Φstruct and Ψstruct
x especially can

be used to calculate the structured condition number in case some elements of A
remain unchanged, although we treat normwise distances to the matrix A. Typical
examples are symmetric tridiagonal or general lower triangular matrices. In either
case it is straightforward to calculate the corresponding Φstruct, which is fixed for
every dimension. Based on that, Ψstruct

x is computed by (6.9) and, with constants
α and β relating ‖A‖ and ‖p‖ as in Lemma 6.3, κstructE,f (A, x) can be estimated by
Theorem 6.5. Using this we calculated the condition numbers in (2.6) and (2.7). In
the following we give some examples of tridiagonal structures.

Let a symmetric tridiagonal Toeplitz matrix A with diagonal element d and super-
and subdiagonal element c be given. Then the eigenvalues of A are explicitly known
[27, section 28.5] to be λk(A) = d+2c cos kπ

n+1 for 1 ≤ k ≤ n, so ‖A‖ = |d|+2|c| cos π
n+1 .

Furthermore, according to (6.5), vec(A) = ΦsymtridiagToepp for p = (d, c)T ∈ R
2, and

a computation according to (6.9) yields

ΨsymtridiagToep
x =




x1 x2

x2 x1 + x3

x3 x2 + x4

. . .
xn−1 xn−2 + xn
xn xn−1


 .(7.1)

For n ≥ 2 it follows that

‖A‖ ≥ |d| + 2|c| cos
π

3
= |d| + |c| ≥

√
d2 + c2 = ‖p‖

and

‖A‖
‖p‖ ≤ |d| + 2|c|√

d2 + c2
≤ max

0≤x,y≤1

x+ 2y√
x2 + y2

=: β.

A computation yields β =
√

5, so

‖p‖ ≤ ‖A‖ ≤
√

5‖p‖ for A ∈M symtridiagToep
n (R).

Both estimations are sharp for A = I and c = 2, d = 1, respectively. In the latter
case ‖A‖ → 5 as n→ ∞, whereas ‖p‖ =

√
5.

The explicit representation (7.1) for Ψx also shows that for specific solution vector
x there is a big difference between the structured and unstructured condition numbers.
Suppose n is divisible by 3 and let x = (z, −z, z, −z, . . . , ±z)T for z = (α, α, 0)T ,
α ∈ R. A computation shows Ax = (c + d)x. Moreover, the second column of Ψx is
equal to the first, so

A−1Ψx = (A−1x,A−1x) = (c+ d)−1(x, x).
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Therefore Theorem 6.5 implies

|(c+ d)−1| ≤ κsymtridiagToep
A (A, x) ≤

√
10|(c+ d)−1|.

Note that this is true for every x of the structure as defined above. For the matrix as
in (2.5) this means

1 ≤ κsymtridiagToep
A (A, x) ≤

√
10

for every x as above, whereas, for d+ 2c = 0,

κA(A, x) = ‖A−1‖ ‖A‖ ∼ n2.

For a general tridiagonal Toeplitz matrix A with diagonal element d and off-diagonal
elements c, e we have ‖p‖ =

√
c2 + d2 + e2. Furthermore, ‖Ax‖ ≤ (|c| + |d| + |e|)‖x‖

for every x ∈ R
n and therefore

‖A‖
‖p‖ ≤ |c| + |d| + |e|√

c2 + d2 + e2
≤

√
3.

The estimation is asymptotically sharp for c = d = e = 1.
For x being the second column of the identity matrix and n ≥ 3 it follows that

‖A‖
‖p‖ ≥

√
c2 + d2 + e2

‖p‖ = 1.

This estimation is sharp for A = I. For n = 2 it is A =
(
d e
c d

)
and ‖A‖/‖p‖ ≥ 1/

√
2.

This estimation is sharp for A =
(
0 1
1 0

)
.

For symmetric tridiagonal A with diagonal elements dν and off-diagonal elements
cν , we have ‖p‖ =

√‖c‖2 + ‖d‖2 and ‖A‖F =
√

2‖c‖2 + ‖d‖2. This implies

‖A‖
‖p‖ ≥ 1√

n

‖A‖F
‖p‖ ≥ 1√

n

and

‖A‖
‖p‖ ≤ max

0≤x,y≤1

√
2x2 + y2√
x2 + y2

≤
√

2.

The first estimation is sharp for A = I, the second up to a small factor. Finally, for
general tridiagonal A we have ‖A‖F = ‖p‖, so

1√
n
‖p‖ ≤ ‖A‖ ≤ ‖p‖.

The estimations are sharp for A = I and the matrix with A11 = 1 and Aij = 0
elsewhere, respectively.

Summarizing, we have the following result.
Theorem 7.1. Let A ∈ M struct

n (R) and p ∈ R
k be given such that vec(A) =

Φstructp. Then

α‖p‖ ≤ ‖A‖ ≤ β‖p‖
with constants α, β according to the following table:
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Structure α β

symtridiagToep 1
√
5

1 for n �= 2tridiagToep
1/

√
2 for n = 2

√
3

symtridiag 1/
√
n 1

tridiag 1/
√
n 1

All lower bounds are sharp; all upper bounds are sharp up to a small constant
factor.

Using the constants α, β and Theorem 6.5 the structured condition numbers are
easily calculated.

Also, linear structures in the right-hand side can be treated by an augmented
linear system of dimension n + 1. Such structures appear, for example, in the Yule–
Walker problem [18, section 4.7.2].

But more can be said, especially about κstruct/κ. Things are particularly elegant
for circulant matrices.

8. Circulant matrices. Circulant matrices are of the form

C =



c0 c1 c2 c3
c3 c0 c1 c2
c2 c3 c0 c1
c1 c2 c3 c0




and do have a number of remarkable properties [9]. Denote by P the permutation
matrix mapping (1, . . . , n)T into (2, . . . , n, 1)T . Then a circulant can be written as

C = circ(c0, . . . , cn−1) =

n−1∑
ν=0

cνP
ν ∈Mcirc

n .

From this polynomial representation it follows that circulants commute. Therefore,
for A ∈Mcirc

n , Definition 3.1 implies

ϕcirc(A, x) = sup{‖∆A ·A−1x‖ : ∆A ∈Mcirc
n , ‖∆A‖ ≤ 1} ≤ ‖A−1x‖,

and observing ∆A := I ∈Mcirc
n it follows that

ϕcirc(A, x) = ‖A−1x‖.(8.1)

Theorem 8.1. Let a nonsingular circulant A ∈ Mcirc
n (R) and 0 �= x ∈ R

n be
given. Then

κcircE,f (A, x) = c
‖A−1x‖ ‖E‖ + ‖A−1‖ ‖f‖

‖x‖(8.2)

with 2−1/2 ≤ c ≤ 1. In particular, for no perturbations in the right-hand side we have

κcircE (A, x) =
‖A−1x‖ ‖E‖

‖x‖(8.3)

and

κcircE (A, x)

κE(A, x)
=

‖A−1x‖
‖A−1‖ ‖x‖ ≥ 1

‖A−1‖ ‖A‖ .(8.4)
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The inequality is sharp.
Proof. The assertions follow by Theorem 3.3 and (8.1), where the last inequality

stems from ‖x‖ ≤ ‖A‖ ‖A−1x‖. Choosing x such that ‖A−1x‖ = σmin(A−1)‖x‖ =
‖A‖−1‖x‖ finishes the proof.

So for no perturbations in the right-hand side we have κcircA (A, x) = 1 for every
circulant A and any x chosen such that ‖A−1x‖ = σmin(A−1)‖x‖ = ‖A‖−1‖x‖. Note
that κA(A, x) = ‖A−1‖ ‖A‖ for every x. Also note that the ratio in (8.4) applies to
general weight matrices E.

These are, however, extreme cases. Formula (8.2) also shows that, in general,
κcircE,f and κE,f are not too far apart because, in general, the same is true for ‖A−1x‖
and ‖A−1‖ ‖x‖.

To analyze the ratio κcirc/κ including perturbations in the right-hand side we
need again a relation between ‖E‖ and ‖f‖. Therefore we switch to the natural
choice E = A and f = b. Furthermore, we need more details on circulants.

Every circulant is diagonalized by the scaled Fourier matrix F ∈ Mn(C), Fij =
ω(i−1)(j−1)/

√
n, for ω denoting the nth root of unity [9]. Note that F is unitary and

symmetric. So every circulant C is represented by C = FHDF for some diagonal
D ∈ Mn(C). We need some auxiliary results which will also be useful for Hankel
matrices.

Lemma 8.2. Let A ∈ Mn(C), z ∈ C
n, and a circulant C ∈ Mcirc

n (C) be given.
Then

‖AC‖ = ‖ACH‖ and ‖Cz‖ = ‖CHz‖.

Proof. Let C = FHDF for diagonal D ∈ Mn(C). There is diagonal S ∈ Mn(C)
with |Sii| = 1 for all i and D = SDH = DHS. Since F and S are unitary we obtain

‖ACH‖ = ‖AFHDHF‖ = ‖AFHDH‖ = ‖AFHDHS‖ = ‖AFHD‖
= ‖AFHDF‖ = ‖AC‖

and

‖CHz‖ = ‖FHDHFz‖ = ‖DHFz‖ = ‖SHDFz‖ = ‖FHDFz‖ = ‖Cz‖.

The next lemma characterizes real circulants. This result is definitely known;
however, the only reference we found contains typos and is without proof. So we
repeat the short proof.

Lemma 8.3. Every circulant C is equal to FHDF for (complex) diagonal D. Let
P denote the permutation matrix mapping (1, . . . , n)T into (1, n, . . . , 2)T . Then C is
real iff D = PDHP .

Proof. The matrix C is real iff it is equal to its conjugate C. Now the definitions
of F and F = FT imply F = FH and FH = PF = FP ; we get the latter equality
because F, FH , and P , are symmetric. Hence

C = FDHFH = FH · PDHP · F

proves the assertion.
For A = FHDF ∈Mcirc

n (R) being a circulant, A−1 = FHD−1F is a circulant as
well, so (8.1) and Lemma 8.2 show

ϕcirc(A, x) = ‖A−1x‖ = ‖A−Tx‖.
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Combining this with Lemma 6.1 yields

κcircA,Ax(A, x) ≥ 2−1/2
√
‖A−1‖ ‖A‖,

and (4.1) implies

κcircA,Ax(A, x)

κA,Ax(A, x)
≥ 1

2
√

2 ·√‖A−1‖ ‖A‖ .

We give an explicit n× n example, n ≥ 5, showing that this inequality is sharp up to
a small constant factor. For m ≥ 0 and 0 < ε < 1 define

A = FH diag(1, v, ε, ε−1, [1, ]ε−1, ε, v)F =: FHDF,(8.5)

where v denotes a row vector of m ones and [1, ] indicates that this diagonal element 1
may be left out. Accordingly, A is a circulant of dimension n = 2m+5 or n = 2m+6,
depending on whether the diagonal element 1 is left out or not. In either case A is
real by Lemma 8.3. The eigenvalues of A are the Dii with corresponding columns
of FH as eigenvectors. Particularly, e is an eigenvector to D11 = 1, so in our case
Ae = A−1e = e. Furthermore, ‖A‖ = ε−1 = ‖A−1‖. For x = e/

√
n we have

‖b‖ = ‖Ax‖ = ‖A−1x‖ = ‖x‖ = 1. So (2.2) gives

κA,Ax(A, x) = ε−2 + ε−1,

and Theorem 8.1 implies

κcircA,Ax(A, x) = c
ε−1 + ε−1

1
≤ 2ε−1

for 2−1/2 ≤ c ≤ 1. Summarizing, we have the following result for circulants.
Theorem 8.4. For a nonsingular circulant A ∈ Mcirc

n (R) and 0 �= x ∈ R
n we

have

1 ≥ κcircA,Ax(A, x)

κA,Ax(A, x)
≥ 1

2
√

2
√‖A−1‖ ‖A‖ .

As by the matrix (8.5) the second estimation is sharp up to a factor 4
√

2 for all n ≥ 5.
Finally, we remark that in case of unstructured perturbations, allowing or not

allowing perturbations in the right-hand side may alter the condition number by at
most a factor of 2; see (4.1). This changes dramatically for circulant structured
perturbations (and also for other structures). Following along the lines of example
(8.5), define

A = FH diag(1, v, ε, [1, ]ε, v)F(8.6)

with v denoting a row vector of m ≥ 0 ones. Thus, A is of dimension n = 2m+ 3 or
n = 2m+ 4, depending on whether the diagonal element is left out or not. The same
arguments as before apply to x = e/

√
n, and ‖A‖ = ‖A−1x‖ = ‖Ax‖ = 1, ‖A−1‖ =

ε−1, (2.2), and Theorem 8.1 yield

κA(A, x) = ε−1, κcircA,Ax(A, x) ≥ 2−1/2(1 + ε−1), but κcircA (A, x) = 1.

For a discussion of stability of a numerical algorithm for solving a linear system it
seems inappropriate to ignore perturbations in the right-hand side. So (8.3) may
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be of more theoretical interest. However, Theorem 8.4 shows that a linear system
may be beyond the scope of a numerical algorithm which is only stable with respect
to general perturbations, whereas it may be solved to some precision by a special
circulant solver.

Notice that the ratio κcirc/κ may only become small for ill-conditioned matrices.
This is also true for componentwise perturbations, as we will see in Part II of this
paper (Theorem 7.2). In fact, this is the only structure out of (2.4) for which this
statement is true.

9. Symmetric Toeplitz and persymmetric Hankel matrices. With Theo-
rem 6.5 and (6.11) we already have computable bounds for κsymToep and, therefore,
in view of (6.3), for κpersymHankel. More can be said about κsymToep and also about
how small the ratio κsymToep/κ can be.

Let J̃ ∈ {+J,−J}, J̃ ∈ Mn(R), and x ∈ R
n be given such that x = J̃x. Then

A ∈ M symToep
n (R) implies A = J̃AJ̃ and J̃Ax = J̃AJ̃x = Ax. That means every

A ∈ M symToep
n (R) maps X := {x ∈ R

n : x = J̃x} into itself. For nonsingular A,
the mapping A : X → X is bijective. Assume for the moment that n is even, set
m = n/2, and split A into

A =

(
T U
UT T

)
with T,U ∈Mm(R).(9.1)

Accordingly, split J̃ into J̃ =
(
0 J
J 0

)
such that |J | = Jm is the “flip”-matrix of

dimension m. Then A = J̃AJ̃ implies UT = JUJ . For x ∈ X this means x =
(
x
Jx

)
with x ∈ R

m and therefore

Ax = A

(
x

Jx

)
=

(
(T + UJ)x

J(T + UJ)x

)
.

Thus nonsingularity of A implies nonsingularity of T + UJ .
To estimate ϕsymToep let nonsingular A ∈ M symToep, ∆A ∈ M symToep, and

x = J̃x =
(
x
Jx

) ∈ R
n be given. Then

∆Ax =

(
y

Jy

)
and A−1∆Ax = A−1

(
y

Jy

)
=

(
z

Jz

)

for some y, z ∈ R
m, where y = (T + UJ)z. Therefore

‖A−1∆Ax‖ =

∥∥∥∥∥
(

(T + UJ)−1y

J(T + UJ)−1y

)∥∥∥∥∥ ≤ ‖(T + UJ)−1‖
∥∥∥∥
(
y

y

)∥∥∥∥ .
Moreover, ∥∥∥∥

(
y

y

)∥∥∥∥ =

∥∥∥∥
(
y

Jy

)∥∥∥∥ = ‖∆Ax‖ ≤ ‖∆A‖ · ‖x‖

and therefore

ϕsymToep(A, x) ≤ ‖(T + UJ)−1‖ ‖x‖.(9.2)



20 SIEGFRIED M. RUMP

The same analysis, only more technical, is possible for odd n. In this case m :=
(n+ 1)/2 and

±J =




1 0

· · ·
...

1 0


 ∈Mm−1,m(R).

Note that x = J̃x implies xm = 0 in case J̃ = −J . For the splitting

A =

(
T1 U
UT T2

)
, T1 ∈M symToep

m , T2 ∈M symToep
m−1 , U ∈Mm,m−1(R),(9.3)

we obtain JT1J
T

= T2. In a similar way as before one can show

ϕsymToep(A, x) ≤ ‖(T1 + UJ)−1‖ ‖x‖.(9.4)

The steps are technical and omitted. Combining (9.2) and (9.4) with Theorem 3.3 we
obtain the following result.

Theorem 9.1. Let nonsingular A ∈ M symToep
n , and for J̃ = sJ, s ∈ {−1, 1}, let

0 �= x ∈ R
n be given with x = J̃x. Set m := �n/2� and define

J =


 s

· · ·
s


 ∈Mm(R) for n even

and

J =




s 0

· · ·
...

s 0


 ∈Mm−1(R) for n odd.

Then for T := A[1 : m, 1 : m] and U := A[1 : m,m+ 1 : n] we have

κsymToep
E,f (A, x) ≤ ‖(T + UJ)−1‖ ‖E‖ + ‖A−1‖‖f‖‖x‖ .(9.5)

Particularly for no perturbations in the right-hand side, we obtain

κ
symToep
E (A, x)

κE(A, x)
≤ ‖(T + UJ)−1‖

‖A−1‖ .(9.6)

Note that the upper bound for κsymToep
E (A, x) is only true for x with x = J̃x.

The ratio in the right-hand side of (9.6) may become arbitrarily small as for

A = Toeplitz(1, 0, . . . , 0, 1 + ε) and x = e/
√
n.

Again we use Matlab notation; that is, Toeplitz(c) denotes the symmetric Toeplitz ma-

trix with first column c. In this case T+UJ= diag(2+ε, 1, . . . , 1) and κsymToep
E (A, x)≤

‖E‖. On the other hand, y = (−1, 0. . . . , 0, 1)T is an eigenvector of A to the eigen-
value ε, so κE(A, x) = ‖A−1‖ ‖E‖ ≥ ε−1‖E‖. However, allowing perturbations in the
right-hand side, we obtain for the natural choice E = A, f = b

κsymToep
A,Ax (A, x) ≥ (2

√
2ε)−1‖A‖,
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which is almost the same as κA(A, x). Indeed, allowing perturbations in the right-

hand side, the ratio κ
symToep
A,Ax /κA,Ax depends on the condition number κA,Ax. It can

only become small for ill-conditioned matrices. The ratio can be estimated as before
using Lemma 6.1.

Theorem 9.2. Let nonsingular A ∈ M symToep
n (R) and 0 �= x ∈ R

n be given.
Then

1 ≥ κsymToep
A,Ax (A, x)

κA,Ax(A, x)
≥ 1

2
√

2 ·√‖A−1‖ ‖A‖ .

Proof. We have I ∈ M symToep
n , so ϕsymToep(A, x) ≥ ‖A−1x‖ = ‖A−Tx‖, and

Lemma 6.1 and (4.1) finish the proof.
The lower bound in Theorem 9.2 seems not far from being sharp. Consider

A = Toeplitz(1,−1 − ε, 1 − ε,−1 + ε) and x = e,

the symmetric Toeplitz matrix with first row [1,−1 − ε, 1 − ε,−1 + ε]. Then

κA,Ax(A, x) ∼ 16ε−2 and κ
symToep
A,Ax (A, x) < 11ε−1.

Unfortunately, we do not have a generic n × n example. However, it is numerically
easy to find examples of larger dimension. Therefore, we expect the second inequality
in Theorem 9.2 to be sharp up to a small constant for all n.

Additional algebraic properties such as positive definiteness of the matrix do
not improve the situation. An example is the symmetric positive definite Toeplitz
matrix A with first row (1 + ε2,−1 + ε, 1 − ε,−1 + 3ε) and x := e. One computes
λmin(A) = 0.75ε2 + O(ε3), and (2.2) and Theorem 9.1 yield

κA,Ax(A, x) > 5.33ε−2 + O(ε−1) and κsymToep
A,Ax (A, x) < 7ε−1 + O(1).

Note that the estimation in Theorem 9.1 is only valid for x = J̃x, J̃ = sJ, s ∈
{+1,−1}. Let general x ∈ R

n be given and split x =
(
u
v

)
into u ∈ R

m, v ∈ R
n−m.

Define J as in Theorem 9.1 with s = 1, and set y := 1
2 (u + Jv) and z := 1

2 (u − Jv).
Then for y :=

( y

Jy

) ∈ R
n and z :=

(
z

−Jz

) ∈ R
n we have

Jy = y, −Jz = z, and x = y + z.

For ∆A ∈M symToep
n and ‖∆A‖ ≤ 1 we can apply (9.2) and (9.4) to conclude that

‖A−1∆Ax‖ = ‖A−1∆A(y + z)‖ ≤ ‖(T + UJ)−1‖ ‖y‖ + ‖(T − UJ)−1‖ ‖z‖.

Corollary 9.3. For nonsingular A ∈ M symToep
n , 0 �= x ∈ R

n, and T,U, J,
y and z as defined above we have

κsymToep
E,f (A, x) ≤ (‖(T + UJ)−1‖ ‖y‖ + ‖(T − UJ)−1‖ ‖z‖) ‖E‖‖x‖ + ‖A−1‖‖f‖‖x‖ .

Obviously ‖y‖ ≤ ‖x‖ and ‖z‖ ≤ ‖x‖, so one may replace the expression in the
parentheses by µ‖x‖ with µ := max(‖(T + UJ)−1‖, ‖(T − UJ)−1‖). However, such
an approach does not give additional information. Let A−1w = λw for 0 �= w ∈ R

n.
Then A−1 · Jw = JA−1J · Jw = λJw, such that A−1(w ± Jw) = λ(w ± Jw). At
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least one of w ± Jw is nonzero, so we conclude that to every eigenvalue of A−1 there
is an eigenvector w such that w = sJw for s ∈ {−1,+1}. For w, ‖w‖ = 1 being an
eigenvector to |λ| = ‖A−1‖ and for the splitting w =

(
w
Jw

)
it follows that

‖A−1‖ = ‖A−1w‖ =

∥∥∥∥∥
(

(T + sUJ)−1w

J(T + sUJ)−1w

)∥∥∥∥∥ ≤ µ ·
∥∥∥∥
(
w

w

)∥∥∥∥ = µ,

so that the above approach only verifies κsymToep
E,f ≤ κE,f .

We also see from this how to construct examples with small ratio κsymToep/κ. If A
is ill conditioned, at least one of the matrices T +sUJ must be equally ill conditioned.
Small ratios may occur if one of them, say for s = 1, is well conditioned and x is chosen
with big part y = Jy but small z = −Jz in the splitting x = y + z.

Finally, note that Theorem 9.1 and Corollary 9.3 give upper bounds for κsymToep.
We do not know how sharp estimation (9.5) is. Numerical experience suggests that
the overestimation is small. Can that be proved? Again, all statements in this section

are valid mutatis mutandis for A ∈MpersymHankel
n .

10. Hankel and general Toeplitz matrices. With Theorem 6.5 and (6.11)
we already have computable bounds for the (normwise) Hankel condition number and
therefore, in view of (6.4), for κToep. In the following we investigate how small the
ratio κHankel/κ can be. We first show a lower bound in the spirit of Theorems 8.4
and 9.2.

Suppose AT = A ∈Mn(R), not necessarily A ∈MHankel
n (R). By definition,

ϕHankel(A, x) = sup{‖A−1∆Ax‖ : ∆A ∈MHankel
n (R), ‖∆A‖ ≤ 1}.

Hankel matrices are symmetric. So if we can show that for every 0 �= x ∈ R
n there is

a Hankel matrix ∆A with ‖∆A‖ ≤ 1 and ∆Ax = x, then

ϕHankel(A, x) ≥ ‖A−1x‖ = ‖A−Tx‖,(10.1)

and Lemma 6.1 delivers the desired bound. This is indeed true, as shown by the
following lemma. We will prove it for the real and complex cases, the latter being
needed in sections 11 and 12.

Lemma 10.1. Let x ∈ C
n be given. Then there exists H ∈ MHankel

n (C) with
Hx = x̄ and ‖H‖ ≤ 1, where x̄ denotes the complex conjugate of x. In case x ∈ R

n,
H can be chosen real so that Hx = x.

Proof. The expression (6.5) is of course also true for complex Hankel matrices
because ΦHankel is a 0/1-matrix. So we are looking for a parameter vector p ∈ C

2n−1

such that the Hankel matrix H with vec(H) = ΦHankelp satisfies the assertions of the
lemma. Then

Hx = ΨHankel
x p(10.2)

for ΨHankel
x as in (6.9), (6.10), and (6.11). We discuss the following for n = 3, which

will give enough information for the general case. We first embed Ψx := ΨHankel
x into

the circulant Cx with the first row identical to that of Ψx, i.e.,

Cx :=



x1 x2 x3 0 0
0 x1 x2 x3 0
0 0 x1 x2 x3

x3 0 0 x1 x2

x2 x3 0 0 x1


 .
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Then the matrix of the first n rows of Cx is equal to Ψx. Define

C := C+
x C

H
x ,(10.3)

with C+
x denoting the pseudoinverse of Cx. For Cx = FHDF , the pseudoinverse

C+
x = FHD+F is also a circulant, and we have

CxC = FHDF · FHD+F · FHDHF = FHDD+DHF = FHDHF = CH
x .

But Ψx comprises the first n rows of Cx, so ΨxC is equal to the matrix of the first n
rows of CH

x . Define

p := Ce1,(10.4)

with e1 denoting the first column of I2n−1. The first n rows of CH
x e1 form the vector

x̄, so by (10.2),

Hx = Ψxp = ΨxCe1 = x̄

for the Hankel matrix H defined by the parameter vector p = Ce1. Note that by
(10.3) and (10.4) C, and therefore H, is real for real x so that Hx = x in that case.

It remains to estimate the matrix norm of H. Denote the first column of the
circulant C by (c1, . . . , c2n−1)

T . For n = 3, the definitions (10.4) and (10.2) imply

H =


 c1 c2 c3
c2 c3 c4
c3 c4 c5


 and HJ =


 c3 c2 c1
c4 c3 c2
c5 c4 c3


 .

The matrix HJ is the lower left n × n submatrix of C. So by Lemma 8.2 it follows
that

‖H‖ = ‖HJ‖ ≤ ‖C‖ = ‖C+
x C

H
x ‖ = ‖C+

x Cx‖ = ‖D+D‖ = 1.

Combining Lemma 10.1 with (10.1), Lemma 6.1, and (4.1) proves the following
lower bounds. Note that only symmetry of A was used in (10.1).

Theorem 10.2. Let nonsingular symmetric A ∈ Mn(R), and let 0 �= x ∈ R
n be

given. Then

κHankelA,Ax (A, x) ≥ 2−1/2
√
‖A−1‖ ‖A‖(10.5)

and therefore

1 ≥ κHankelA,Ax (A, x)

κA,Ax(A, x)
≥ 1

2
√

2 ·√‖A−1‖ ‖A‖ .(10.6)

The lower bound (10.6) is a severe underestimation, in fact, it is independent of
A. By Corollary 6.6 we know that

21/2
κHankelE,f (A, x)

κE,f (A, x)
≥ κHankelE (A, x)

κE(A, x)
≥ n−1/2σmin(Ψstruct

x )

‖x‖ .

If Ψstruct
x were rank-deficient, this would imply that every minor of size n is zero. Then

the minor of first n columns of ΨHankel
x as in (6.10) implies x1 = 0, and continuing
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Table 10.1
Mean value and standard deviation of τ(x) = σmin(Ψ

Hankel
x )/‖x‖.

Uniform xi Normal xi

n mean(τ(x)) std(τ(x)) mean(τ(x)) std(τ(x))
10 0.49 0.135 0.50 0.136
20 0.42 0.110 0.42 0.111
50 0.35 0.084 0.35 0.084
100 0.31 0.069 0.31 0.069

with the minors of columns i to i + n − 1 we conclude that x = 0. This implies
σmin(Ψstruct

x ) > 0 for all x �= 0 such that for fixed x there is a minimum ratio of the
structured Hankel and the unstructured condition number.

Extensive numerical statistics on τ(x) := σmin(ΨHankel
x )/‖x‖ suggest that this

minimum is in general not too far from 1. In Table 10.1 we list the mean value
and standard deviation of τ(x) for some 106 samples of x with entries uniformly
distributed in [−1, 1] and for entries of x with normal distribution with mean 0 and
standard deviation 1.

We mention that the numbers in the two rightmost columns in Table 10.1 are
almost the same for solution vectors x such that xi = s · yi with random sign s ∈
{−1, 1} and uniform yi with mean 1 and standard deviation 1.

Note again that this is a statistic on solution vectors x showing a lower bound
for the ratio in Corollary 6.6 between the Hankel and the traditional (unstructured)
condition numbers. This ratio applies to every matrix A regardless of its condition
number.

Small values of τ(x) = σmin(ΨHankel
x )/‖x‖ seem rare, but they are possible. Par-

ticularly, small values seem to occur for positive x and x = Jx. Statistically the means
in Table 10.1 drop by about a factor of 2 to 3 for such randomly chosen x. A specific
choice of x proposed by Heinig [21] is comprised of the coefficients of (t+ 1)n−1. For
this x we obtain

τ(x) ∼ 2.5−n.

This generates a lower bound for κHankelA,Ax (A, x). We indeed managed to find Hankel

matrices with ‖A−1ΨHankel
x ‖/‖x‖ < 2−n‖A−1‖ for that x and dimensions up to 15.

That means for the unperturbed right-hand side it is κHankelA (A, x)/κA(A, x) < 2−n.
We could neither construct generic n × n matrices A with this property nor find
examples with the ratio of condition numbers κHankelA,Ax (A, x)/κA,Ax(A, x) (allowing
perturbations in the right-hand side) getting significantly less than one. This includes
in particular positive definite Hankel matrices which are known to be generally ill-
conditioned [3].

An open problem is how small τ(x) can be; that is, what is the smallest possible
value of σmin(ΨHankel

x ) for ΨHankel
x as in (6.10) and ‖x‖ = 1? Based on that, how

small may κHankelA (A, x)/κA(A, x) become?
For general (normwise) perturbations in the matrix and the right-hand side we

conjecture that Hankel structured and unstructured stabilities differ only by a small
factor, supposedly only mildly or not at all, depending on n. In other words,
κHankelA,Ax (A, x)/κA,Ax(A, x) ≥ γ for γ not much less than one.

Meanwhile Böttcher and Grudsky give a partial answer to that [6]. They show,
based on a deep result by Konyagin and Schlag [31], that there exist universal con-
stants n0 ∈ N and ε > 0 such that the following is true. Let x = (x1, . . . , xn) ∈ R

n,
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n ≥ n0, comprise independent standard normal or independent Rademacher variables
(recall that Rademacher variables are random with value 1 or −1 each with probability
1/2). Then, for all A ∈MHankel

n (R),

probability

(
κHankelA (A, x)

κA(A, x)
≥ ε

n3/2

)
>

99

100
.

11. Inversion of structured matrices. Similarly to the structured condition
number for linear systems, the structured condition number for matrix inversion is
defined by

(11.1)

κstructE (A) := lim
ε→0

sup

{‖(A+ ∆A)−1 −A−1‖
ε‖A−1‖ : ∆A ∈M struct

n (R), ‖∆A‖ ≤ ε‖E‖
}
.

For M struct
n (R) = Mn(R) this is the usual (unstructured) condition number which is

well known [27, Theorem 6.4] to be

κE(A) = ‖A−1‖ ‖E‖.

Surprisingly, the same is true for all of the linear structures in (2.4). A reasoning is
that by Theorem 4.1 the worst case condition number of a linear system maximized
over all right-hand sides is equal to the unstructured condition number. So in some
way the set of columns of the identity matrix is general enough to achieve the worst
case.

Theorem 11.1. Let nonsingular A ∈ M struct
n (R) be given for struct ∈ {sym,

persym, skewsym, symToep, Toep, circ, Hankel, persymHankel}. Then

κstructE (A) = ‖A−1‖ ‖E‖.

Proof. As in the unstructured case we use the expansion

(A+ ∆A)−1 −A−1 = −A−1∆AA−1 + O(‖∆A‖2).

Therefore, the result is proved if we can show that

ωstruct(A) := sup{‖A−1∆AA−1‖ : ∆A ∈M struct, ‖∆A‖ ≤ 1} ≥ ‖A−1‖2(11.2)

because this obviously implies ωstruct(A) = ‖A−1‖2. Let x, y ∈ R
n, ‖x‖ = ‖y‖ = 1 be

given with A−1x = ‖A−1‖y. Then Definition 3.1 implies

ωstruct(A) ≥ sup{‖A−1∆AA−1x‖ : ∆A ∈M struct, ‖∆A‖ ≤ 1} = ‖A−1‖ϕstruct(A, y).

Therefore Lemma 5.2 proves (11.2) for struct ∈ {sym, persym, skewsym}. For normal
A ∈ M struct

n (R), it is A−1x = λx with ‖x‖ = 1 and |λ| = ‖A−1‖. Hence (11.2)
is also proved for symmetric Toeplitz and circulant structures by using ∆A := I.

For A ∈ MpersymHankel
n (R), AJ ∈ M symToep

n (R) and JA−1x = λx with ‖x‖ = 1,

and |λ| = ‖JA−1‖ = ‖A−1‖ proves (11.2) by using ∆A := J ∈ MpersymHankel
n (R).

For Hankel matrices again A−1x = λx for ‖x‖ = 1 and |λ| = ‖A−1‖, and Lemma
10.1 yields existence of ∆A ∈ MHankel

n (R) with ‖∆A‖ ≤ 1 and ∆Ax = x, and for

A ∈MToep
n (R) we have AJ ∈MHankel

n (R).
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The theorem shows that among the worst case perturbations for the inverse of
a structured matrix there are always perturbations of the same structure, the same
result (cf. Theorem 5.3) as for linear systems with fixed right-hand side and struct ∈
{sym,persym, skewsym}.

The proof basically uses the fact that A or JA is normal. It also can be extended
to the complex case. Here the structure is still strong enough, although the singular
values need not coincide with the absolute values of the eigenvalues. We have the
following result.

Theorem 11.2. Let nonsingular A ∈ M struct
n (C) be given for struct being Her-

mitian, skew-Hermitian, Toeplitz, circulant, or Hankel. Then

κstructE (A) = ‖A−1‖ ‖E‖.
Proof. We proceed as in the proof of Theorem 11.1 and have to show ωstruct(A) ≥

‖A−1‖2 for the ωstruct(A) defined in (11.2). For normal A, there is A−1x = λx with
‖x‖ = 1 and |λ| = ‖A−1‖. So the theorem is proved for the Hermitian and circulant
cases by using ∆A = I, and for the skew-Hermitian case by using ∆A =

√−1I.
For A being Hankel, A is especially (complex) symmetric. So a result by Takagi

[28, Corollary 4.4.4] implies A = UΣUT for nonnegative diagonal Σ and unitary
U . For x denoting the nth column of U we have Ax̄ = σmin(A)x, and therefore
A−1x = ‖A−1‖x̄. By Lemma 10.1 there exists ∆A ∈MHankel

n (C) with ‖∆A‖ ≤ 1 and
∆Ax̄ = x, so that A−1∆AA−1x = ‖A−1‖2x and

ωstruct(A) ≥ ‖A−1∆AA−1x‖ = ‖A−1‖2.

Finally, for complex Toeplitz A, H := JA is Hankel and, as above, we conclude that
there is x and ∆H with H−1∆HH−1x = ‖H−1‖2x. Then ∆A := J∆H is Toeplitz
with ‖∆A‖ ≤ 1, and y := Jx with ‖y‖ = 1 yields

ωstruct(A) ≥ ‖A−1∆AA−1y‖ = ‖H−1∆HH−1x‖ = ‖H−1‖2 = ‖A−1‖2.

One might conjecture that the result in Theorems 11.1 and 11.2 is true for all
linear structures. This is, however, not the case, for example, for (general) tridiagonal
Toeplitz matrices or, more generally, for (general) tridiagonal matrices. Consider

A =


 α 1 0

0 α 1
0 0 α


(11.3)

for small α > 0. Then ‖A‖ ∼ 1 and ‖A−1‖ ∼ α−3. For general ∆A ∈M tridiag
3 (R) with

‖∆A‖ ≤ 1 one computes ‖A−1∆AA−1‖ = O(α−5), so that ωstruct(A) defined in (11.2)

is of the order α‖A−1‖2. This implies that κ
tridiag
E (A) is of the order α‖A−1‖ ‖E‖ in-

stead of ‖A−1‖ ‖E‖. The same applies for general tridiagonal Toeplitz perturbations.
Nevertheless one may ask: Is Theorem 11.1 true for other structures?

Usually linear systems are not solved by multiplying the right-hand side by a
computed inverse. For structured matrices with small ratio κstructA,Ax /κA,Ax, lack of
stability is yet another reason for that.

12. Distance to singularity. The condition number κ(A) = ‖A−1‖ ‖A‖ of a
matrix is infinite iff the matrix is singular. Therefore it seems plausible that the
distance to singularity of a matrix is inversely proportional to its condition number.
Define

δstructE (A) := min{α : ∆A ∈M struct
n (R), ‖∆A‖ ≤ α‖E‖, A+ ∆A singular},
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where M struct
n (R) ⊆ Mn(R). For M struct

n (R) = Mn(R) this number δE(A) is the
traditional (normwise) distance to the nearest singular matrix with respect to un-
structured perturbations. A classical result [27, Theorem 6.5] by Eckart and Young
[12] for the 2-norm with generalizations by Gastinel and Kahan to other norms is

δE(A) = {‖A−1‖ ‖E‖}−1 = κE(A)−1(12.1)

for general perturbations M struct
n (R) = Mn(R). Thus the distance to singularity for

general perturbations is not only inversely proportional to but equal to the recipro-
cal of the condition number. Note that the distance to singularity as well as the
condition number may change with diagonal scaling, the former being contrary to
componentwise perturbations (cf. Part II, section 9).

There are a number of results on some blockwise structured distance to singular-
ity and on the so-called µ-number (cf. [11, 13, 34, 41, 35]). There also are results on
distance to singularity with respect to certain symmetric structures [29]. The ques-
tion remains of whether a result similar to (12.1) can be obtained for the structured
condition number and distance to singularity. It was indeed shown by D. Higham [23]
that (12.1) is also true for symmetric perturbations.

In the previous section we have seen that the structured condition number κstructE (A)
is equal to the unstructured condition number ‖A−1‖ ‖E‖ for any E and for all struc-
tures in (2.4).

We conclude with the remarkable fact that the reciprocal of the condition number
is equal to the structured distance to the nearest singular matrix for all structures in
(2.4).

Theorem 12.1. Let nonsingular A ∈ M struct
n (R) for struct ∈ {sym, persym,

skewsym, symToep,Toep, circ, Hankel, persymHankel} be given. Then

δE(A) = δstructE (A) = κstructE (A)−1 = κE(A)−1 = {‖A−1‖ ‖E‖}−1.(12.2)

Proof. Without loss of generality we may assume ‖E‖ = 1. Then obviously
δstructE (A) ≥ δE(A) = σmin(A), and it remains to show (A + ∆A)x = 0 for some
0 �= x ∈ R

n and ∆A ∈M struct
n (R) with ‖∆A‖ = σmin(A).

For symmetric matrices there is real λ and 0 �= x ∈ R
n with Ax = λx and

|λ| = σmin(A). If I ∈ M struct
n (R), then ∆A = −λI does the job. This proves (12.2)

for struct ∈ {sym, symToep}. For struct ∈ {persym, persymHankel} and A ∈
M struct

n (R), JA is symmetric and JAx = λx for 0 �= x ∈ R
n and |λ| = σmin(JA) =

σmin(A). Therefore det(J(A+∆A)) = 0 = det(A+∆A) for ∆A := −λJ ∈M struct
n (R).

For nonsingular skewsymmetric A we conclude as in the proof of Lemma 5.2 that
all singular values have even multiplicity and that there are u, v ∈ R

n with ‖u‖ =

‖v‖ = 1, uT v = 0, and Av = σmin(A)u. By Lemma 5.1 we find ∆A ∈ M skewsym
n (R)

with ∆Av = u and ‖∆A‖ = 1, so that A− σmin(A)∆A is singular.
For a given real circulant A = FHDF there is Ax = λx with 0 �= x ∈ C

n and
|λ| = σmin(A). If λ is real, ∆A = −λI ∈ Mcirc

n (R) yields det(A + ∆A) = 0. For
complex λ, define diagonal D̃ ∈Mn(C) with all entries zero except the two entries λ
and λ in the same position as in D. Define ∆A := FHD̃F . Then Lemma 8.3 implies
that ∆A is a real circulant. Moreover, we have ‖∆A‖ = max |D̃νν | = |λ| = σmin(A),
and A− ∆A = FH(D − D̃)F is singular.

For Hankel matrices there is Ax = λx, ‖x‖ = 1, and |λ| = σmin(A), and Lemma

10.1 proves this part. Finally, A ∈MToep
n (R) implies AJ ∈MHankel

n and we proceed
as before.
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As in the previous section we can formulate this theorem also for complex struc-
tures. For nonnormal matrices such as complex Hankel and Toeplitz matrices the key
is again the complex part of Lemma 10.1.

Theorem 12.2. Let nonsingular A ∈ M struct
n (C) be given for struct being Her-

mitian, skew-Hermitian, Toeplitz, circulant, or Hankel. Then

δE(A) = δstructE (A) = κstructE (A)−1 = κE(A)−1 = {‖A−1‖ ‖E‖}−1.

Proof. The proof of Theorem 12.1 obviously carries over to the normal case,
that is, to complex Hermitian, skew-Hermitian, and circulant matrices. For a Hankel
matrix A we use [28, Corollary 4.4.4] the factorization A = UΣUT with nonnegative
diagonal Σ and unitary U as in the previous section. For x denoting the nth column
of U we have Ax̄ = σmin(A)x. By Lemma 10.1 there exists ∆H ∈ MHankel

n (C)
with ‖∆H‖ ≤ 1 and ∆Hx̄ = x. Obviously, −∆H ∈ MHankel

n (C) as well, so that
∆A := σmin(A)∆H, ‖∆A‖ = σmin(A), and (A + ∆A)x = 0 finish this part of the
proof. For A being Toeplitz, JA is Hankel and we proceed as in the proof of Theorem
12.1.

So our results are a structured version of the Eckart–Young theorem, valid for all
of our structures in (2.4) including the complex case. Does the result extend to other
structures?

13. Conclusion. We proved that for some problems and structures it makes
no, or not much, difference whether perturbations are structured or not; for other
problems and structures we showed that the sensitivity with respect to structured
(normwise) perturbations may be much less than with respect to unstructured per-
turbations. This was especially true for the important cases of linear systems with
a symmetric Toeplitz or circulant matrix. Surprisingly, it turned out that the ratio
κstruct/κ can only become small for certain solutions, independent of the matrix.

The results show that a small ratio κstruct/κ seems not typical. So our results
may be used to rely on the fact that unstructured and structured sensitivities are,
in general, not too far apart. However, it may also define the challenge to design
numerical algorithms to solve problems with structured data being stable not only
with respect to unstructured perturbations but being stable with respect to the corre-
sponding structured perturbations. There exists a result in that direction for normwise
perturbations and circulant matrices [40], [27, Theorem 24.3]. However, structured
analysis for circulants is assisted by the fact that circulants commute. Beyond that,
there are similar results for nonlinear structures such as Cauchy or Vandermonde-like
matrices (see the last section in Part II of this paper). We hope our results stimulate
further research in that direction for other structures.
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