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VARIATIONAL CHARACTERIZATIONS OF THE SIGN-REAL AND
THE SIGN-COMPLEX SPECTRAL RADIUS

SIEGFRIED M. RUMP ∗

Abstract. The sign-real and the sign-complex spectral radius, also called the generalized spectral radius, proved to be

an interesting generalization of the Perron-Frobenius theory for nonnegative matrices to general real and to general complex

matrices, respectively. Especially the generalization of the well-known Collatz-Wielandt max-min characterization shows one of

the many one-to-one correspondences to classical Perron-Frobenius theory. In this paper we prove variational characterizations

of the generalized (real and complex) spectral radius which are again almost identical to the corresponding one in classical

Perron-Frobenius theory.

1. Introduction. Denote IR+ := {x ≥ 0 : x ∈ IR}, and let IK ∈ {IR+, IR, C}. The generalized spectral
radius is defined by

ρIK(A) := max{|λ| : ∃ 0 6= x ∈ IKn, ∃λ ∈ IK, |Ax| = |λx|} for A ∈ Mn(IK).(1)

Note that absolute value and comparison of matrices and vectors are always to be understood componentwise.
For example, A ≤ |C| for A ∈ Mn(IR), C ∈ Mn(C) is equivalent to Aij ≤ |Cij | for all i, j.

For IK = IR+ the quantity in (1.1) is the classical Perron root, for IK ∈ {IR,C} it is the sign-real or sign-
complex spectral radius, respectively. Note that the quantities are only defined for matrices out of the
specific set IK, and note that for ρIR the maximum is taken over |λ| for λ ∈ IR, x ∈ IRn. Vectors 0 6= x ∈ IKn

and scalars λ ∈ IK satisfying the nonlinear eigenequation |Ax| = |λx| are also called generalized eigenvectors
and generalized eigenvalues, respectively.

Denote the set of signature matrices over IK by S(IK), which are diagonal matrices S with |Sii| = 1 for all i.
In short notation S ∈ S(IK) : ⇔ S ∈ Mn(IK) and |S| = I. For IK = IR+ this is just the identity matrix I, for
IK = IR the set of diagonal orthogonal or S = diag(±1), and for IK = C the set of diagonal unitary matrices.
Obviously, for y ∈ IK there is S ∈ S(IK) with Sy ≥ 0. In case |y| > 0, this S is uniquely determined. Note
that S−1 = S∗ ∈ S(IK) for all S ∈ S(IK).

By definition (1.1) there is y ∈ IKn with |Ay| = |ry| = r|y| for r := ρIK(A), and therefore for IK ∈ {IR+, IR,C},
∃S ∈ S(IK) ∃ 0 6= y ∈ IKn : SAy = ry(2)

and

∃S1, S2 ∈ S(IK) ∃x ≥ 0 : S1AS2x = rx.(3)

Among the variational characterizations of the Perron root are

max
x≥0

min
xi 6=0

(Ax)i

xi
= ρIR+(A) = ρ(A) = inf

x>0
max

i

(Ax)i

xi
for A ≥ 0(4)

and

max
x≥0

min
y≥0

yT x 6=0

yT Ax

yT x
= ρ(A) = min

y≥0
max
x≥0

yT x 6=0

yT Ax

yT x
for A ≥ 0.(5)

The purpose of this paper is to prove a generalization of both characterizations for the generalized spectral
radius.

We note that the only non-obvious property of the generalized spectral radius we use is [6, Corollary 2.4]

ρIK(A[µ]) ≤ ρIK(A) for IK ∈ {IR+, IR, C}, A ∈ Mn(IK) and µ ⊆ {1, . . . , n}.(6)
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2. Variational characterizations. For the following results we need two preparatory lemmata, the
first showing that there exists a generalized eigenvector in every orthant.

Lemma 2.1. Let IK ∈ {IR, C} and A ∈ Mn(IK) be given. Then

∀S ∈ S(IK) ∃ 0 6= z ∈ IKn ∃λ ∈ IR+ : Sz ≥ 0, |Az| = λ|z|.

Remark. The condition Sz ≥ 0 for z ∈ IKn means Sz ∈ IRn and Sz ≥ 0, or shortly Sz ∈ IRn
+. Note that

Lemma 2.2 is also true for IK = IR+, in which case S ∈ S(IK) implies S = I.

Proof. Let S ∈ S(IK) be given and define O := {z ∈ IKn : ‖z‖1 = 1, Sz ≥ 0}. The set O is nonempty,
compact and convex. If there exists some z ∈ O with Az = 0 we are finished with λ = 0. Suppose Az 6= 0
for all z ∈ O and define ϕ(x) := ‖Ax‖−1

1 ·S∗|Ax|. Then ϕ is well-defined on O and ϕ : O → O, such that by
Brouwer’s theorem there exists a fixed point z ∈ O with ϕ(z) = ‖Az‖−1

1 ·S∗|Az| = z. Then |Az| = λSz = λ|z|
with λ = ‖Az‖1.
The next lemma states a property of vectors out of the interior of a certain orthant.

Lemma 2.2. Let IK ∈ {IR, C}, A ∈ Mn(IK) and define r := ρIK(A). Then

∀S ∈ S(IK) ∀ ε > 0 ∃ z ∈ IKn : Sz > 0, |Az| ≤ (r + ε) · |z|.

Proof. We proceed by induction. For n = 1, it is r = |A11| ∈ IR+, and z := sign(S11) ∈ IK does the job.
Suppose the lemma is proved for dimension less than n. For given S ∈ S(IK) there exists by Lemma 2.1 some
0 6= z ∈ IKn and λ ∈ IR+ with Sz ≥ 0 and |Az| = λ|z|. If Sz > 0 we are finished. Denote µ := {j : zj 6= 0}
and set ν := {1, . . . , n}\µ, such that

∣∣∣∣∣

(
T U

V W

)(
x

0

)∣∣∣∣∣ = λ

∣∣∣∣
(

x

0

)∣∣∣∣ with

T = A[µ], U = A[µ, ν], V = A[ν, µ], W = A[ν], z[µ] = x and z[ν] = 0.

(7)

Then |Tx| = λ|x|, V x = 0 and |x| > 0.

By induction hypothesis there exists y′ ∈ IK|ν| with S[ν]y′ > 0 and

|Wy′| ≤ (ρIK(W ) + ε)|y′| ≤ (r + ε)|y′|,

where the latter inequality follows by (1.6). Define

α :=





min
i

∣∣∣∣
xi

(Uy′)i

∣∣∣∣ for (Uy′)i 6= 0

1 otherwise,

and set y := αy′. Then |y| > 0 and
∣∣∣∣A ·

(
x

εy

)∣∣∣∣ =
∣∣∣∣
(

Tx + εUy

εWy

)∣∣∣∣ ≤
(

λ|x|+ εα|Uy′|
εα(r + ε)|y′|

)
= (r + ε)

( |x|
ε|y|

)
.

The above lemma is obviously not true when replacing r + ε by r, as the example A =

(
1 1
0 1

)
with

ρIK(A) = 1 for IK ∈ {IR+, IR, C} shows. It is, at least for IK = IR, also not valid when |A| is irreducible.
Consider

A =




0 1 1
−1 0 1
−1 −1 0


 .
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It has been shown in [5, Lemma 5.6] that ρIR(A) = 1. We show that |Au| ≤ u is not possible for u > 0. Set
u := (x, y, z)T , then |Au| ≤ u is equivalent to

−x ≤ y + z ≤ x

−y ≤ −x + z ≤ y

−z ≤ −x− y ≤ z.

The second and third row imply

x ≤ y + z and y ≤ −x + z,

and by the first and second row,

x = y + z and y = −x + z

so that y = x− z = −x + z and therefore y = 0, which means u cannot be positive.

Finally, we need a generalization of a theorem by Collatz [3, Section 2] to the complex case.

Lemma 2.3. Let A ∈ Mn(C), A∗z = λz for 0 6= z ∈ IRn, λ ∈ C. Then for all x ∈ IRn with |x| > 0 and
xizi ≥ 0 for all i the following estimations hold true:

min Re µi ≤ Re λ ≤ maxRe µi

min Im µi ≤ Im λ ≤ max Im µi,

where µi := (Ax)i/xi for 1 ≤ i ≤ n.

Remark. Note that x and the left eigenvector z are assumed to be real.

Proof. Similar to Collatz’s original proof for the case A ≥ 0 we note
∑

i

(λ− µi)xizi =
∑

i

xi(A∗z)i −
∑

i

(Ax)izi = xT A∗z − zT Ax = 0.

Now xizi are real nonnegative for all i, and by |x| > 0 not all products xizi can be zero. The assertion
follows.

With these preparations we can prove the first two-sided characterization of ρIK.

Theorem 2.4. Let IK ∈ {IR+, IR, C} and A ∈ Mn(IK). Then

max
S∈S(IK)

max
x∈IKn

Sx≥0

min
xi 6=0

∣∣∣∣
(Ax)i

xi

∣∣∣∣ = ρIK(A) = max
S∈S(IK)

inf
x∈IKn

Sx>0

max
i

∣∣∣∣
(Ax)i

xi

∣∣∣∣ .(8)

Remark. The characterization is almost identical to the classical Perron-Frobenius characterization (1.4).
The difference is that for nonnegative A the nonnegative orthant is the generic one, and vectors x can be
restricted to this generic orthant. For general real or complex matrices, there is no longer a generic orthant,
and henceforth the max-min and inf-max characterization is maximized over all orthants. Note that in the
left hand side the two maximums can be replaced by maxx∈IKn , but are separated for didactical purposes.

Proof. The result is well known for IK = IR+, and the left equality was shown in [5, Theorem 3.1] for IK = IR,
and for IK = C it was shown in a different context in [4] and [2], see also [6, Theorem 2.3]. We need to prove
the right equality for IK ∈ {IR,C}. Let S ∈ S(IK) be fixed but arbitrary and denote r := ρIK(A). By Lemma
2.2, there exists for every ε > 0 some x ∈ IKn with Sx > 0 and |Ax| ≤ (r + ε)|x|, so that r ≥ r.h.s.(2.2).
We will prove r ≤ r.h.s.(2.2) to finish the proof. By (1.3) and ρIK(A∗) = ρIK(A) there is S1, S2 ∈ S(IK) and
0 6= z ∈ IRn with z ≥ 0 and S1A

∗S2z = rz. Then for any x ∈ IKn with S1x > 0, Lemma 2.3 implies

max
i

∣∣∣∣
(Ax)i

xi

∣∣∣∣ = max
i

∣∣∣∣
((S∗2AS∗1 ) · S1x)i

(S1x)i

∣∣∣∣ ≥ Re r = r.
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Next we give a second two-sided characterization of the generalized spectral radius.

Theorem 2.5. Let IK ∈ {IR+, IR, C} and A ∈ Mn(IK). Then

max
S1,S2∈S(IK)

max
x∈IKn

S1x≥0

min
y∈IKn

S2y≥0
|y∗| |x|6=0

|y∗Ax|
|y∗| |x| = ρIK(A) = max

S1,S2∈S(IK)
min

y∈IKn

S2y≥0

max
x∈IKn

S1x≥0
|y∗| |x|6=0

|y∗Ax|
|y∗| |x| .(9)

Proof. Let, according to (1.2), SAx = rx for S ∈ S(IK), 0 6= x ∈ IKn and r = ρIK(A). Define S1 such that
S1x ≥ 0 and set S2 = S1S. Then for every y ∈ IKn with S2y ≥ 0 and |y∗| |x| 6= 0, it is S1x = |x|, S2y = |y|,
S∗2S1S = I and

y∗Ax = y∗S∗2S1SAx = ry∗S∗2S1x = r|y∗| |x|, or |y∗Ax| = r|y∗| |x|.

That means for the specific choice of S1, S2 and x, the ratio |y∗Ax|
|y∗| |x| is equal to r independent of the choice

of y provided S2y ≥ 0. Therefore, both the left and the right hand side of (2.3) are greater than or equal to
ρIK(A). This proves also that the extrema are actually achieved.

On the other hand, let S1, S2 ∈ S(IK) and x ∈ IKn, S1x ≥ 0 be fixed but arbitrarily given. Denote
µ := {j : xj 6= 0}, k := |µ|, and µ := {1, . . . , n}\µ. By Lemma 2.1, there exists ỹ ∈ IKk with ỹ 6= 0,
S2[µ] ỹ ≥ 0 and |A∗[µ] · ỹ | = λ| ỹ | for λ ≥ 0. Define y ∈ IKn by y[µ] := ỹ and y[µ] := 0. Then x[µ] = 0
implies |y∗| |x| = |y[µ]∗| |x[µ]| and

|y∗Ax| = |y[µ]∗A[µ]x[µ]| ≤ |y[µ]∗A[µ]| · |x[µ]| = λ|y[µ]∗| |x[µ]| = λ|y∗| |x|.

By (1.6),

|y∗Ax|
|y∗| |x| ≤ λ ≤ ρIK(A).

Henceforth, for that choice of y (depending on S1, S2 and x) the left hand side of (2.3) is less than or equal
to ρIK(A). It remains to prove that the right hand side of (2.3) is less than or equal to ρIK(A). Let S1, S2

be given, fixed but arbitrary. By Lemma 2.1, there exists 0 6= y ∈ IKn with S2y ≥ 0 and |A∗y| = λ|y| for
λ ∈ IR+. Then for all x ∈ IKn,

|y∗Ax| ≤ |y∗A| |x| = λ|y∗| |x|,

such that for that choice of y (depending on S1, S2) the ratio |y∗Ax|
|y∗| |x| is equal to λ for all x ∈ IKn with

|y∗| |x| 6= 0. It follows that the right hand side of (2.3) is less than or equal to λ ≤ ρIK(A∗) = ρIK(A), and
the proof is finished.

We note that Theorem 2.5 and its proof cover the case IK = IR+, where in this case S(IR+) consists only of
the identity matrix.

Finally we notice that for the classical Perron-Frobenius theory the characterization (2.3) is mentioned
without proof in the classical book by Varga [7] for irreducible matrices. As in other text books, the result
is referenced to be included in [1], where in turn we only found a reference to an internal report.
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