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Abstract. Today’s floating point implementations of elementary transcendental functions are usually very accurate.

However, with few exceptions, the actual accuracy is not known. In the present paper we describe a rigorous, accurate, fast

and portable implementation of the elementary standard functions based on some existing approximate standard functions.

The scheme is outlined for IEEE 754, but not difficult to adapt to other floating point formats. A Matlab implementation

is available on the net. Accuracy of the proposed algorithms can be rigorously estimated. As an example we prove that the

relative accuracy of the exponential function is better than 2.07eps in a slightly reduced argument range (eps denoting the

relative rounding error unit). Otherwise, extensive computational tests suggest for all elementary functions and all suitable

arguments an accuracy better than about 3eps.

1. A general approach for rigorous standard functions. Todays libraries for the approximation
of elementary transcendental functions are very fast and the results are mostly of very high accuracy. For a
good introduction and summary of state-of-the-art methods cf. [19]. The achieved accuracy does not exceed
one or two ulp for almost all input arguments; however, there is no proof for that.

Today computers are more and more used for so-called computer-assisted proofs, where assumptions of
mathematical theorems are verified on the computer in order to draw anticipated conclusions. Famous
examples are the celebrated Kepler conjecture [9], the enclosure of the Feigenbaum constant [8], bounds for
the gravitational constant [11, 17], or a computer assisted proof of the existence of eigenvalues below the
essential spectrum of the Sturm-Liouville problem [7]. For such applications the use of standard functions
which are ”most likely” accurate but do not deliver rigorous error bounds contradicts the whole philosophy.

There are a number of libraries supporting rigorous computation of elementary functions, among them
[13, 14]. That means the algorithms deliver rigorous lower and upper bounds for the correct function
value. Usually, specific polynomial or rational approximations are used, possibly combined with a table look
up. The approximation, truncation and computational errors of those approximation formulas are estimated
individually. To the authors knowledge, all such existing libraries are developed for a specific number system,
specific format or they hardly make use of built-in (approximate) standard functions. This is a real pity
because todays standard function libraries are very accurate (see, for example, [23, 24]). However, accuracy
estimates are most likely but not rigorously proved to be correct for all arguments.

We intend to utilize the marvelous accuracy of the built-in standard functions by a table approach. To
calculate f(x) for some elementary function f and floating point argument x ∈ IF, we approximate x by
some x̃ ∈ IF with few nonzero leading bits in the mantissa. The maximal error of the computed approximation
by the built-in function to the true value of f(x̃) is calculated in advance by some initialization procedure.
This is executed once for an architecture and some given floating point standard function library. Then,
the difference between f(x) and f(x̃) is estimated and bounded for every standard function individually by
formulas given below. Note that x̃ is chosen such that the relative error between x and x̃ is always small.

This approach is simple and natural. Although it seems not to have been described in the literature, we
feel that it would not be enough for a scientific paper. We justify this paper by the success to develop
fast algorithms producing very sharp bounds (relative accuracy better than about 3eps) for the result of
all elementary standard functions for all possible and suitable arguments. This is achieved by using special
correction formulas producing high-accuracy results in double precision floating point arithmetic. Those
correction formulas, once established, are not difficult to adapt to other floating point formats.
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We note that the presented algorithms are fast in terms of number of operations; the Matlab implementation
(see Section 11) is slow due to severe interpretation overhead.

Our new standard function library delivers rigorous bounds for the result for all floating point input arguments.
The order of evaluation of the formulas is carefully chosen to diminish accumulation of rounding errors. This
is crucial and is done individually for every standard function.

In the appendix we give an example of a proof for rigorous estimation of the worst case accuracy of the
exponential in a slightly reduced argument range. As a result we obtain a worst case accuracy less than
2.07eps. This is proved rather than ”guessed” by many test cases.

The accuracy of the bounds for the other standard functions can also be rigorously estimated, quite a tedious
work. Instead of doing this we ran quite extensive computational tests including billions of samples, especially
focussing on critical areas. The maximum relative error of the bounds with respect to the midpoint in all
those tests for all input arguments and all functions were about 3eps. This, of course, does not prove that
this is the actual maximum relative accuracy for all floating point arguments. However, the maximum 2eps
obtained for the exponential by our extensive test set is not too far from the rigorously estimated upper
bound 2.07eps. We think that there is evidence in the formulas for the bounds of the other functions that
the true worst case accuracy for all suitable floating point input is not too far from the maximum obtained
for the extensive test sets, which is 3.01eps. Note, however, even if there is a case with 4eps accuracy of the
bounds, say, then the accuracy of the bounds is less than expected, but nevertheless the bounds are always
rigorous.

After introducing some notation and the discussion of the initialization procedure, we continue with the
individual elementary functions. We begin with more detailed descriptions; later on we give hints for an
implementation along the previously given lines. As mentioned before, the (pure) Matlab source code is
available, see Section 11.

2. Notation. We describe our approach for IEEE 754 arithmetic standard [12] and double precision
format (1 sign bit, 11 exponent bits, 52 mantissa bits plus implicit one). However, we stress that along the
following lines it is not difficult to adapt our approach to other formats (such as extended), or other number
systems (such as decimal or hexadecimal).

Denote the set of IEEE 754 floating point numbers (including gradual underflow and ±∞) by IF. We use
three different rounding modes

rounding to nearest,
∇ rounding downwards (towards −∞), and
∆ rounding upwards (towards +∞).

Throughout this paper we use the following notation:

Operations captured within (·),∇(·),∆(·) shall all be performed with the depicted
rounding mode to nearest, downwards or upwards, respectively.

(1)

All results produced by our standard functions will be correct including possible underflow and overflow.
Operations not preceeded by a rounding symbol depict the true (real) operations with result in IR. For
example, let a, b, c ∈ IF. Then

d1 = ∇(a ∗ b− c)
d2 = ∆(a ∗ b− c)

produces d1, d2 ∈ IF such that the true result d = a ∗ b − c ∈ IR satisfies d1 ≤ d ≤ d2. Note that this need
not to be true when replacing a ∗ b− c by c− a ∗ b.

We want to stress that availability of rounding modes is a convenient way to formulate the following results,
but they are by no means mandatory. If only rounding to nearest is available, we may use

c := (a ◦ b) for ◦ ∈ {+,−, ∗, /} ⇒ c− 1
2
eps|c| − η ≤ a ◦ b ≤ c +

1
2
eps|c|+ η,(2)
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where eps denotes the relative rounding error unit and η the smallest nonnegative (unnormalized) floating
point number. For ◦ ∈ {+,−}, η may be omitted in (2). We also use symmetry of IF, i.e. x ∈ IF ⇒ −x ∈ IF.
The predecessor and successor of a finite floating point number is defined by

pred(x) := max{x̃ ∈ IF : x̃ < x} and succ(x) := min{x̃ ∈ IF : x̃ > x}.

For the notation of the set of test points Tf for the standard function f see end of Section 4.

3. Long real reference. For suitable sets Rf ⊆ IF of reference points, depending on the elementary
function f , we need high accuracy and rigorous error bounds for the values of f . This is achieved by a
long precision interval arithmetic. Fortunately, those error bounds have to be computed only once for every
architecture, so any reasonably fast approach suffices.

The implementation of a long precision arithmetic is standard, and a number of packages are available,
among them [5, 6, 1]. An augmentation by rigorous error bounds is also standard. We choose to write our
own package in (pure) Matlab for easy portability of the routines.

Our reference sets Rf are as follows:

Rexp = {±(0, 1, 2, . . . , 214 − 1) · 2−14} ∪ {(0, 1, 2, . . . , 2−14 − 1) · 2e−14 for 1 ≤ e ≤ 3},
Rlog = {(213, 213 + 1, . . . , 214 − 1) · 2e−14 for 0 ≤ e ≤ 1},
Rf = {(0, 1, 2, . . . , [214π/4]) · 2−14} for f ∈ {sin, cos, tan},
Ratan = {(0, 1, 2, . . . , 215 − 1) · 2−13},
Rsinh = {(0, 1, 2, . . . , 214 − 1) · 2e−14 for 0 ≤ e ≤ 3}, and
Rtanh = {(0, 1, 2, . . . , 214 − 1) · 2−14}.

Those reference points suffice to achieve high accuracy for all elementary functions and all arguments.
To compute the long precision error bounds, we usually use a Taylor series approach. For the logarithm
instead, we use a double precision approximation ỹ = (log(x)) and one long precision Newton correction
y = ỹ + (x · e−ey − 1) plus error term. In the same way we get bounds for atan(x) by ỹ = (atan(x)) and
y = ỹ + (x − tan(ỹ))/(1 + x2) plus some error term. The functions exp, sin, cos, tan, sinh and tanh are
conveniently calculated in one routine. Long precision error bounds are calculated to about 80 bits accuracy.

Final output of the initialization procedure are global constants εf for f ∈ {exp, log, sin, cos, tan, atan,

sinh, tanh} which are defined as follows. Denote

ỹ := (f(x)) double precision value calculated in rounding to nearest,
F (x), F (x) lower and upper bounds for f(x) in long precision.

Therefore F (x) ≤ f(x) ≤ F (x) for all reference points x ∈ Rf. Note that ỹ is the approximation to f(x)
computed by some built-in routine. Then

εf := max( max
x∈Rf

{(ỹ − F (x))/|ỹ|}, max
x∈Rf

{(F (x)− ỹ)/|ỹ|} ).(3)

This implies for all f ∈ {exp, log, sin, cos, tan, atan, sinh, tanh} and all reference points x ∈ Rf,

ỹ − εf · |ỹ| ≤ f(x) ≤ ỹ + εf · |ỹ|,

using exact arithmetic. Careful application of (1) yields

∇(ỹ + (−εf) · |ỹ|) ≤ f(x) ≤ ∆(ỹ + εf · |ỹ|)(4)

for all f and all x ∈ Rf . Note that the lower and upper bounds in (4) are computed in double precision. For
a Pentium I MMX 300Mhz PC, Matlab 5.3, the computed quantities are (rounded upwards)

exp log sin cos tan atan sinh tanh
εf 1.26e-16 1.42e-16 1.17e-16 8.89e-17 1.25e-16 1.38e-16 2.39e-16 2.87e-16

Table 3.1. Global error constants with respect to reference points
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Besides the error bounds εf, some auxiliary constants like log 2 etc. are computed as well. This will be
mentioned in the description of the individual standard function. The total time to compute all constants
is about 30 minutes on the above mentioned PC for the pure Matlab long precision code, severely suffering
from interpretation overhead. Not much effort was spent to speed up computation because it is performed
only once.

We mention that the choosen sets of reference points compromise between computing time for the (long
precision) initialization procedure, the complexity of the correction formula, and the final accuracy of the
elementary function. A larger reference set needs (once) more computing time for the initialization procedure
but allows lower order approximation formulas, thus improving computing time.

4. Rigorous standard functions - test sets. In the following we describe algorithms to compute
rigorous and sharp error bounds for all suitable floating point arguments for the following functions: expo-
nential, logarithm, trigonometric functions and their inverses, hyperbolic functions and their inverses. We
stress again that the purpose of the billions of test cases is to gain confidence in the mentioned worst case of
the relative error of 3eps. This is, of course, no proof (and not meant as such). We prove worst case 2.07eps
for the exponential. Beside that, the computed results are rigorously correct for all possible arguments.

For computed lower and upper bounds y(x), y(x) by our standard functions for f(x), respectively, we measure

α(x) =
y(x)− y(x)
|y(x)|+ |y(x)| · eps−1(5)

for x out of some test set Tf. This implies for intervals Y := [y, y] not containing zero that the relative error
of any point out of Y with respect to the midpoint of Y does not exceed α(x) · eps. For intervals containing
zero this is also a widely used measure. The test sets Tf are chosen carefully to cover a large set of arguments
and to cover critical arguments.

We describe the test sets Tf by vectors of decimal exponents. For example, V = 30 : 30 : 300 denotes
the vector (30, 60, . . . , 270, 300) of length 10 (Matlab notation) and indicates the following test set. For
i = 1 . . . 9, denote by w(i) a vector of 106 random numbers uniformly distributed within [Vi, Vi+1]. Then
the test set comprises of the 9 · 106 numbers 10w(i)

ν for 1 ≤ i ≤ 9, 1 ≤ ν ≤ 106. Furthermore, we use
short notation ±V to indicate V1 ∪ (−V2) where V1 = V , V2 = V . Note that random numbers in V and
−V are generated independently. Finally, we use Matlab notation linspace(a, b, k) to indicate the vector
a, a + ∆, . . . , a + (k − 1)∆ for ∆ = (b− a)/(k − 1).

For example, Texp = ±linspace(−16, log10 700, 25) represents a vector of some 48 Million test points x with
10−16 ≤ |x| ≤ 700. The accuracy graph for the exponential is shown in Graph 4.1, where circles depict the
median, crosses the average and plus signs the maximum of α(x) as defined in (5), each over the 106 samples
in the intervals [Vi, Vi+1].



RIGOROUS AND PORTABLE STANDARD FUNCTIONS 5

−10
20

−10
0

−10
−20

0.5

1

1.5

2

2.5

3

3.5

10
−20

10
0

10
20

0.5

1

1.5

2

2.5

3

3.5
exp, global maximum relative error α(x):   2.00 eps                                                                                     

Graph 4.1. Accuracy exponential

5. Exponential function. In the initialization procedure we calculate vectors of floating point numbers
E,E, E such that

Ei + Ei ≤ exp(i) ≤ Ei + Ei for − 744 ≤ i ≤ 709,(6)

and |Ei| ∼ |Ei| ∼ 10−16Ei. This simulates a ”doubled” double precision. For X ≤ −745 or X ≥ 710, exp(X)
is outside the floating point range, and this case is handled separately.

Let X ∈ IF,−745 < X < 709 be given. For the splitting X = Xint + x, Xint = sign(X) · b|X|c ∈ ZZ,−1 <

x < 1, define

x̃ = 2−14 · b214xc
d = x− x̃.

All those operations are exact without rounding error (for the first, for example, one may use [f, e] = log2(x)
in Matlab). The definition implies that x̃ has at most 14 nonzero leading bits in its binary representation,
and therefore x̃ ∈ Rexp (the other elements x̃ ∈ Rexp are needed for the hyperbolic sine). Furthermore,
0 ≤ d < 2−14. Thus

exp(x) = exp(x̃) · exp(d) with
3∑

i=0

di

i!
≤ exp(d) ≤

3∑

i=0

di

i!
+ exp(d) · d4

4!
,(7)

and

exp(d) · d4

4!
≤ 0.2501d · d3

3!
< 5.8 · 10−19.

Thus (7) yields an approximation of good relative accuracy. Define

ỹ = (exp(x̃))
c = ∇(((ỹd/3 + ỹ)d/2 + ỹ)d)
y1 = ∇((c + (−c)εexp) + (−ỹ)εexp)
y = ∇(ỹ · E(Xint) + ((ỹ + y1) · E(Xint) + y1 · E(Xint)))

(8)

Since ỹ and d are nonnegative we obtain

c + ỹ ≤ ỹ ·
3∑

i=1

di

i!
+ ỹ ≤ ỹ · exp(d).
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Remember that floating point operations are used in a mathematical expression iff the latter is preceeded
by one of the three rounding symbols. All operations in the previous expression including the exponential
are therefore the exact ones. By (3), ∇((−c)εexp) ≤ −cεexp and ∇((−ỹ)εexp) ≤ −ỹεexp we obtain

y1 + ỹ ≤ (c + ỹ)(1− εexp) ≤ ỹ(1− εexp) exp(d) ≤ exp(x̃ + d),

and by (6),

y ≤ (E(Xint) + E(Xint))(y1 + ỹ) ≤ exp(Xint) · exp(x̃ + d) = exp(X).

Note that the order of execution, forced by the parantheses in (8), is such that roundoff errors are small. We
prove that in the appendix. Using the same ỹ as above and setting

c = ∆((((1 + 0.2501d)ỹ · d/3 + ỹ)d/2 + ỹ)d)
y1 = ∆((c + c · εexp) + ỹ · εexp)
y = ∆(ỹ · E(Xint) + ((ỹ + y1) · E(Xint) + y1 · E(Xint)))

(9)

we conclude in the same way as before

y ≤ exp(X) ≤ y.

Note that y, y are computed in double precision. Due to the correct rounding modes the above approach is
also suitable for arguments near -744 and 709, where exp(X) is near under- and overflow, respectively. Of
course, the value of α(X) increases for y, y in the gradual underflow range, that is for X <∼ −708.

The test set for the exponential function consists of ±V for V = linspace(−16, log10(700), 25), i.e. 48
million test points (see Section 4). For arguments x with |x| below 10−16, it is exp(x) ∈ [pred(1), 1] or
exp(x) ∈ [1, succ(1)], respectively, and this is computed by (8) and (9). The accuracy graph has already
been displayed, as an example, in Section 4.

The maximum error over all measured arguments is below 2eps. This accuracy is achieved by storing
exp(Xint) in two parts (see (6)). The median, average and maximum error α(x) over the test intervals is
displayed in Table 5.1.

median α(x) average α(x) maximum α(x)
−700 ≤ x ≤ −10−16 0.75 0.90 2.00
10−16 ≤ x ≤ 700 1.00 1.09 2.00

Table 5.1. Median, average and worst accuracy of exponential

A proof of the rigorous upper bound 2.07eps for the relative accuracy of the exponential is given in the
appendix.

6. Logarithm. With suitable case distinctions we may assume 0 < x ∈ IF. Define

x = f · 2e and

{
x̃ = 2−13 · 〈213f

〉

x̃ = 2−14 · 〈214f
〉

}
with

{
1 ≤ f < 2 for x ∈ [1, 2]
0.5 ≤ f < 1 otherwise

,

where 〈·〉 denotes rounding to the nearest integer. This splitting is to ensure numerical stability for x being
slightly larger than 1. It is x̃ ∈ Rlog and

log x = e log 2 + log x̃ + log(1 + (f − x̃)/x̃).(10)

We store the value log 2 in ”doubled” double precision by constants ϕ,ϕ, ϕ ∈ IF such that ϕ+ϕ < log 2 < ϕ+ϕ

and y ≈ log 2, ϕ, ϕ ≈ 2−53y. For f ≥ x̃ and d := ∇((f − x̃)/x̃) follows d ≥ 0 and

y1 = ∇(((((−d)/4 + 1/3)d− 0.5)d + 1)d) ≤ log(1 + d).(11)
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The rounding is correct because d ≥ 0. For ỹ = (log(x̃)) we obtain by (4) and (10),

∇(eϕ + (ỹ + (y1 + ((−εlog) · |ỹ|+ e · ϕ)))) ≤ log x.(12)

For f < x̃ we set d = ∆((x̃− f)/x̃) and

y1 := −∆((((d/4 + 1/3)d + 0.5)d + 1)d).

Then y1 ≤ log(1− d) and we use again (12). The upper bound is computed similarly using

log(1 + d) ≤ ∆(((((d/5− 0.25)d + 1/3)d− 0.5)d + 1)d) =: y2.(13)

The test set for the logarithm consists of V1 = [−300:30:−30 −25:5:−10−9:−1] and V2 = [1:9 10:5:25
30 : 30 : 300], covering small and large arguments. For arguments close to 1 we use in addition V3 =
linspace(−1, 1, 21). The test set is then Tlog = V1 ∪ V2 ∪ V3. The average and worst accuracy α(x) over the
test intervals is displayed in Table 6.1.

median α(x) average α(x) maximum α(x)
10−300 ≤ x ≤ 10−1 0.37 0.38 1.00
10−1 ≤ x ≤ 10 0.60 0.67 2.48
10 ≤ x ≤ 10300 0.37 0.38 1.00

Table 6.1. Median, average and worst accuracy of logarithm

Finally we mention that using log10(x) = log(x) · (1/ log(10)) we achieve a maximum error α(x) of 3 · eps
over the entire floating point range. Constants ϕ, ϕ ∈ IF with ϕ < 1/ log(10) < ϕ are computed in the
initialization procedure.

7. Trigonometric functions. One of the main problems for accurate bounds of the trigonometric
functions is the range reduction. The obvious formula y = x − 2kπ produces large cancellation errors such
that for |x|>∼1016 no correct digit can be expected. Only the backward error is of the order eps.

7.1. Range reduction. To achieve small forward errors we have to solve the problem of argument
reduction for large arguments. This is done as follows.1 For x ∈ IF let x = k · π/2 + y for k ∈ ZZ and
|y| < π/4. With suitable case distinctions it suffices to know bounds for y ∈ IR to solve the range reduction
problem. By 2/π · x = k + ỹ, ỹ = 2/π · y is the fractional part of 2/π · x. In addition, we need only the value
k mod 4. Let

x = ±1.m1m2 . . .m52 · 2e = ±
52∑

i=0

mi2e−i where m0 := 1,

and let

2/π = 0.p1p2 . . . =
∞∑

i=1

pi2−i, pi ∈ {0, 1}

denote the binary representation of 2/π. We replace 2/π by γ :=
β∑

i=α

pi2−i, where α := max(1, e − 53) and

β := min(1, e + 76). Then

c :=

(
α−1∑

i=1

pi2−i

)
· x = q · 2e−52−α+1 for some q ∈ ZZ,

1The author was told by J.-M. Muller that a similar method was developed by M. Payne and R. Hanek [20], see also [19].

Apparently, an (approximate) accurate range reduction is included in Matlab V 5.3f [18].
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and e− α− 51 ≥ 2 implies c ∈ ZZ and c ≡ 0 mod 4. That means replacing 2/π by γ retains the information
k mod 4. Furthermore,

d :=




∞∑

i=β+1

pi2−i


 · x < 2−β · 2e+1 ≤ 2−75.

Hence, when replacing 2/π by γ, the relative error in the fractional part ỹ is less than 2−75.

For the multiplication γ · x we split the mantissa of x into a 26-bit and 27-bit part, and the mantissa of
γ into five 26-bit parts. Then the product γ · x requires some 10 floating-point multiplications, which are
added in increasing order of magnitude. The product π/2 · ỹ is computed similarly.

Performing above computations with suitable roundings one obtains k mod 4 and very accurate bounds for
y. The necessary constants are precomoputed once, especially the binary expansion of 2/π with as many
bits as needed corresponding to the exponent range.

Summarizing, the range reduction produces sharp bounds for x∗, 0 ≤ x∗ < π/4 with sin x, cos x ∈ {± sin x∗,
± cos x∗}. In case x is near a root of sin x, or cos x, the transformation is performed in such way that
sin x, cos x ∈ {± sin x∗} in order to retain high accuracy.

7.2. Sine and Cosine. For 0 ≤ x < π/4 we set x̃ = 2−14 · b214xc and d := x− x̃. All those operations
are performed without rounding error. Then x̃ ∈ Rsin and x̃ ∈ Rcos, and 0 ≤ d < 2−14. For

s̃ = (sin(x̃)) and c̃ = (cos(x̃))

and using (3), sin(d) ≥ d(1− d2/6) and cos(d) ≥ 1− d2/2, we have

sin(x) = sin(x̃ + d) ≥ s̃(1− εsin)(1− d2/2) + c̃(1− εcos)d(1− d2/6)
= s̃ + ((s̃(−d2/2) + s̃(εsin(d2/2− 1))) + c̃(1− εcos)(d− d3/6)).

The lower bound for sin(x) is obtained by computing this expression with suitable setting of rounding modes.
The upper bound for sin(x) is computed along the same lines using sin(d) ≤ d(1 + (d2/20 − 1)d2/6) and
cos(d) ≤ 1 + (d2/12− 1)d2/2.

The cosine is treated much the same way. The point is that the final result is expressed as the sum of the
majorizing terms s̃, c̃ plus certain error terms, respectively.

The formulas above imply 1 ulp accuracy for |x| < 10−16. Otherwise, we generate test samples through the
entire exponent range, that is V1 = −16:10, and V2 = [10:5:25 30:30:300], and Tsin = Tcos = (±V1)∪ (±V2).

In addition we tested x = (k · π/2) for 1 ≤ k ≤ 2 · 109, and, as above, in all cases the accuracy was better
than 3 · eps. Median, average and worst case accuracy for sine and cosine over the test set is displayed in
Table 7.1. The data indicates that the accuracy for generic argument is much better than 3eps.

median/average/worst accuracy α(x)
sin cos

−10300 ≤ x ≤ −1010 0.99/1.00/2.50 0.99/1.00/2.49
−1010 ≤ x ≤ −10−16 1.15/1.19/2.50 0.75/0.82/2.49

10−16 ≤ x ≤ 1010 1.15/1.19/2.50 0.75/0.82/2.50
1010 ≤ x ≤ 10300 0.99/1.00/2.49 0.99/1.00/2.50

Table 7.1. Median, average and worst accuracy of sine and cosine

7.3. Tangent and cotangent. Using the argument reduction described in the Section 7.1 we calculate
for given x ∈ IF sharp bounds for some x∗ such that tan x, cot x ∈ {± tan x∗,±1/ tan x∗}, where 0 ≤ x∗ <
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π/4. For x̃ = 2−14 · b214x∗c and d = x∗ − x̃, all computed without error, it is x̃ ∈ Rtan and 0 ≤ d < 2−14.
Then

tan x∗ = tan(x̃ + d) =
tan x̃ + tan d

1− tan x̃ tan d
= tan x̃ + tan d

1 + tan2 x̃

1− tan x̃ tan d
.

Furthermore, d + 1
3d3 ≤ tan(d) ≤ d + 1

3d3 + ζ where 0 ≤ ζ ≤ tan(IV )(d)
4! d4 ≤ 9.3 · 10−18 · d. Putting things

together and using (3) produces an accuracy better than 2.5 · eps over all test cases in the entire floating
point range. For the same test set as for sin, cos, we obtained the results given in Table 7.2.

median/average/worst accuracy α(x)
tan cot

−10300 ≤ x ≤ −1010 1.49/1.52/2.98 1.49/1.52/2.90
−1010 ≤ x ≤ −10−16 0.85/0.92/3.01 1.09/1.13/2.92

10−16 ≤ x ≤ 1010 0.85/0.92/2.96 1.09/1.13/2.90
1010 ≤ x ≤ 10300 1.49/1.52/2.84 1.49/1.52/2.92

Table 7.2. Median, average and worst accuracy of tangent and cotangent

7.4. Secans and Cosecans. For secans and cosecans it suffices to use sec(x) = 1/ cos(x) and csc(x) =
1/ sin(x) to achieve high accuracy. For the same test set as for sin and cosine we obtain accuracy results
shon in Table 7.3.

median/average/worst accuracy α(x)
sec csc

−10300 ≤ x ≤ −1010 1.43/1.40/2.87 1.43/1.40/2.88
−1010 ≤ x ≤ −10−16 1.00/1.21/2.81 1.54/1.56/2.87

10−16 ≤ x ≤ 1010 1.00/1.21/2.86 1.54/1.56/2.86
1010 ≤ x ≤ 10300 1.43/1.40/2.88 1.43/1.40/2.86

Table 7.3. Median, average and worst accuracy of secans and cosecans

7.5. Inverse trigonometric functions. The inverse trigonometric functions are essentially based on
the inverse tangent. For negative x ∈ IF, we use atan(−x) = −atan(x), and for x ≥ 4,

atan(x) = π/2− atan(2/(x− 1/x))/2.(14)

Suppose x ∈ IF, 0 ≤ x < 4, and set

x̃ = 2−13 · b213xc, d = x− x̃.

Then x̃ ≤ x and 213x̃ ∈ IN, hence 0 ≤ x < 4 implies x̃ ∈ Ratan. Furthermore, 0 ≤ d < 2−13. For ỹ := atan(x̃)
define δ such that atan(x) = ỹ + δ. Then

x = x̃ + d = tan(ỹ + δ) = (tan ỹ + tan δ)/(1− tan ỹ tan δ),

and a calculation yields

δ = atan(E) with E =
d

1 + xx̃
.(15)

It is E5/5 < 5 · 10−17 · d. Hence,

E − E3/3 ≤ atan(E) ≤ E − E3/3 + E5/5

is of high relative accuracy, and combined with (15), (14) and (4) using suitable rounding modes it yields
sharp bounds over the entire floating point range. The correction formula (15) for atan(x̃) establishes the
good quality of the result.
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The arctangent is accurate enough such that acot(x) = atan(1/x) is sufficiently accurate over the entire
floating point range.

We use the test set Tatan = (±V1)∪ (±V2) for V1 = −16:10 and V2 = [10:5:25 30:30:300], and Tacot = Tatan.

The median, average and worst accuracy for the inverse tangent and cotangent are shown in Table 7.2.

median/average/worst accuracy α(x)
atan acot

−10300 ≤ x ≤ −1010 0.64/0.64/0.64 0.71/0.72/1.00
−1010 ≤ x ≤ −10−16 0.64/0.58/1.67 0.64/0.78/2.00

10−16 ≤ x ≤ 1010 0.64/0.58/1.67 0.64/0.78/2.00
1010 ≤ x ≤ 10300 0.64/0.64/0.64 0.71/0.72/1.00

Table 7.4. Median, average and worst accuracy atan and acot

For the arcsine we use

asin(x) = atan(x/
√

1− x2) for 0 ≤ x < 0.75,(16)

and for 0.75 ≤ x ≤ 1,

asin(x) = (π/2− atan(
√

e + e · x/x) where e = 1− x.(17)

For lower and upper bounds we use suitable rounding modes and double precision floating point bounds for
π/2, the latter being computed in the initialization procedure. For negative arguments, asin(−x) = −asin(x)
is used.

For the arccosine, formulas (16) and (17) are adapted to acos(x) = π/2− asin(x). For the test sets Tasin =
Tacos = ±linspace(−16, 0, 25) the median, average and worst accuracy of the inverse sine and cosine are
listed in Table 7.5.

median/average/worst accuracy α(x)
asin acos

−1025 ≤ x ≤ 10−16 0.83/0.94/2.50 0.64/0.65/1.50
10−16 ≤ x ≤ 1025 0.83/0.94/2.50 0.64/0.67/2.94

Table 7.5. Median, average and worst accuracy asin and acos

For the inverse secans we use asec(−x) = π − asec(x) for negative arguments, and for x ≥ 1 we use the
identities

asec(x) = atan
√

(x− 1)(x + 1) for 1 ≤ x ≤ 1.5
asec(x) = atan

√
x2 − 1 for 1.5 < x ≤ 1017.

Note that the difference x− 1 is executable without rounding error for 1 ≤ x ≤ 1.5. For the inverse cosecans
we use acsc(−x) = −acsc(x) for negative arguments, and for x ≥ 1 we use the identities

acsc(x) = atan(1/
√

(x− 1)(x + 1)) for 1 ≤ x ≤ 1.5
acsc(x) = atan(1/

√
x2 − 1) for 1.5 < x ≤ 1017

with suitable setting of the rounding mode.

For large arguments x > 1017, for both asec and acsc overflow problems are avoided by observing
√

x2 − 1 ∈
[pred(x), x].

The test sets for the inverse secans and cosecans are Tasec = Tacsc = (±V1)∪(±V2) for V1 = linspace(0, 10, 21)
and V2 = [10:5:25 30:30:300]. The computational results are displayed in Table 7.6.
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median/average/worst accuracy α(x)
asec acsc

−10300 ≤ x ≤ −1010 1.27/1.27/1.27 1.06/1.08/1.98
−1010 ≤ x ≤ −1 1.27/1.27/1.66 1.15/1.19/2.98

1 ≤ x ≤ 1010 0.64/0.68/2.49 1.15/1.19/2.99
1010 ≤ x ≤ 10300 0.64/0.64/0.64 1.06/1.08/1.98

Table 7.6. Median, average and worst accuracy asec and acsc

8. Hyperbolic functions. For large arguments x ≥ 8 we use sinh(x) = (ex − 1/ex)/2. To avoid
unneccessary overflow, we use for x ≥ 709

∇(e · exp(x− 1)/2) ≤ sinh(x) ≤ ∆(e · exp(x− 1)/2),(18)

where e, e ∈ IF are the closest floating point numbers with e < exp(1) < e. The bounds e, e are sufficiently
far away from exp(1) to cover the additional error caused by e−x in sinh(x) = (ex − e−x)/2. Both formulas
produce sufficiently accurate results, and by sinh(−x) = −sinh(x) the case 0 ≤ x < 8 remains. For x = f ·2e,
0.5 ≤ f < 1, b = 14 + min(e, 0) and x̃ = 2e−b · b2bfc we have x̃ ≤ x, and for d = x− x̃, 0 ≤ d < 2−11, where
d is computed without rounding error. Moreover,

sinh(x) = sinh(x̃ + d) = sinh(x̃)cosh(d) + cosh(x̃)sinh(d).

Then

d + d3/3! ≤ sinh(d) ≤ d + d3/3! + sinh(d) · d4/4!,
1 + d2/2 + d4/4! ≤ cosh(d) ≤ 1 + d2/2 + d4/4! + sinh(d) · d5/5!.

Furthermore x̃ ∈ Rsinh, and by (4) and s̃ = (sinh(x̃)),

∇(s̃(1− εsinh) ≤ sinh(x̃) ≤ ∆(s̃(1 + εsinh).

Also x̃ ∈ Rexp, and therefore for ẽ = (exp(x̃)), E = ∇(ẽ(1− εexp)), E = ∆(ẽ(1 + εexp)),

c := ∇(0.5(E + 1/E)) ≤ cosh(x̃) ≤ ∆(0.5(E + 1/E)) =: c.

To achieve high accuracy, we combine the formulas in the following way:

dd = ∇(d · d)
s = ∇(s̃ + ((s̃(−εsinh + (1− εsinh) · dd/2 · (1 + dd/12)) + c · d · dd/6) + c · d))

dd = ∆(d · d)
s = ∆(s̃ + ((s̃(εsinh + (1 + εsinh) · dd/2 · (1 + dd/2 · (1 + 4.8 · 10−8)))

+c · d · dd/6 · (1 + 6 · 10−8)) + c · d)),

where the error terms follow by d < 2−11. It follows s ≤ sinh(x) ≤ s with bounds s, s ∈ IF computed in
double precision.

For the hyperbolic cosine we obtain sufficiently accurate bounds by

0.5(E + 1/E) ≤ cosh(x) ≤ 0.5(E + 1/E) for x < 709,

where E ≤ exp(x) ≤ E are bounds computed by the algorithm for the exponential function described in
Section 5. For very large arguments x ≥ 709, we use a formula similar (18).

The test sets for the hyperbolic sine and cosine are Tsinh = Tcosh = ±linspace(−16, log10(700), 25). For
larger arguments the accuracy is similar to that of the exponential function. The results are listed in Table
8.1.
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median/average/worst accuracy α(x)
sinh cosh

−700 ≤ x ≤ −10−16 0.44/0.81/2.73 1.50/1.54/2.98
10−16 ≤ x ≤ 700 0.44/0.81/2.72 1.50/1.54/2.98

Table 8.1. Median, average and worst accuracy sinh and cosh

For the hyperbolic tangent we use

tanh(x) = 1 +
−2

exp(2x) + 1
for x ≥ 1,

where bounds for the exponential are computed according to Section 5. For 0 ≤ x < 1, let x̃ = 2−14 · b214xc
and d = x− x̃, where 0 ≤ d < 2−14. The Taylor series of tanh and d5 · 2/15 ≤ 1.910−18 · d yield

∇(d · (1 + (−d) · d/3)) ≤ tanh(d) ≤ ∆(d · (1 + ((−d) · d/3 + 1.9 · 10−18))).(19)

Furthermore,

tanh(x) = tanh(x̃ + d) =
tanh x̃ + tanh d

1 + tanh x̃ tanh d
= tanh x̃ + tanh d · 1− tanh2x̃

1 + tanh x̃ tanh d
.(20)

By the definition, x̃ ∈ Rtanh, so that (3) implies ỹ(1− εtanh) ≤ tanh(x̃) ≤ ỹ(1 + εtanh) for ỹ = (tanh(x̃)).
Combining this with (19) and (20) produces accurate bounds for the hyperbolic tangent.

As a test set we use Ttanh = (±V1) ∪ (±V2) where V1 = −16:10 and V2 = [10:5:25 30:30:300].

Computational results are listed in Table 8.2.

median/average/worst accuracy α(x)
−10300 ≤ x ≤ −1010 0.25/0.25/0.25
−1010 ≤ x ≤ −10−16 0.41/0.64/2.39

10−16 ≤ x ≤ 1010 0.41/0.64/2.36
1010 ≤ x ≤ 10300 0.25/0.25/0.25

Table 8.2. Median, average and worst accuracy tanh

The bounds for the hyperbolic tangent are accurate enough that coth(x) = 1/tanh(x) produces bounds of
sufficient accuracy for the hyperbolic cotangent. The test set is Tcoth = (±V1)∪(±V2) for V1 = [−300:30:−30
−25:5:−10] and V2 = −10:16, testing especially for small arguments. Results are listed in Table 8.3.

median/average/worst accuracy α(x)
−1016 ≤ x ≤ −10−10 0.50/0.83/2.92
−10−10 ≤ x ≤ −10−300 1.08/1.08/1.50
10−300 ≤ x ≤ 10−10 1.08/1.08/1.50
10−10 ≤ x ≤ 1016 0.50/0.83/2.94

Table 8.3. Median, average and worst accuracy coth

9. Inverse hyperbolic functions. Similar to the inverse trigonometric functions, the inverse hyper-
bolic functions are based on atanh, where special care is necessary for the inverse hyperbolic sine. We need
bounds for the function log1(x) := log(1 + x) for 0 ≤ x ≤ 1, which are realized by

4∑

i=1

(−1)i+1xi

i
≤ log(1 + x) ≤

5∑

i=1

(−1)i+1xi

i
(21)

Then

atanh(x) = log
(

1 +
2x

1− x

)
/2

is sufficiently accurate, where for x < 0.33 definition (21) is used, and otherwise the general logarithm as
described in Section 6. For the test set Tatanh = ±(−16 : 0) the accuracy results are listed in Table 9.1.
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median/average/worst accuracy α(x)
−1 ≤ x ≤ −10−16 1.00/1.11/2.52

10−16 ≤ x ≤ 1 1.00/1.11/2.52

Table 9.1. Median, average and worst accuracy atanh

The inverse hyperbolic cotangent is realized by coth(−x) = −coth(x) and

acoth(x) =

{
log

(
1 + 2

x−1

)
/2 for x < 4

atanh(1/x) otherwise

with suitable roundings. For the logarithm and inverse hyperbolic tangent the functions as described in
Section 6 and the previous paragraph are used, respectively.

The test set Tacoth = (±V1)∪ (±V2) with V1 = 0:10 and V2 = [10:5:25 30:30:300] yields the accuracy results
listed in Table 9.2.

median/average/worst accuracy α(x)
−10300 ≤ x ≤ −1010 1.08/1.10/2.00
−1010 ≤ x ≤ −1 1.50/1.54/3.00

1 ≤ x ≤ 1010 1.50/1.54/3.00
1010 ≤ x ≤ 10300 1.08/1.10/2.00

Table 9.2. Median, average and worst accuracy acoth

For the inverse hyperbolic sine we use asinh(−x) = −asinh(x) for negative arguments, and for x ≥ 0 we use
the following expansions:

asinh(x) =





log(2x + ζ1) for x > 1010

log(1 + (2x
√

x2 + 1 + 2x2))/2 for 0.35 < x ≤ 1010

log(1 + 2
√

x4 + x2 + 2x2)/2 for 10−9 < x ≤ 0.35
x− ζ2 · x for 0 ≤ x ≤ 10−9

(22)

where ζ1 = 2 · eps, ζ2 = 0 for an upper bound, and ζ1 = 0, ζ2 = 1.7 · 10−9 for a lower bound, respectively.
For the third case in (22) we use again the bounds for log(1 + x) as defined in (21).

For arguments less than 10−9 in absolute value, the bounds are adjacent floating point numbers and of least
significant bit accuracy. Otherwise we use the test set Tasinh = (±V1) ∪ (±V2), where V1 = −9 : 10 and
V2 = [10:5:25 30:30:300]. Results are given in Table 9.3.

median/average/worst accuracy α(x)
−10300 ≤ x ≤ −1010 0.37/0.37/1.00
−1010 ≤ x ≤ −10−9 0.57/0.76/2.52

10−9 ≤ x ≤ 1010 0.57/0.76/2.52
1010 ≤ x ≤ 10300 0.37/0.37/1.00

Table 9.3. Median, average and worst accuracy asinh

Finally, the inverse hyperbolic cosine is realized by:

acosh(x) =





log(2x + ζ1) for x > 1010

log(x +
√

x2 − 1) for 1.25 < x ≤ 1010

log(1 + E +
√

E(2 + E)) for 1 ≤ x ≤ 1.25,

where ζ1 = 2 · eps for an upper bound and ζ1 = 0 otherwise. Furthermore, E = x−1 in the third case, where
again (21) is used. Note that E is calculated without rounding error.

For the test set Tacosh = (0 : 10) ∪ [10:5:25 30:30:300] the median, average and worst case accuracy are
listed in Table 9.4.
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median/average/worst accuracy α(x)
1 ≤ x ≤ 1010 0.40/0.45/2.52

1010 ≤ x ≤ 10300 0.37/0.37/1.00

Table 9.4. Median, average and worst accuracy acosh

10. Rigorous standard functions for complex arguments. For x ∈ C, denote X :=<x, r>:= {z ∈
C : |z − x| ≤ r}. Rigorous inclusions of a disc Y=<y, s> in the complex plane containing {f(x) : x ∈ X} for
an elementary function f are obtained by the following results by Börsken [3]:

exp : y = exp(x), s = |y| · (exp(r)− 1)
log : y = log(x), s = − log(1− r/|x|)

sqrt : y = sqrt(x), s = |sqrt(|x| − r)− sqrt(|x|)|.

All other elementary functions can be expressed by those three. This reduces the problem of rigorous bounds
for the complex interval Y to the problem of rigorous bounds for f(x) where x ∈ C. This is straightforward
using the algorithms described in the previous sections.

We note that this is one approach for rigorous bounds. The radii of the bounds for exp, log and sqrt are
sharp. Overestimation (for example in terms of area of the resulting disc) is mainly due to the fact that the
image of the midpoint of the input disc X is used as the midpoint of the resulting disc Y . For the other
elementary functions the bounds are sometimes crude due to dependencies.

Obtaining sharp bounds for all standard functions in the complex case is quite involved. It has been solved
for input rectangles in the complex plane in [4] and [15], see also [16].

11. Conclusion. The presented approach for calculation of rigorous bounds for the elementary func-
tions is based on the result of built-in functions at a specific set of arguments. The bounds are very accurate
over the entire range of definition, they are fast to compute and the algorithms are suitable for vector input.
Moreover, all implementations can easily be adapted to other formats and/or other number systems.

The presented approach can be applied to non-elementary transcendental functions as well. For example,
rigorous bounds for the Gamma function can be obtained by the same approach of precomputed bounds for
Γ(x) and some Ψ(i)(x) and x out of a reference set combined with well known recurrence relations [2].

A sample implementation of the presented library in Matlab [18] is with INTLAB [22] freely available from
our homepage www.ti3.tu-harburg.de/rump/intlab/index.html for non-profit use. The execution time for
the pure Matlab implementation, however, suffers from interpretation overhead. Together with the newly
developed very fast interval arithmetic [21] and rigorous input/output [22], INTLAB is an interactive fast
interval toolbox entirely written in Matlab.

12. Appendix. Following we will give a rigorous proof that the relative accuracy of the exponential
function as described in Section 5 is bounded by 2.07eps. The proof uses standard techniques from floating
point error analysis. To make it not more technical we restrict the floating point input argument x to
x ≥ −666. This avoids impleasant discussions of underflow topics. In fact, we will see that with this minor
restriction (note that e−666 ≈ 10−290) we can leave out underflow from our negotiations.

We use standard notation from floating point error analysis [10, Chapter 3], especially

γn := n · eps/(1− n · eps) and (1 + Θk)(1 + Θj) = 1 + Θk+j(23)

for quantities |Θν | ≤ γν . Furthermore, we will see that for x ≥ −666 all operations will remain outside the
underflow range. Therefore, all operations satisfy for a, b ∈ IF,

©(a ◦ b) = (a ◦ b)(1 + Θ) for ◦ ∈ {+,−, ∗, /}, © ∈ {∇, ∆} and |Θ| ≤ eps.(24)
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Note that (cf.(1)) ©(a◦b) is the result of the floating point operation in use. For IEEE 754 double precision,
eps ≈ 2.22 · 10−16. Next we apply (23) and (24) and traditional techniques of floating point error analysis
to the exponential function as described in Section 5. Quantities Θν ,Θ′ν and so forth will always satisfy
|Θν | ≤ γν .

Observing ỹ ≥ 0 and d ≥ 0 yields

c = ỹ

(
3∑

i=1

di

i!

)
(1 + Θ6),

where the index in Θ6 results from a mere counting of operations in the Horner scheme evaluation of c as
defined in (7) [notice that division by 2 is exact]. In the same way we obtain

c = ỹ

(
3∑

i=1

di

i!
+ 0.2501

d4

4!

)
(1 + Θ10),

where the index 10 comes from the fact that 0.2501 /∈ IF. Putting things together and using 0 ≤ d < 2−14

we obtain

0 ≤ c ≤ c ≤ ϕ1 · ỹ with ϕ1 < 6.104 · 10−5.(25)

Furthermore

c− c ≤ ỹ

(
3∑

i=1

di

i!
+ 0.2501

d4

4!

)
(1 + γ10)− ỹ

(
3∑

i=1

di

i!

)
(1− γ6)

= ỹ[(γ6 + γ10)
3∑

i=1

di

i!
+ 0.2501

d4

4!
(1 + γ10)]

yields

c− c ≤ ϕ2 · ỹ with ϕ2 < 6.11 · 10−19.(26)

By (7) we have

y1 = ((c− c · εexp(1 + Θ))(1 + Θ′)− ỹ · εexp(1 + Θ′′))(1 + Θ′′′)
= c(1 + Θ2)− c · εexp(1 + Θ3)− ỹ · εexp(1 + Θ′2)

(27)

by using the fact that the negation is exact. In the same way we treat y1 and obtain

max(|y1|, |y1|) ≤ (c(1 + εexp) + ỹ · εexp)(1 + γ3),

and together with (25) and εexp from Table 3.1,

max(|y1|, |y1|) ≤ ϕ3 · ỹ with ϕ3 < 6.105 · 10−5.(28)

Exploring (27) and the similar formula for y1, and using (25), (26),

y1 − y1 ≤ c− c + εexp(c + c) + 2ỹ · εexp + γ3((c + c)(1 + εexp) + 2ỹ · εexp)
≤ ỹ(ϕ2 + 2ϕ1εexp + 2εexp + γ3(2ϕ1(1 + εexp) + 2εexp))
≤ ϕ4 · ỹ with ϕ4 < 2.524 · 10−16.

(29)

For the further analysis we split the computation of y, y into three parts, according to the parentheses:

s1 = ∇((ỹ + y1) · E)
s2 = ∇(s1 + y1 · E)
y = ∇(ỹE + s2)

s1 = ∆((ỹ + y1) · E)
s2 = ∆(s1 + y1 · E)
y = ∇(ỹE + s2),

(30)



16 SIEGFRIED M. RUMP

where indices (Xint) are omitted for better readability. Next we observe for i ≥ −666,

max(|Ei|, |Ei|) ≤ α · Ei with α < 1.06 · 10−16,

Ei − Ei ≤ β · Ei with β < 1.24 · 10−32,
(31)

which is taken from the precomputed data. By (30),

s1 = (ỹ + y1)E + Θ2(ỹ + |y1|)E, s1 = (ỹ + y1)E + Θ2(ỹ + |y1|)E,

such that by (28) and (31),

s1 − s1 ≤ ỹ(E − E) + |y1E|+ |y1E|+ 2γ2(ỹ + max(|y1|, |y1|)) ·max(|E|, |E|)
≤ ỹ(βE + 2ϕ3αE + 2γ2(1 + ϕ3) · αE)
≤ ϕ5ỹE with ϕ5 < 1.30 · 10−20.

(32)

Furthermore,

max(|s1|, |s1|) ≤ (ỹ + max(|y1|, |y1|)) ·max(|E|, |E|)(1 + γ2)
≤ ỹ(1 + ϕ3) · αE · (1 + γ2)
≤ ϕ6ỹE with ϕ6 < 1.07 · 10−16.

By (30),

s2 = s1 + y1E + Θ2(|s1|+ |y1|E), s2 = s1 + y1E + Θ2(|s1|+ |y1|E),

and as before we deduce

max(|s2|, |s2|) ≤ (max(|s1|, |s1|) + max(|y1|, |y1|) · E)(1 + γ2)
≤ ỹE(ϕ6 + ϕ3)(1 + γ2)
≤ ϕ7 · ỹE with ϕ7 < 6.11 · 10−5,

(33)

s2 − s2 ≤ s1 − s1 + (y1 − y1)E + γ2(max(|s1|, |s1|) + max(|y1|, |y1|) · E)
≤ ỹE(ϕ5 + ϕ4 + γ2(ϕ6 + ϕ3))
≤ ϕ8 · ỹE with ϕ8 < 2.525 · 10−16.

(34)

For an upper bound of α(x) as defined in (4) we need lower bounds for y and y. By (24), (30) and ỹ ≥ 0, E ≥ 0,

min(|y|, |y|) ≥ ỹE(1− γ2)− (1 + eps) ·max(|s2|, |s2|)
≥ ỹE(1− γ2 − (1 + eps)ϕ7)
≥ ϕ9 · ỹE with ϕ9 > 1− 6.12 · 10−5

(35)

For the upper bound of y − y,

y − y ≤ ∆(ỹE)−∇(ỹE) + s2 − s2 + eps · (∇(ỹE) + ∆(ỹE) + 2 ·max(|s2|, |s2|))
≤ ỹE(eps + ϕ8 + 2eps(1 + eps + ϕ7))
≤ ϕ10ỹE with ϕ10 < 9.187 · 10−16.

(36)

Finally, inserting the results into the definition (5) of α(x) yields

α(x) =
y − y

|y|+ |y| · eps−1 ≤ ϕ10ỹE

2ϕ9 · ỹE
· eps−1 < 4.594 · 10−16 · eps−1 < 2.069.

As mentioned at the beginning, these estimations are valid ignoring underflow. However, carefully checking
the operations, especially computation of s1 and s2 in (30), and observing the size of the involved quantities
for floating point x ≥ −666 shows that no underflow is possible. Henceforth, (24) is valid and we have the
following result.
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Theorem 12.1. Let x ∈ IF, x ≥ −666, and let y, y ∈ IF denote the inclusion of ex computed by (8) and (9).
Then the relative accuracy of the inclusion as defined in (5) satisfies

α(x) =
y − y

|y|+ |y| · eps
−1 < 2.07.

The smallest representable positive normalized floating point number in IEEE 754 double precision is
realmin ≈ 2.22 · 10−308. For y = ex below that number, that is for x <∼−708, the relative accuracy α(x)
increases with the ratio realmin/y. The question remains what happens for −708 ≤ x ≤ −666. To adapt
the proof of the preceding theorem to take care of underflow is quite technical, especially for x near −708.
Instead, we performed extensive numerical tests in the range −708 ≤ x ≤ −666. It seems that for x ≥ −707,
the maximum value for α(x) is still around 2, whereas for −708 ≤ x ≤ 707 it increases to 2.5.

Acknowledgement. The author wishes to thank the referees for detailed comments and stimulating
remarks.
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[11] O. Holzmann, B. Lang, and H. Schütt. Newton’s constant of gravitation and verified numerical quadrature. Reliable

Computing, 2(3):229–239, 1996.

[12] ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic, 1985.

[13] R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and Ch. Ullrich. PASCAL-XSC — Sprachbeschreibung mit Beispielen. Springer,

1991.

[14] R. Klatte, U. Kulisch, A. Wiethoff, C. Lawo, and M. Rauch. C-XSC A C++ Class Library for Extended Scientific

Computing. Springer, Berlin, 1993.

[15] W. Krämer. Inverse Standardfunktionen für reelle und komplexe Intervallargumente mit a priori Fehlerabschätzung für

beliebige Datenformate. Dissertation, Universität Karlsruhe, 1987.
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