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SELF-VALIDATING METHODS

SIEGFRIED M. RUMP∗

Abstract. We present some ideas on self-validating (SV) methods. This note is especially intended to give some background

for the articles in this special volume of LAA. It is not intended to be a survey of the big variety of all possible aspects of

SV-methods but rather a summary of some basic concepts. Especially, some common misconceptions are mentioned and

explored.

1. Introduction. The basic goals of self-validating methods are

i) to deliver rigorous results
ii) in a computing time not too far from a pure numerical algorithm
iii) including the proof of existence (and possibly uniqueness) of a solution.

The first goal means absolutely rigorous results, of the same nature as mathematical theorems. This includes
all possible conversion, rounding or algorithmic errors. In one word, SV-methods deliver true results. Other
names for SV-methods are found in the literature, for example verification methods or automatic result
verification. Text books include [11, 1, 6, 12], a number of methods and algorithms can be found in [8].
Many more references can be found in the cited literature.

Recently, a number of interesting mathematical problems have been solved with the aid of self-validating
methods. Those include the celebrated Kepler conjecture [5], minimal sets of the Jouanolou foliation [3],
existence of eigenvalues of the Sturm-Liouville problem below the essential spectrum [2], bounds for the
Feigenbaum constant [4], the double bubble conjecture [7], verification of chaos [10, 13], and others.

SV-methods apply to locally continuous problems. For example, the problem ”Is a given matrix singular?”
is in a certain sense ill-posed. For if the given matrix is indeed singular, then an arbitrary small perturbation
changes the answer from yes to no. In this case only exact computation could give a correct answer.

In order to meet the second objective, computations in SV-methods are performed in floating point with some
rounding error control (see Section 2.2). Such a computation may be considered as an exact computation
with slightly perturbed input data. In this sense an SV-method can never give an answer ”yes” to the above
question. But a given matrix can be identified very well - using pure floating point arithmetic with some
rounding error control - to be definitely not singular, thereby proving that a small neighbourhood of matrices
is nonsingular as well.

A simple example for such a proof is the following. Let a real or complex matrix A and some preconditioner
R, which could be an approximate inverse of A, be given. Then I − RA is small, and if it can be verified
that ρ(I −RA), the spectral radius, is less than one, then obviously A (as well as R) is nonsingular. This in
turn is true by Perron-Frobenius theory if, for example, |I −RA|x < x for some positive vector x. And this
can obviously be verified in pure floating point arithmetic with some rounding error control.

The above is a simple example of a self-validating method. Basically it is the verification of the assumptions
of certain mathematical theorems, the latter being formulated in a suitable way to be applicable for that
purpose. Then the assertions are true which include existence and possibly uniqueness of the solution of a
given problem within computed bounds. This is the third goal formulated above.

In the following we will sketch two major ingredients for SV-methods, namely, first, arithmetical issues in
order to guarantee a safe validation process of assumptions, and, second, more details and examples of such
theorems.
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2. Arithmetical issues. In order to meet the first and second objective formulated in the previous
section we need a fast way to compute rigorous error bounds. A simple way to do this is to keep track of
the intermediate errors of computations, and an elegant way to achieve this is interval arithmetic. This is
not the only way and, moreover, there is quite a potential for misuse. This is partly the reason for mixed
reputation of so-called ”interval methods”. We will come to that in the next section; here we already want
to stress that this has not much to do with self-validating methods.

We will sketch interval arithmetic in two steps, first the theoretical definition and second some practical
implementation issues. For better readability, all interval quantities will be in bold face.

2.1. Theoretical definition. A real interval X = [x1, x2] = {x ∈ IR : x1 ≤ x ≤ x2} is a segment
of the real line. We denote the set of real intervals by IIIR It may be represented by its end points or by
midpoint and radius. All operations between interval quantities satisfy the fundamental property of inclusion
isotonicity, namely

∀X ∀Y ∀x ∈ X ∀y ∈ Y : x ◦ y ∈ X ◦Y for ◦ ∈ {+,−, ·, /}.(1)

Operations with at least one interval operand are by definition interval operations, although using the same
symbol. It is easy to see that the set of all possible results x ◦ y for x ∈ X and y ∈ Y forms a closed interval
(for 0 not in a denominator interval), and the end points can be calculated by

X ◦Y = [min xi ◦ yj , max xi ◦ yj ].

It can also be seen that the only case where more than two operations are necessary is the multiplication
with both operands containing 0 as an inner point; in all other cases the two pairs of operands yielding the
lower and upper bound can be determined immediately or by case distinctions. So the theoretical overhead
for most operations is a factor of two.

The above definition has its pros and cons. A significant drawback is that intervals ”have no memory”. For
example, X−X will not result in zero unless X = [0, 0]. Moreover, for diam(X) := x2 − x1 it is easy to see
that

diam(X + Y) = diam(X−Y) = diam(X) + diam(Y).(2)

On the one hand, the result of X ± Y is narrowest possible, and this is always true when every interval
quantity occurs at most once in an expression; on the other hand it is clear that repeated occurence of an
interval quantity may imply significant overestimation of the result due to data dependencies. There are a
number of new and promising techniques to reduce overestimation using linear programming, special Taylor
expansions, Bernstein expansions, convex and quasi-convex envelopes and others.

Real numbers are naturally embedded into the space of intervals IIIR. In an expression, say f(x) : IR → IR,
every operation may be replaced by its corresponding interval operation. Call the resulting function F :
IIIR → IIIR. Then

∀x ∈ IR : f(x) ∈ F(x)

follows from the fundamental principle of inclusion isotonicity (1). Moreover, the argument x may be replaced
by an interval X, and again (1) implies the remarkable property that the range of a function given by an
arithmetic expression can be estimated without further knowledge of the function:

∀X ∈ IIIR : {f(x) : x ∈ X} ⊆ F(X).(3)

The derived function F is often called the natural interval extension of f . This principle can be extended
to elementary standard functions. A straightforward way to include their range is to use a truncated Taylor
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series; more subtle methods guarantee very sharp inclusions for the range of all elementary functions for
arbitrary (real or complex) input interval.

The set of interval vectors IIIRn and interval matrices IIMn,k(IR) is defined as Cartesian products of IIIR.
An interval matrix A∈ IIMn,k(IR) comprises of all real matrices A ∈ Mn,k(IR) with Aij ∈ Aij for all i, j.
Operations between such quantities derive naturally from the corresponding real operations. However, for
given interval matrices A ∈ IIMm,k(IR), B ∈ IIMk,n(IR), the set of all products A · B, A ∈ A, B ∈ B, is,
in general, no interval matrix. Therefore we define the interval matrix product A ·B to be the intersection
of all interval matrices C ∈ IIMm,n(IR) containing this set of all products. This is best possible to satisfy
inclusion isotonicity. The interval operation A ·B is not to be confused with the power set operation. One
easily shows that

A ·B ∈ IIMm,n(IR) with (A ·B)ij :=
k∑

ν=1

Aiν ·Bνj ,

using scalar interval addition and interval multiplication in the last expression. The definition extends to
non-interval factors using the natural embedding M(IR) ⊆ IIM(IR).

There are cases where the power set operation yields the same result as the interval operation, for example,
if A∈ IIMn(IR), x ∈ IRn. Indeed, ∀y ∈ A · x ∃A ∈ A with y = Ax. This is because each entry Aij is used
only once to compute A · x. On the other hand, for A ∈ Mn(IR),X ∈ IIIRn and y ∈ A ·X, there need not
exist some x ∈ X with y = Ax. Geometrically, the power set product {Ax : x ∈ X} is the linear image of
an n-dimensional rectangle, i.e. a parallel-epiped, whereas A ·X is the smallest enclosing interval vector. In
A ·X, components Xj are used several times. Such data dependencies are a major reason for overestimations.

Automatic differentiation is a well known way to compute gradients of functions given by means of an
arithmetical expression including elementary functions or, more general by some computational scheme.
Replacing every operation by its corresponding interval operation (as for the natural interval extension) leads
to inclusions of gradients in the same natural way. As before, the range may be overestimated, especially for
large input intervals, and SV-methods try to diminish this effect.

Definition of complex interval arithmetic works in a quite similar way, either by infimum/supremum rep-
resentation and partial ordering or, seemingly more appropriately, by midpoint/radius representation and
arithmetic. In contrast to the real case these two representations are not equivalent but have quite different
properties.

2.2. Rounding control. The result of arithmetic operations with floating point numbers is, in general,
not a floating point number. In order to meet inclusion isotonicity (1) for an interval arithmetic with floating
point endpoints and floating point operations we need rounding error control. This can be achieved by
multiplying the result by some 1 ± ε, ε denoting the relative rounding error unit. Since the establishment
of the IEEE 754 arithmetic standard, optimal floating point operations in a specifiable rounding mode are
available. For the following the important rounding modes are 5 towards −∞, and 4 towards +∞.

Frequently, a processor may be switched into such a rounding mode. This means that subsequent operations
are performed in that mode until the next switch. We use the notation that an arithmetic expression in
parentheses preceded by a rounding symbol implies that all operations are performed in floating point in
the specified rounding mode. Then for a set IF of floating point numbers, e.g. single or double precision
including ±∞, IEEE 754 defines

∀a, b ∈ IF ∀◦ ∈ {+,−, ·, /} 5(a ◦ b) = max{x ∈ IF : x ≤ a ◦ b} and
4(a ◦ b) = min{x ∈ IF : a ◦ b ≤ x}.(4)

Thus rounding is correct and best possible. Note that this is true for all floating point operands and
operations. It holds similarly for the square root. An immediate consequence is

∀a, b ∈ IF ∀◦ ∈ {+,−, ·, /} : 5(a ◦ b) = 4(a ◦ b) ⇔ a ◦ b ∈ IF,
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where the rightmost operation is the real operation (over IR). Establishing inequalities including rounding
modes is sometimes a little tricky. For example, for a, b, c ∈ IF,

5(b · c− a) ≤ b · c− a, 5(a + b · c) ≤ a + b · c and 5 (a + (−b) · c) ≤ a− b · c

using symmetry of IF, but 5(a − b · c) ≤ a − b · c need not be true for positive quantities a, b, c. However,
addition and multiplication can safely be staggered, and by repeatedly using (4) we obtain for matrices
A ∈ Mm,k(IF), B ∈ Mk,n(IF)

5(A ·B) ≤ A ·B ≤ 4(A ·B).(5)

Now the simple example in the previous section can already be formulated as a first self-validating application.
Given R,A ∈ Mn(IF) and 0 ≤ x ∈ IFn, define

C1 = 5(R ·A− I); C2 = 4(R ·A− I); C = max(|C1|, |C2|).

Then, using entrywise comparison, C1 ≤ R ·A− I ≤ C2 and |I −RA| ≤ C, such that

4(C · x) < x

implies R and A to be nonsingular.

A real and complex interval arithmetic can be implemented along the sketched lines . A simple access through
Matlab [9] is provided in the recent interval package INTLAB [14]. It is a library (toolbox) entirely written
in Matlab and thus easily portable to many platforms. It provides real and complex interval arithmetic
including standard functions, automatic differentiation, slopes and more. Due to the operator concept
available in Matlab it is easy to use in a readable code, close to mathematical notation. For instance, the
above example could be written as follows.

if( all( abs( eye(n)-R*intval(A) )*x < x ) )

disp(’R and A are nonsingular’)

end

Finally we mention that interval arithmetic may be used to compute with non floating point numbers.
For example, the transcendental number π may be replaced by a narrow interval P containing π. Then,
any computation involving P and possible conclusions are valid for replacing P by any number within P,
including π.

3. Common misuse - an example. Consider a standard numerical algorithm, for example Gaussian
elimination for the solution of a linear system of equations. It is true that when replacing every operation
by its corresponding interval operation, then the true solution will be included in the final result intervals.
This is called naive interval arithmetic. However, it is also most likely for a general linear system that the
inclusion will be extremely pessimistic and/or the algorithm will end prematurely because a pivot element
contains zero.

We will illustrate that with a simple example. Consider

A =




1
1

0

1
. . .

1




and b = 0.1 · (1), where (1) :=




1
1
...
1




.

The solution of the linear system Ax = b is obviously 0.1 times the first unit vector. We try to solve the
system by naive interval arithmetic. To see the effect we replace the right hand side by b = f · (1) where
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f := [0.1− 1e-10, 0.1 + 1e-10], in short notation f = 0.1± 10−10. Then forward substitution yields

X =




0.1 ± 1 · 10−10

0 ± 2 · 10−10

0 ± 4 · 10−10

0 ± 8 · 10−10

. . . . . .




and ∀b ∈ b it is A−1b ∈ X. Obviously diameters of X grow exponentially. On the other hand,

A−1 =




1
−1 1

0

−1 . . .

0
. . . 1

−1




and Y := A−1b =




0.1 ± 1 · 10−10

0 ± 2 · 10−10

0 ± 2 · 10−10

...
0 ± 2 · 10−10




,

and ∀b ∈ b it is A−1b ∈ Y. In other words, X is a true inclusion, but a vast overestimation as the result of
data dependencies. Mathematically, naive interval forward substitution is equivalent to

X = A−1 ·mid(b)± 〈A〉−1 · rad(b),

where 〈A〉 denotes Ostrowski’s comparison matrix (i.e. the matrix with diagonal entries |Aii| and off-diagonal
entries −|Aij |). In our example, the entries of 〈A〉−1 grow exponentially, and this is not untypical. Note that
the above behaviour occurs in exact computation, it has nothing to do with rounding errors but is purely an
effect of data dependencies. Also note that the real number 0.1 is purposely chosen to be not finitely exactly
representable in binary floating point. Therefore, in order to solve the original linear system, 0.1 has to be
replaced by a small interval with the same exponential overestimation. An INTLAB code to try this is the
following.

n = 20; A = tril(ones(n)); b = intval(’0.1’)*ones(n,1); X = b;

for i=1:n

X(i) = b(i) - A(i,1:i-1)*X(1:i-1);

end

X

A common misconception about what is sometimes called ”interval mathematics” is to suppose that the
above approach of naive interval arithmetic is all there is to self-validating methods. Almost the opposite
is true. SV-methods use the possibility to estimate the range of a function in order to verify validity of the
assumptions of certain theorems. Because for general data the above behaviour of overestimation is typical,
special care is necessary to formulate theorems in such a way to diminish this effect.

4. A simple SV-approach. One typical approach of SV-methods to find a zero of a function f :
IRn → IRn, described and used several times in the literature, is to transform an equation f(x) = 0 into a
fixed point equation g(x) = x and to use Brouwer’s fixed point theorem. For a nonsingular preconditioning
matrix R it is

f(x) = 0 ⇔ g(x) = x, where g(x) := x−R · f(x).

The function g may be considered as a (simplified) Newton operator. Now Brouwer’s fixed point theorem
and

g(X) ⊆ X for some X ∈ IIIRn imply ∃ x ∈ X : f(x) = 0,
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provided R is nonsingular. This approach uses the possibility (3) to estimate the range of a function. We
will illustrate the process with a simple example, a linear system Ax = b. An obvious preconditioner is an
approximate inverse R ≈ A−1. The equation f(x) = Ax− b = 0 is transformed into g(x) = x− R(Ax− b).
It follows that

g(X) ⊆ X for some X ∈ IIIRn and R being nonsingular implies ∃ x ∈ X : Ax = b.(6)

However, the application of (2) to interval vectors implies diam(g(X)) ≥ diam(X), and (6) is, in general,
never satisfied. One key point of self-validating methods is not to rearrange interval expressions but the
original expression they arose from. Here we want to verify g(X) ⊆ X for some X ∈ IIIRn. By definition it
is g(x) = Rb + (I −RA)x, and therefore

Rb + (I −RA)X ⊆ X ⇒ g(X) ⊆ X.(7)

If X is a small interval around Rb and R is a reasonably good approximation to the inverse of A, then I−RA

is small and (7) is likely to be satisfied. The left hand side of (7) is a simplified form of the frequently used
Krawczyk operator. For the assertion ∃ x ∈ X : Ax = b we still need to prove R to be nonsingular. This can
be achieved, for example, by the following lemma.

Lemma 4.1. Let Z,X ∈ IIIRn and C ∈ IIMn(IR) be given. Suppose (using interval operations)

Z + C ·X ⊆ int(X).(8)

Then every C ∈ C is convergent, i.e. ρ(C) < 1.

Proof. For every fixed Z ∈ Z, C ∈ C, the inclusion isotonicity (1) implies Z+C ·X ⊆ int(X). For the midpoint
vector m ∈ IRn and radius vector r ∈ IRn of X, it is X = [m − r,m + r] = {x ∈ IRn : m − r ≤ x ≤ m + r}
with entrywise comparisons. Therefore, using entrywise absolute values, it is C ·X = C ·m+[−|C| ·r, |C| ·r].
Hence, (8) implies m− r < Z + C ·m− |C| · r ≤ Z + C ·m + |C| · r < m + r, and therefore |C| · r < r. By
Perron-Frobenius theory, ρ(C) ≤ ρ(|C|) < 1.

This proof is a nice example of the use of matrix theory in the context of self-validating methods. This
combined with (7) yields a simple example of an SV-method.

Theorem 4.2. Let A,R ∈ Mn(IR), b ∈ IRn and X ∈ IIIRn be given. If

Rb + (I −RA)X ⊆ int(X),(9)

then R and A are nonsingular and the unique solution of Ax = b satisfies A−1b ∈ X.

Coming back to our objectives in Section 1, first the verification method covers all possible conversion,
rounding or algorithmic errors, in one word, it delivers true results. Second, measured computing time for
an algorithm in INTLAB based on Theorem 4.2 for a linear system with 500 unknowns on a 300 MHz Laptop
is 27 sec for the SV-method compared to 4.4 sec for the built-in linear system solver. Recent results by Oishi
reduce this computing time in many cases to about 10 seconds. This is a price to pay; on the other hand the
SV-method delivers safe information. The third objective is also met because Theorem 4.2 verifies existence
and uniqueness of the solution within the computed error bounds.

5. Self-validating methods. In the previous section we gave a simple example of an SV-method, and
there is much room for improvement. For example, it turns out to be superior to calculate an inclusion of
the difference to an approximate solution, a suitable inclusion X can be constructed, an interval iteration
may be applied and more. The main point is that condition (9) can be rigorously verified on a computer
using interval arithmetic as described in Section 2. Rigour includes that every computed result is correct.
If, due to an ill-conditioned matrix A or a poor preconditioner R, computation of rigorous error bounds is
not possible, then a corresponding message is given (rather than an erroneous result).
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We have still to comment on the factor 6 to 7 in computing time. For most cases, self-validating methods
are not intended to compete with or even replace traditional numerical methods. This also follows by
the principle of many SV-methods, that is that error bounds are constructed and verified based upon an
approximation. The raison d’être of SV-methods is to provide reasonably fast methods to deliver correct
results (within the computed bounds), for example to solve the mathematical problems mentioned in the
introduction or to give certainty if there is doubt about the accuracy of a numerical method.

Self-validating methods can be used to solve classes of problems by inserting interval data. For example,
given an interval matrix A ∈ IIMn(IR) and an interval right hand side b ∈ IIIRn, we may be interested in i)
is every A ∈ A nonsingular, and ii) what are bounds for

∑
(A,b) = {x ∈ IRn | ∃ A ∈ A ∃ b ∈ b : Ax = b}.

A surprisingly simple solution is based on Theorem 4.2.

Theorem 5.1. Let A ∈ IIMn(IR), R ∈ Mn(IR), b,X ∈ IIIRn be given. If

Rb + (I −RA)X ⊆ int(X),(10)

then R and every matrix A ∈ A is nonsingular, and
∑

(A,b) = {x ∈ IRn | ∃ A ∈ A ∃ b ∈ b : Ax = b} ⊆ X.

The Proof is a typical example for SV-methods and also surprisingly simple. Let fixed but arbitrary
A ∈ A, b ∈ b be given. Then (10) and inclusion isotonicity (1) imply (9), and Theorem 4.2 finishes the
proof.

Among other techniques this is a method for proving nonsingularity of every matrix within an interval
matrix, thus proving a lower bound for the componentwise distance of the midpoint matrix to the nearest
singular matrix weighted by the radius matrix. This problem is known to be NP-hard.

The basic approach of many SV-methods is computation of an approximate solution, local linearization and
estimation of linearization and numerical errors by means of suitable theorems the assumptions of which are
verified on the computer. Methods for infinite dimensional problems frequently also follow these lines using
in addition approximation by a finite dimensional problem together with estimation of the introduced error.

The assumptions to be verified are frequently the inclusion of sets like Y ⊆ int(x) or, more generally, the
verification of an inequality y < x. If y and x denote expressions and 4(y) < 5(x) is true (cf. Section 2.2),
this certainly implies y < x. This is a typical step in self-validating methods.

Quite different approaches are used in the promising area of unconstrained and constrained global opti-
mization. Here the capability of estimation of the range of a function over a certain domain proves to be
advantageous. Let a function f : X ⊆ IRn → IR to be minimized over X and a certain (possibly local)
minimum x̃ ∈ X be given. If for a subbox Y ⊆ X the range is estimated by some Z = [z1, z2] ⊇ f(Y)
and f(x̃) < z1, then Y does definitely not contain a global minimum. By exploiting this principle together
with clever new ways of estimating the range of functions certain subboxes can be excluded from further
investigation. This is in fact the biggest problem in global optimization, to be sure that a certain box does
not contain a minimizer.

6. Conclusion. This short summary of some basic ideas does not, by any means, cover the variety of
self-validating methods. Much more can be found in the literature and in this special issue.

SV-methods yield a number of promising results and ideas, but there are many open and untouched problems.
For example, algorithms for large, sparse problems are still in a premature status, there are good results
for ordinary and partial differential equations but SV-methods are still far from the cutting edge of what
may be solved by state-of-the-art numerical algorithms, the treatment of double or nearly double zeros of
nonlinear systems ought to be improved, and much more. For the time being, self-validating methods seem
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to be an interesting supplement to numerical algorithms, and more and more they have achieved a deserved
place in producing rigorous and undoubtedly correct results. And that is what we are after in mathematics.
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