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1 Introduction

For the toolbox INTLAB, entirely written in Matlab, new concepts have been
developed for very fast execution of interval operations to be used together with
the operator concept in Matlab. The new implementation of interval arith-
metic is strongly based on the use of BLAS routines. The operator concept of
Matlab offers the possibility of easy and user-friendly access to interval opera-
tions, real and complex interval elementary functions, automatic differentiation,
slopes, multiple-precision interval arithmetic and much more. Some of the new
concepts are presented. The paper focusses on implementation and mainly on
performance issues.

Hardware requirement for our approach is the IEEE 754 arithmetic stan-
dard (1985), which is implemented on many computers. If a special hardware
supporting interval arithmetic or even elementary interval standard functions
would be available, much of the below would be simpler and faster. However,
our challenge was to design fast and easy to use algorithms running on stan-
dard computers, without additional hardware requirements. Furthermore, the
algorithm should still be fast when written in Matlab.

Matlab (1997) is a widely used interactive programming environment for
scientific computations. At a first glance it seems to be impossible to realize
an operator concept in Matlab. This is because one of the main principles
in Matlab is that no type declarations of variables are necessary but, by the
interpretation principle, variables are automatically declared when used. Also,
there is no distinction between scalars, vectors and matrices, whether they are
real or complex; and a variable may frequently change its type.

The identification of new data types in Matlab works as follows. To define
a new type, say TYPE, together with operators working on it, a subdirectory
with name @TYPE is to be defined. This subdirectory has to be adjacent to the
search path, i.e. the parent directory of @TYPE is in the search path of Matlab,
whereas the subdirectory @TYPE itself is not in the search path.

Within the subdirectory @TYPE there has to be a routine named TYPE.
This is the constructor for the new data type. The core of that routine, e.g. for
TYPE being intval, could look as follows:

function A = intval(a)
A.inf = a;
A.sup = a;
A = class(A,’intval’)

The main statement is the last one, the ”class-constructor”, which tells the
Matlab system that the output is a variable of ”type” intval. From now
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on things are standard. Every operation involving a variable of the new data
type calls a corresponding function in the subdirectory @TYPE, in our example
intval, with fixed naming conventions. For example, names of operators are

+ plus
.* times
* mtimes
^ mpower
[ ... ] horzcat

and many more. The operator concepts also includes a user-defined display
routine. For example, the statement

A = intval(3.5);
5+A

calls the intval constructor in the first line: The variable A is now of type
intval. The second statement calls the function plus for arguments 5 and A,
and subsequently the intval display routine is called because the result of 5+A
is of type intval.

Summarizing this is a really nice and easy way to define and to use new
operators in Matlab. For further information see Matlab (1997).

2 Performance issues

The nice working in Matlab is, there may be a severe interpretation time penalty
when using low-level operators. Matlab is a Matrix Laboratory, and extensive use
of scalar operators causes much interpretation overhead. Consider the following
four ways of writing a matrix multiplication in Matlab, timing for multiplication
of two randomly generated 200× 200 matrices included.

n = 200; A = rand(n); B = rand(n);

C = zeros(n);
tic

for i=1:n
for j=1:n

for k=1:n
C(i,j) = C(i,j) + A(i,k)*B(k,j);

end
end

end
toc



C = zeros(n);
tic

for i=1:n
for j=1:n

C(i,j) = C(i,j) + A(i,:)*B(:,j);
end

end
toc

C = zeros(n);
tic

for i=1:n
C(i,:) = C(i,:) + A(i,:)*B;

end
toc

C = zeros(n);
tic

C = A*B;
toc

The following table for a 300 MHz Pentium I Laptop shows the interpretation
overhead in Mflop.

3 loops 2 loops 1 loop no loop

Mflop 0.05 1.9 36 44

Table 1. Interpretation overhead

The table clearly shows that minimization of interpretation overhead is manda-
tory if the system shall not be restricted to toy problems. In the following,
consider interval matrix multiplication as our model problem.

Current implementations of interval matrix operations mostly use a top-
down 3-loop approach, similar to the first one presented before. According to
the above table this is much too slow in an interpretative system. However,
even when using programming languages with highly optimized compilers such
as Fortran or C, this top-down approach is very expensive in terms of computing
time: The most inner loop is an interval operation, thus containing if-statements
and case-distinctions. Such code can hardly be optimized by a compiler.

The effect of lack of optimization, of different sequencing of the loops and
more subtle methods like unrolled loops shall be demonstrated in the following.
For the moment, we restrict ourselve to pure floating point computations, no
additional slow-down by interval computations present.

The first experiment is a scalar product c = xT y for x, y ∈ Rn for dimension
n = 1000. The traditional loop is compared to an unrolled loop with five terms:

for ( i=0, c=0; i<n; i++)
c += x[i]*y[i] + x[i+1]*y[i+1] + x[i+2]*y[i+2]

+ x[i+3]*y[i+3] + x[i+4]*y[i+4];



The performance rates in Mflops for the standard loop and the unrolled loop,
both without and with compiler optimization on a RS 6000 workstation are as
follows.

Performance [Mflop] standard loop unrolled loop

w/o optimization 4.3 6.9

with optimization 12.7 19.9

We see quite some increase in performance by the unrolled loops and, as we
expect, by the optimization of the compiler. Both is not possible for the standard
implementation of interval matrix multiplication; in other words, performance
is basically limited to the smallest number in the above table.

Another standard method for improving performance is the sequence of loops
in matrix multiplication. Any of the six possibilities ijk, ikj, ..., kji computes
the correct matrix product, however, with quite different performance. The
following table shows performance for the six possibilities, both without and
with compiler optimization.

Performance [Mflop] jki kji ikj kij ijk jik

w/o optimization 2.1 2.1 2.9 2.9 2.9 2.9

with optimization 5.8 5.4 27 25 62 62

BLAS 3 100

The big differences in performance are mainly due to memory access and cache
optimization. The last line, with another improvement of a factor 1.5 compared
to the best possible achieved so far, gives the Basic Linear Algebra Subroutines
(BLAS) performance. The BLAS library (Dongarra et al. 1990) is available for
almost every computer today. The ingenious idea of BLAS was that only the
function headers are specified, whereas the implementation for each individual
computer is performed by the manufacturer.

The numbers presented show how high-level routines and, whereever possible,
using BLAS improves performance significantly.

3 Interval arithmetic

The product of two point matrices is easy to implement using BLAS. We use
a routine setround(m) with the property that after the call setround(-1) the
rounding mode is permanently switched downwards, i.e. every following oper-
ation is performed with rounding downwards according to the IEEE 754 stan-
dard (1985). This remains true until the next call of setround. Accordingly,
setround(m) shall switch the rounding upwards for m=1, and to nearest for
m=0.

Then the product of two point matrices A ∈ Mn,k(F), B ∈ Mk,m(F),F de-
noting the set of double precision floating point numbers, can be realized as
follows.



setround(-1)
C.inf = A*B;
setround(1)
C.sup = A*B;
setround(0)

It follows

C.inf <= A*B <= C.sup

for comparison in a componentwise sense. Note that the proof is a successive
use of the fact that, in case rounding is switched downwards, the sum and the
product of two floating point numbers yields a floating point result definitely
being less than or equal to the correct (real) result, whereas the floating point
result is definitely greater than or equal to the exact result for rounding switched
upwards.

Note that this approach does not necessarily work for other composed oper-
ations. For example, it is not correct for triple matrix products. Similarly, the
product of a point matrix A ∈ Mn,k(F) and an interval matrix B ∈ IMk,m(F)
cannot be computed by A*B.inf and A*B.sup. In Rump (1999a) a method was
proposed for fast computation of A∗B using BLAS. The idea is the intermediate
use of midpoint-radius representation.

setround(1)
Bmid = B.inf + 0.5*(B.sup-B.inf);
Brad = Bmid - B.inf;
setround(-1)
C1 = A * Bmid;
setround(1)
C2 = A * Bmid;
Cmid = C1 + 0.5*(C2-C1);
Crad = ( Cmid - C1 ) + abs(A) * Brad;
setround(-1)
C.inf = Cmid - Crad;
setround(1)
C.sup = Cmid + Crad;

Algorithm 1. Point matrix times interval matrix

We mention that Algorithm 1 requires quite some additional memory. This
could be reduced - at the expense of readability. If memory is a major issue,
we would suggest to call a C or Fortran implementation, which may also avoid
copying of matrices.

The first three lines calculate a matrix pair <Bmid,Brad> with the property

∀B ∈ B : Bmid− Brad ≤ B ≤ Bmid + Brad

for the comparision in the componentwise sense. This elegant way of trans-
forming infimum-supremum representation into midpoint-radius representation



in lines 1...3 is due to Oishi (1998). The next statements compute first an in-
clusion [C1,C2] of A*Bmid, and then take care of the radius Brad. The number
of operations adds to 3n3 additions and 3n3 multiplications. This is 1.5 times
more operations than necessary by the traditional implementation because the
product of a floating point number and an interval can be performed with two
multiplications (and a case distinction), and the interval addition requires two
additions anyway. However, the following timings will demonstrate the vast
improvement in performance of the new approach.

To our knowledge, there was only attempt to improve on the traditional im-
plementation of interval matrix operations, namely the BIAS approach (Knüppel
1994). The following table gives the performance in ”Miops” for multiplication
of an n × n point times an n × n interval matrix for the traditional approach,
for the BIAS approach and the above Algorithm 1. Timing is on a Convex SPP
200. Here the the matrix multiplication is counted as 2n3 interval operations,
and a Miop are 1 Million interval operations.

Performance [Miops] n=100 n=200 n=500 n=1000

traditional 6.4 6.4 3.5 3.5

BIAS 51 49 19 19

Algorithm 1 95 219 142 162

Table 2. Performance for point matrix times interval matrix

Obviously there is an immense improvement of performance by the new ap-
proach using BLAS routines. The decrease of performance of the BIAS library
is due to cache misses. It could be improved by implementation of blocked algo-
rithms, whereas the new Algorithm 1 uses BLAS, and therefore it uses blocked
algorithms without effort on the part of the user. The varying performance of
the new Algorithm 1 for different dimensions is also due to favourable and less
favourable block sizes.

Another advantage of Algorithm 1 is that parallelization comes free of work,
linking the parallel BLAS does the job. The BIAS approach can be parallelized
as well, however, this has to be done by the user. The Convex SPP 200 allows
us to use 4 processors, and performance data is as follows (for the traditional
approach and the BIAS approach performance does not change unless special
algorithms would be implemented).

Performance [Miops] n=100 n=200 n=500 n=1000

Algorithm 1 142 551 397 526

Table 3. Parallel performance for point matrix times interval matrix
using 4 processors

Comparing with the last row of Table 2 shows that the gain in performance is,
for larger values of n, not too far from the magic factor 4. Note that this was
achieved by merely linking the parallel BLAS library.

For the product of two interval matrices we also use an intermediate mid-
point-radius representation. The performance numbers are even more impressing



than before. However, there is a drawback to this, namely, that midpoint-
radius product causes an overestimation of the true result whereas the infimum-
supremum representation yields the sharp inclusion of the product of two interval
matrices.

This would be a showstopper if overestimation could not be bounded. How-
ever, it can be shown that overestimation is globally bounded by a constant
(Rump 1999a), and it is small if the input intervals are small. More precisely,
define the relative precision prec(A) of an interval A by

prec(A) := min
(

rad(A)
|mid(A)| , 1

)
.

Let interval matrices A and B be given such that prec(Aij) ≤ e and prec(Bij) ≤
f for all i, j. Let C denote the result obtained by midpoint-radius arithmetic,
and A∗B denote the narrowest interval matrix containing the power set product.
Then the overestimation by midpoint-radius arithmetic satisfies

rad(C)ij

rad(A ∗B)ij
≤ 1 +

e · f
e + f

≤ 1.5.

for all indices i, j. For example, input intervals with relative precision 1% suffer
an overestimation of not more than 0.5% in radius.

If this overestimation is critical, the traditional interval matrix multiplica-
tion or some variant (Rump 1999a) may be used. Otherwise the following per-
formance data apply. Again, matrix multiplication is counted as 2n3 interval
operations.

Performance [Miops] n=100 n=200 n=500 n=1000

traditional 4.7 4.6 2.8 2.8

BIAS 4.6 4.5 2.9 2.8

adapted Algorithm 1 91 94 76 99

adapted Algorithm 1 parallel 95 145 269 334

Table 4. Performance for interval matrix times interval matrix

Implementation of complex vector and matrix operations is not difficult. For
various reasons we use circular arithmetic (midpoint-radius representation) in
INTLAB. The implementation in Matlab is straightforward because real vector
and matrix operations are already available. Thus the new approach also solves
the problem of interpretation overhead.

Moreover, the above approach also applies to sparse matrices. As sparse
matrices are already an intrinsic data type in Matlab, an implementation for
sparse interval matrices comes without additional work.

A first simple application example is the check of nonsingularity of a given
interval matrix A ∈ IMn(F). A well-known sufficient criterion for A ∈ IMn(F)
being nonsingular is that for some matrix R and some interval vector X

(I −RA) ·X ⊆ int(X)

is satisfied. A simple implementation of this criterion is



R = inv(A.mid);
C = eye(n) - R*A;
X = infsup(-1,1)*ones(n,1);
Y = C*X;
res = all( ( X.inf<Y.inf ) & ( Y.sup<X.sup ) );

If res=1 after execution, every real matrix enclosed in the interval matrix
A is proved to be nonsingular. The above is only an example for ease of use.

4 Nonlinear problems

For application of verification methods to nonlinear problems especially the in-
clusion of derivatives of functions over a range is needed as well as interval
elementary functions. Gradients can be computed using an operator concept
and automatic differentiation (Rall 1981). The implementation is simplified by
the vector and matrix operations in Matlab.

When defining a function, a user friendly way would use the same source code
for evaluation of the function at some real or complex floating point number, for
the evaluation of the range of the function, for gradient information or for the
gradient of the function over a certain range. This causes a specific problem.
Consider the sample function

f(x) = sin(πx).

A Matlab implementation is

function y = f(x)
y = sin(pi*x);

There are no problems when inserting a (real or complex) floating point
number x, a gradient value or a slope value. Problems occur when inserting an
interval X. In this case the user may want to use an inclusion of the irrational
number π in the definition of the function. Otherwise a call y = f(intval(1))
may produce an interval not containing zero because the (intrinsic) floating point
approximation pi of π is used instead. A redefinition

function y = f(x)
Pi = midrad(pi,1e-16);
y = sin(Pi*x);

would calculate a correct inclusion Pi for π and deliver a correct inclusion
for zero when calling f(intval(1)). However, the simple call f(1) would yield
an unexpected interval answer. Obviously, the type of the result shall depend
on the type of the input argument x: For interval input the computation should
be performed in interval arithmetic with correct interval data for π, for floating
point input the Matlab internal approximation pi is sufficient and a floating
point approximate result should be delivered.

The solution to the dilemma are two functions to adjust the type of a con-
stant. Consider



function y = f(x)
Pi = typeadj( midrad(pi,1e-16) , typeof(x) );
y = sin(Pi*x);

In this implementation typeof(x) returns type information about the input
parameter x. Especially, this is intval for interval input and double for floating
point input. The statement typeadj(a,type) adjusts the type of the input a to
the type type. Especially, in case type is double, the midpoint of a is returned.
This allows to write one source code for various applications, from pure floating
point computation to complex interval gradients and others.

The above implementation requires rigorous standard functions. This has
been indeed a major task in previous approaches. Following we present a sim-
ple method to implement rigorous standard functions over real and complex
intervals.

5 Standard functions

For single precision it is not difficult to test all values of a built-in standard
function for their accuracy and to add a suitable error margin. For double
precision this is not possible.

Usually the built-in standard functions are very accurate, and it is seldom
that a value is not correctly rounded to least significant bit accuracy. In fact,
we rarely found cases where the computed result is off by more than one bit -
at least for arguments in a reasonable range. However, there is no proof for the
accuracy of the results, and in order to achieve truly rigorous results a guess of
accuracy is not sufficient.

The idea is to use a table approach together with some correction formulas.
Take, for example, the exponential. We suppose that multiple precision functions
F , F are available such that for a given floating point number x ∈ F it is

F (x) ≤ ex ≤ F (x)

with high accuracy. Define

Rexp := {±(0, 1, . . . , 214 − 1) · 2−14} ⊆ F
as a reference set for the exponential. For given x ∈ F define y = exp2(x) ∈ F to
be the floating approximation computed by the given (floating point) exponential
function. Then the error of such approximations over the reference set is defined
as follows.

ε := max
x ∈ Rexp

{(y − F (x))/|y| : y = exp2(x)},
ε := max

x ∈ Rexp

{(F (x)− y)/|y| : y = exp2(x)}.

A short computation yields

y − ε · |y| ≤ ex ≤ y + ε · |y|.
Now lower and upper bounds for the left hand side and right hand side, respec-
tively, are computable for every x ∈ Rexp by



ys = exp(x);
setround(-1)
y.inf = ys + (-eps)*abs(ys);
setround(1)
y.sup = ys + eps*abs(ys);

with the property

y.inf ≤ ex ≤ y.sup ∀x ∈ Rexp

where eps:= εexp = max(ε, ε). The advantage is that F (x), F (x) for all x ∈
Rexp and εexp have to be computed only once. From then on the constant
εexp is a system constant to be used in the further computations. For general
X ∈ F inclusions of the exponential are computed as follows. In an initialization
procedure we compute floating point numbers Eν , Eν , Eν with

Eν + Eν ≤ eν ≤ Eν + Eν for ν ∈ Z,−744 ≤ ν ≤ 709.

For x ≤ −745 or x ≥ 710, ex is outside the double precision floating point range.
Otherwise for X ∈ F, split X := Xint + x with Xint = sign(X) · b|X|c,−744 ≤
Xint ≤ 709, and −1 < x < 1. Furthermore, set

x̃ = 2−14 · b214xc
d = x− x̃.

Then x̃ has no more than 14 leading bits in its binary representation and
x̃ ∈ Rexp. This implies

ex = ex̃ · ed with
3∑

i=0

di

i!
≤ ed ≤

3∑

i=0

di

i!
+ e · d4

4!
.

By the choice of the reference set it is 0 ≤ d < 2−14 and

e · d4

4!
≤ 0.68d · d3

3!
< 1.6 · 10−18.

Putting things together yields rigorous and very sharp bounds for the value of
the exponential over the entire floating point range.

Corresponding reference sets and formulas for splitting arguments have been
developed for all elementary standard functions. A careful implementation of the
formulas yields standard functions of very high accuracy, in fact always better
than 3 ulp. For example, the relative error for the exponential, tested over some
50 million test cases, looks as follows. Here crosses depict the maximum relative
error of the lower and upper bounds against each other over a certain domain,
whereas the circles depict the average error.
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Graph 1. Accuracy exponential

The maximum error is not more than 2 ulps, whereas the average relative error
is about 1 ulp. Even for the trigonometric functions, where problems with
argument reduction may cause significant cancellation errors, high accuracy is
achieved. For example, the error plot for the sine is as follows.
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Graph 2. Accuracy sine

The test set for the sine comprises of some 100 million floating point numbers
in the range from −10300 to 10300.

Guaranteed accuracy does not come free of cost, especially when the entire
implementation is performed in Matlab itself, suffering from interpretation over-



head. For the sine of a single floating point number the verified computation
takes about 700 times the computing of an approximate computation. For vec-
tor input interpretation overhead decreases. For example, vectors of length 100
take about 200 times more computing for the verified sine.

The computing time for trigonometric functions suffers from argument re-
duction. In a C- or Fortran implementation the factor would be much smaller.
Other functions behave better. In the following table we list timings for exp and
atan on a 300 MHz Pentium I Laptop for input vector x with n components.

time n=1 n=100

[msec] approx./verified/ratio approx./verified/ratio

exp 0.03 / 3.9 / 152 0.22 / 7.7 / 35

atan 0.02 / 3.5 / 164 0.10 / 6.4 / 58

The table shows that computing time for verified computation only doubles when
going from one double number to a vector with 100 components. This is due to
interpretation overhead.

For the other standard functions similar considerations apply. The formulas
must be developed carefully in order to maintain the anticipated accuracy of 3
ulp. This has been performed for exp, log, log10, the trigonometric functions
and their inverse functions, and for the hyperbolic functions and their inverses.
All are included in the new version INTLAB.

For standard functions over rectangular intervals, efficient and accurate algo-
rithms have been developed by Braune (1987) and Krämer (1987). For complex
interval functions in our circular arithmetic we use the results by Börsken (1978).
Denote for given a ∈ C, 0 ≤ r ∈ R

A =< a, r >:= {z ∈ C : |z − a| ≤ r}.
Then Börsken defines the midpoint of f(A) to be f(a) and shows

exp(< a, r >) ⊆ < exp(a), | exp(a)| · (exp(r)− 1) >
log(< a, r >) ⊆ < log(a),− log(1− r/|a|) >

sqrt(< a, r >) ⊆ < sqrt(a), |
√
|a| − r −

√
|a|| > .

These bounds are sharp for certain arguments, in other cases there may be quite
some overestimation due to the choice of the midpoint. However, other formulas
defining a different and more optimized midpoint with respect to, for example,
the area of the inclusion may become quite involved. To our knowledge nothing
is known in this direction, a research opportunity.

With those three standard function being available, all other mentioned ele-
mentary functions can be expressed by standard formulas. Doing this, another
problem occurs. Complex standard functions are usually defined by some main
value. This causes discontinuities. For example,

√−4 = +2i, but
√−4 + εi for

small ε < 0 yields a value near −2i. This causes problems when an interval
approaches the negative real axis and f(X), for a complex interval X, is defined
to enclose the result of the usual power set operation

f(X) := {f(x) : x ∈ X}.



For the moment, we choose to use the above formulas. This implies that for a
given function f the following weaker statement is true:

Y = f(x) ⇒ ∀x ∈ X ∃y ∈ Y : f−1(y) = x.

There is also space for future development and research. We note that for
complex rectangles individual algorithms for each elementary standard function
have been given in Braune (1987) and Krämer (1987), which cover also the above
problem.

6 Long arithmetic

The above approach for the definition of standard functions requires some multi-
ple precision arithmetic with error bounds. There are a number of such packages
available, for example this of Aberth and Schaefer (1992), only to mention one.
However, we choose to write a package in Matlab in order to maintain best
possible portability.

The data type long has the structure

C.sign in {-1,1}
C.mantissa in 0 .. beta-1
C.exponent representable integer ( -2^52+1 .. 2^52-1 )
C.error nonnegative double, stored by C.error.mant and

C.error.exp

representing the long number

C.sign ·
n∑

ν=1

C.mantissaν · βC.exponent−ν ,

where C.mantissa is an array of length n corresponding to the precision in use.
The field C.error is optional; if specified it represents the number

C.error.mant · βC.error.exp,

where both C.error.mant and C.error.exp are nonnegative double numbers.
It is interpreted as the radius of an interval with the above midpoint. Therefore
the radius is stored in only two double numbers, whereas the midpoint is stored
in an array of double numbers. The basis β is a system constant. It is a power
of 2; usually 225 is used.

The definition of multiple precision arithmetic is standard. For the current
implementation we have two additional difficulties. First, it is no integer arith-
metic but a long floating point arithmetic (to base β). This makes addition and
subtraction more involved. Secondly, all long routines are written to support
vector input in a vectorized computation. Treating vectors one component after
the other causes a significant interpretation overhead. For example, given two
long vectors X and Y of length 100 and precision of 500 decimal places, the
calculation of the 100 products X(i) ∗ Y (i) by



for i=1:100, Z(i) = X(i)*Y(i); end

takes 25.9 sec, whereas the vectorized multiplication

Z = X.*Y;

takes only 0.6 sec on a 300 MHz Pentium I Laptop. Otherwise, the vectorized
operations in Matlab can be used. For example, the multiplication of multiple
precision numbers is a convolution and already built into Matlab.

7 An example of INTLAB code

Finally we give an example of INTLAB code to demonstrate its ease of use and
readability. We print the full code to compute inclusions of multiple eigenvalues
and corresponding invariant subspaces for a given (real or complex, not neces-
sarily symmetric or Hermitian) matrix. We also give the full code how to call
the algorithm. So the following is executable code in INTLAB under Matlab.

function [L,X] = VerifyEig(A,lambda,xs)
%VERIFYEIG Verification of eigencluster near (lamda,xs)
%
% [L,X] = VerifyEig(A,lambda,xs)
%
%Input: an eigenvalue cluster near lambda, where xs(:,i), i=1:k
% is an approximation to the corresponding invariant subspace.
%
%On output, L contains (at least) k eigenvalues of A, and X
% includes a base for the corresonding invariant subspace.
%By principle, L is a complex interval.
%

% written 07/15/99 S.M. Rump
%

[n k] = size(xs);

[dummy, index] = sort(sum(abs(xs),2)); % choose normalization
% part

u = index(1:n-k);
v = index(n-k+1:n);
midA = mid(A);

% one floating point iteration
R = midA - lambda*speye(n);
R(:,v) = -xs;
y = R\(midA*xs-lambda*xs);
xs(u,:) = xs(u,:) - y(u,:);
lambda = lambda - sum(diag(y(v,:)))/k;



R = midA - lambda*speye(n);
R(:,v) = -xs;
R = inv( R );
C = A - intval(lambda)*speye(n);
Z = - R * ( C * xs );
C(:,v) = -xs;
C = speye(n) - R * C;
Y = Z;
Eps = 0.1*abs(Y)*hull(-1,1) + midrad(0,realmin);
m = 0;
mmax = 15 * ( sum(sum(abs(Z(v,:))>.1)) + 1 );
ready = 0;
while ( ~ready ) & ( m<mmax ) & ( ~any(isnan(Y(:))) )

m = m+1;
X = Y + Eps; % epsilon inflation
XX = X;
XX(v,:) = 0;
Y = Z + C*X + R*(XX*X(v,:));
ready = all(all(in0(Y,X)));

end

if ready
M = abs(Y(v,:)); % eigenvalue correction
[Evec,Eval] = eig(M);
[rho,index] = max(abs(diag(Eval)));
Perronx = abs(Evec(:,index));
setround(1);
rad = max( ( M*Perronx ) ./ Perronx ); % upper bound for

% Perron root
setround(0)
L = tocmplx(midrad(lambda,rad));
Y(v,:) = 0;
X = xs + Y;

else
disp(’no inclusion achieved’)
X = NaN*ones(size(xs));
L = NaN;

end

Algorithm 2. Rigorous inclusion of multiple eigenvalues

The algorithms follows Rump (2000) to be published in Linear Algebra and its
Applications. It is based on the following.

For K ∈ {R,C} denote by A ∈ Mn(K) an n× n matrix, by X̃ ∈ Mn,k(K) an
approximation to an invariant subspace corresponding to a multiple or a cluster
of eigenvalues near λ̃ ∈ K, such that AX̃ ≈ λ̃X̃.



The degree of arbitrariness is removed by freezing k rows of the approxima-
tion X̃. If the index set of the remaining rows is denoted by u, then we denote
by U ∈ Mn,n−k(R) the submatrix of the identity matrix with columns in u.
Correspondingly, we set v := {1, . . . , n}\u and define V ∈ Mn,k(R) to comprise
of the columns in v out of the identity matrix. That means UUT + V V T = I,
and V T X̃ is the normalizing part of X̃. Then the following is true (Rump 2000).

Theorem 1 Let A ∈ Mn(K), X̃ ∈ Mn,k(K), λ̃ ∈ K, R ∈ Mn(K) and X ∈
IMn,k(K) be given, and let U, V partition the identity matrix as defined before.
Define

f(X) := −R(AX̃ − λ̃X̃) + {I −R
(
(A− λ̃I)UUT − (X̃ + UUT ·X)V T

)} ·X.

Suppose
f(X) ⊆ int(X).

Then there exists M̂ ∈ Mk(K) with M̂ ∈ λ̃Ik + V T X such that the Jordan
canonical form of M̂ is identical to a k × k principal submatrix of the Jordan
canonical form of A, and there exists Ŷ ∈ Mn,k(K) with Ŷ ∈ X̃ + UUT X such
that Ŷ spans the corresponding invariant subspace of A.

Denote the k eigenvalues of M̂ by µi, 1 ≤ i ≤ k. Then the theorem implies
that λ̃ + µi are eigenvalues of A, and by Perron-Frobenius theory it is |µi| ≤
ρ(M̂) ≤ ρ(|M̂ |) for 1 ≤ i ≤ k. This proves that L is indeed an inclusion of (at
least) k eigenvalues of A.

For successful termination of Algorithm 2, the matrix A must have a cluster
of k eigenvalues near the input approximation lambda, which is well enough
separated from the rest of the spectrum. The necessary degree of separation
depends on the condition number of the cluster. In case of a multiple eigenvalue,
the larger the maximum size of a corresponding Jordan block is, the larger the
separation needs to be.

E.g., for a Jordan block of size m, the sensitivity of the eigenvalue to an
ε-perturbation is ε1/m, and practical experience shows that the algorithm termi-
nates successfully if the separation is of the order 10ε1/m (Rump 2000). Hence-
forth, the choice of the dimension k of the invariant subspace is important, as
the separation and the sensitivity of the cluster depends on k.

Following we give two examples how to call the algorithm. The first one gen-
erates a random matrix, calculates approximations for the eigenvalues and eigen-
vectors and calls the algorithm for the first approximate eigenvalue/eigenvector
pair. Note that [V,D] = eig(A) calculates a matrix V of eigenvectors and di-
agonal matrix D of eigenvalues, such that A∗X is approximately equal to X∗D.
Furthermore, rand produces random numbers uniformly distributed in the in-
terval [0,1] such that the entries of A are uniformly distributed within [-1,1].

n = 100; A = 2*rand(n)-1;
tic, [V,D] = eig(A); toc
tic, [L,X] = verifyeig(A,D(1,1),V(:,1)); toc
format long
L



This produces the following output:

elapsed_time =
0.6100

elapsed_time =
0.9900

intval L =
-4.6875246581698_ + 3.4404126988075_i

The underscore in the output of the inclusion L of the eigenvalue indicates
that the last digit of the real and the imaginary part is uncertain. More precisely,
subtracting and adding one to the last displayed figure (before the underscore)
yields a correct inclusion. Note that input/output is also rigorous by means of
specific INTLAB routines for interval I/O (Rump 1999b).

The second example produces a triple eigenvalue 1 together with some ran-
domly choosen 97 eigenvalues in [−1, 1].

X = 2*rand(100)-1; A = X * diag([1 1 1 2*rand(1,97)-1]) * inv(X);
tic, [V,D] = eig(A); toc
index = find( abs(diag(D)-1)<1e-12 );
k = index(1);
tic, [L,X] = verifyeig(A,D(k,k),V(:,index)); toc
format long
L

The result is as follows.

elapsed_time =
0.5000

elapsed_time =
0.9900

intval L =
1.000000000000__ - 0.000000000000__i

The inclusion fails if one of the 97 randomly chosen eigenvalues is, by chance,
too close to 1 or, if X is too ill-conditioned such that eig delivers poor approxi-
mate eigenvectors and -values in V and D or, the size k of the cluster is incorrect
such that the separation is too bad.

There are many more examples including ill-conditioned ones in the paper
cited above (Rump 2000). Here our main objective is ease of use and readability.
Note especially the index notation in Algorithm 2.

Conclusion

We presented some of the main ideas of the toolbox INTLAB for Matlab. INT-
LAB is available in its third release for PCs, a number of workstations and
mainframes. More details can be found in Rump (1999b). The only machine
dependency is the routine setround for switching the rounding mode. This as-
sembly language routine is available for a number of machines. In Release 5.3



of Matlab under Windows even this is a built-in routine of Matlab. Then the
entire toolbox is plain Matlab code.

All other code, some 362 functions and some 20 kLOC, is written in Matlab
and therefore as portable as it can be. INTLAB is freely available for non-profit
use from our homepage.
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