
Japan J. Indust. Appl. Math., 26 (2009), 215–231 Area 〈2〉

Adaptive and Efficient Algorithm

for 2D Orientation Problem

Katsuhisa Ozaki∗, Takeshi Ogita†, Siegfried M. Rump‡ and Shin’ichi Oishi§

∗Research Institute for Science and Engineering, Waseda University
E-mail: k ozaki@aoni.waseda.jp

†Department of Mathematical Sciences, Tokyo Woman’s Christian University
‡Institute for Reliable Computing, Hamburg University of Technology
§Department of Applied Mathematics
Faculty of Science and Engineering, Waseda University

Received April 28, 2008

Revised November 17, 2008

This paper is concerned with a robust geometric predicate for the 2D orientation problem.
Recently, a fast and accurate floating-point summation algorithm is investigated by Rump,
Ogita and Oishi, which provably outputs a result faithfully rounded from the exact value
of the summation of floating-point numbers. We optimize their algorithm for applying it
to the 2D orientation problem which requires only a correct sign of a determinant of a
3 × 3 matrix. Numerical results illustrate that our algorithm works fairly faster than the
state-of-the-art algorithm in various cases.

Key words: robust geometric predicate, 2D orientation problem, floating-point arithmetic,
accurate algorithm

1. Introduction

In this paper, we are concerned with geometric predicates using floating-
point arithmetic. In particular, we focus our mind on a 2D orientation problem
“Orient2D” (cf. [8]), which determines whether a point c lies on, to the left of, or
to the right of the oriented line defined by two points a and b. Let F be a set of
floating-point numbers. Let a = (ax, ay), b = (bx, by) and c = (cx, cy). The answer
of Orient2D can be predicated by the sign of the determinant

sign(det(G)), G :=

⎛
⎝ ax ay 1

bx by 1
cx cy 1

⎞
⎠. (1.1)

Throughout the paper, we assume that a, b, c ∈ F
2.

When calculating (1.1) by pure floating-point arithmetic, say, double precision
defined by IEEE 754 standard [1] as working precision, then we sometimes obtain
incorrect results due to the accumulation of roundoff errors. To avoid this, one
may increase the working precision, e.g., quadruple or multiple precision. The
computational speed is, however, significantly slower than that of double precision,
because they are often realized by software simulation. Moreover, even if using
such an approach, the result is still not guaranteed because the problem can be
very ill-conditioned.

216 K. Ozaki, T. Ogita, S.M. Rump and S. Oishi

Shewchuk [8] has developed his adaptive algorithms for solving several compu-
tational geometry problems including Orient2D by his clever use of floating-point
arithmetic, which aim to do only as much work as necessary to guarantee a cor-
rect result. He showed that his algorithms are in many cases much faster than the
others based on traditional arbitrary precision libraries. Therefore, his algorithms
can be viewed as the state-of-the-art algorithms. He also showed some applications
utilizing his robust algorithms and their efficiencies [9].

Recently, the latter three of the authors (Rump, Ogita and Oishi) have inves-
tigated new accurate summation algorithms [6, 7]. Their algorithms are very fast
in terms of measured computing time since the algorithms use only usual floating-
point arithmetic (without using extra higher precision). Moreover, the algorithms
guarantee the result accuracy so that it is suitable to apply them to the geometric
predicates.

We propose in this paper an adaptive and efficient algorithm of solving
Orient2D by adapting the Rump–Ogita–Oishi’s summation algorithm to it. Re-
sults of numerical experiments are presented showing that our algorithm is fairly
faster than Shewchuk’s in many cases.

2. Transformation of determinant

In this section, we review an error-free transformation of the determinant (1.1)
into a sum of a vector by floating-point arithmetic without loss of information. The
technique has been used by Shewchuk [8], Demmel–Hida [3] and others.

Our notation is as follows. Let fl(·) be a result of floating-point computations
with the default rounding mode (rounding-to-nearest, tie to even). To simplify our
discussions, we assume that double precision floating-point arithmetic defined by
IEEE standard 754 [1] is used as working precision for all computations. Let u
be the unit roundoff (especially, u = 2−53 in double precision). In this paper, we
assume for simplicity that no overflow nor underflow occurs, although it is not so
difficult theoretically to take such cases into account (see Remark 1). Then it holds
for ◦ ∈ {+,−, ∗, /} that

fl(a ◦ b) = (a ◦ b)(1 + δ), |δ| ≤ u. (2.1)

We express algorithms in Matlab-style [10].
We first introduce so-called error-free transformations of floating-point arith-

metic [5]. For a, b ∈ F, there is a well-known algorithm due to Knuth [5] which
transforms a sum a + b into x + y with x, y ∈ F, x = fl(a + b) and |y| ≤ u|x|:

Algorithm 1. Error-free transformation of a sum of two floating-point
numbers.

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x − a)
y = fl((a − (x − z) + (b − z))

Adaptive and Efficient Algorithm for 2D Orientation Problem 217

Similarly, a subtraction of two floating-point numbers can be transformed with-
out rounding errors as well. We denote the algorithm as [x, y] = TwoDiff(a, b),
which satisfies a − b = x + y with x, y ∈ F and |y| ≤ u|x|.

For a, b ∈ F, there is a well-known algorithm due to G.W. Veltkamp [2] which
transforms the product a · b into x + y with x, y ∈ F, x = fl(a · b) and |y| ≤ u|x|:

Algorithm 2. Error-free transformation of a product of two floating-point
numbers.

function [x, y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl((((a1 · b1 − x) + a2 · b1) + a1 · b2) + a2 · b2)

It relies on the following splitting algorithm by Dekker [2] which splits a 53-bits
floating-point number into two 26-bits parts:

Algorithm 3. Error-free splitting of a floating-point number into two parts.

function [x, y] = Split(a)
c = fl(factor · a) % factor = 227 + 1
x = fl(c − (c − a))
y = fl(a − x)

Such error-free transformation algorithms are very useful for accurate compu-
tations by floating-point arithmetic. See [5, 6, 7] for detail.

We now present a way of transforming the determinant in (1.1) into a sum-
mation of 16 terms. From (1.1), we have

det(G) = (ax − cx)(by − cy) − (ay − cy)(bx − cx). (2.2)

Then, we apply TwoDiff for each subtraction in (2.2) as follows:

{
[t1, e1] = TwoDiff(ax, cx), [t2, e2] = TwoDiff(by, cy),

[t3, e3] = TwoDiff(ay, cy), [t4, e4] = TwoDiff(bx, cx).
(2.3)

This implies

det(G) = (t1 + e1)(t2 + e2) − (t3 + e3)(t4 + e4)

= t1t2 + t1e2 + t2e1 + e1e2 − t3t4 − t3e4 − t4e3 − e3e4. (2.4)

218 K. Ozaki, T. Ogita, S.M. Rump and S. Oishi

Next, we apply TwoProduct to each product in (2.4) as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[p1, p3] = TwoProduct(t1, t2), [p2, p4] = TwoProduct(−t3, t4),

[p5, p9] = TwoProduct(t1, e2), [p6, p10] = TwoProduct(t2, e1),

[p7, p11] = TwoProduct(−t3, e4), [p8, p12] = TwoProduct(−t4, e3),

[p13, p15] = TwoProduct(e1, e2), [p14, p16] = TwoProduct(−e3, e4).

(2.5)

The numbering of pi is concerned with the distribution of floating-point numbers.
Finally, we obtain a vector p ∈ F

16 such that det(G) =
∑16

i=1 pi. When the problem
is ill-conditioned, it is difficult to obtain the correct result by pure floating-point
arithmetic. Thus, any robust summation algorithm [3, 5, 6, 7] can be used for
calculating an accurate determinant.

Remark 1. If underflow occurs in TwoProduct, it holds that [5]

|a · b − (x + y)| ≤ 5u,

where u denotes the underflow unit (u = 2−1074 in IEEE 754 double precision).
Taking this into account for setting a stopping criterion in our algorithm in Sec-
tion 4, our algorithm can also guarantee the sign of det(G), also in the presence of
underflow, except the case where det(G) = 0. If det(G) = 0, G must be scaled to
avoid underflow if necessary.

Remark 2. One may consider to transform the determinant as

det(G) = (ax − cx)(by − cy) − (ay − cy)(bx − cx)

= axby − axcy − cxby − aybx + aycx + cybx (2.6)

and then apply TwoProduct to each product. In this case, we obtain a summation
of only 12 terms, which is less than 16 terms in (2.4). However, it is difficult to
derive an adaptive and efficient algorithm based on (2.6). We can not obtain much
information about a distribution of floating-point numbers comparing to (4.6) in
Section 4.

Remark 3. One may also consider to transform the determinant as

det(G) = ax(by − cy) − bx(ay − cy) + cx(ay − by).

Then a similar discussions in this paper can be done to develop an another adaptive
algorithm, which may be more efficient than ours in the extremely ill-conditioned
case. However, it is rare to see extremely ill-conditioned problem. Moreover, it is
also difficult to investigate fast and adaptive algorithm corresponding to Method B
proposed in this paper. Therefore, we do not treat it in this paper.

Adaptive and Efficient Algorithm for 2D Orientation Problem 219

3. Accurate summation algorithm

Recently, a fast and accurate summation algorithm AccSum [6] using floating-
point arithmetic has been developed by Rump, Ogita and Oishi. The main part of
the algorithm is also useful for predicating the sign of a summation.

We briefly explain the main part of AccSum. Let p be a floating-point n-vector.
Let M1 := �log2(n + 2)� and M2 := �log2 maxi|pi|�. The algorithm AccSum defines
a constant σ1 as

σ1 = 2M1+M2 . (3.1)

Then the following algorithm realizes an error-free transformation of a sum-
mation [6].

Algorithm 4 (Rump–Ogita–Oishi [6]). For p ∈ F
n, ExtractSum transforms∑n

i=1 pi into τ +
∑n

i=1 p′i without rounding errors, i.e.,
∑n

i=1 pi = τ +
∑n

i=1 p′i.

function [p′, τ] = ExtractSum(p, σ)
q = fl((σ + p) − σ); % qi = fl((σ + pi) − σ)
τ = fl

(∑n
i=1 qi

)
; % τ = fl

(∑n
i=1 qi

)
=
∑n

i=1 qi

p′ = fl(p − q); % p′i = fl(pi − qi) = pi − qi

In the first loop of AccSum, [p(1), τ1] = ExtractSum(p, σ1) is executed. If a
stopping criterion1 for t1 := τ1 is satisfied, then the algorithm finishes after some
minor computations. Otherwise, we continue by setting σ2 as

σ2 = σ1 · φ, (3.2)

where φ := 2M1u, and execute [p(2), τ2] = ExtractSum(p(1), σ2). Again, we check
the stopping criterion for t2 := t1 + τ2. Generalizing it, σk and tk are defined as

σk = σk−1 · φ, tk := tk−1 + τk, k ≥ 2.

We repeat such a procedure with σk until the stopping criterion for t(k) is satisfied,
i.e., the required accuracy is guaranteed. Fig. 3.1 illustrates the behavior of this
algorithm. In Algorithm 4, it is proved that there is no rounding error in τ =
fl
(∑n

i=1 qi

)
. Therefore, we can obtain an accurate result even if problems are ill-

conditioned. See [6, 7] for details.
In the next section, we will develop a new method of predicating the sign of

the determinant in (1.1) based on the algorithm AccSum.

1The stopping criterion is different for the purpose. See [6, 7].

220 K. Ozaki, T. Ogita, S.M. Rump and S. Oishi

Fig. 3.1. Behavior of AccSum.

4. New adaptive method for sign determination

As mentioned in Section 2, the determinant det(G) in (1.1) can be transformed
into the summation of the vector p ∈ F

16. When using robust summation algorithms
which guarantee the result accuracy (for example, AccSum [6] or AccSign [7]), we
can obtain the correct sign of det(G). However, it is not efficient to apply such a
robust algorithm regardless of the difficulty of the problems, because the sign of
det(G) can frequently be guaranteed by a pure floating-point arithmetic for (2.2)
and its a priori error analysis (see Subsection 4.1). Therefore, it is favorable that
an algorithm adaptively works as much as necessary to guarantee the sign of the
determinant according to the difficulty of the problem. This type of algorithm is
called an adaptive algorithm.

For this purpose, we will prepare four verification methods for the sign of the
determinant, i.e., Methods A, B, C and D. Combining them, we develop an adap-
tive algorithm which guarantees the sign of the determinant by testing Methods A,
B, C and D in order. The proposed algorithm will be designed to work as follows:
When a problem is well-conditioned, Method A can verify the sign of the determi-
nant with less costs compared to more robust methods. Otherwise, we proceed to
Method B. If Method B cannot verify it either, we next proceed to Method C, and
so forth. Method D is a fallback algorithm. For example, even if a problem is so
ill-conditioned that Methods A, B nor C cannot verify the sign of the determinant,
Method D can definitely, which means Method D is never-failing since Method D
keeps working until the correct sign of the determinant is obtained. Namely, the
computational cost of the proposed adaptive algorithm depends on the difficulty of
the problems.

Adaptive and Efficient Algorithm for 2D Orientation Problem 221

Note that we do not generate all the 16 elements of p in advance but only
necessary elements of p in each verification method.

4.1. Method A
First, we introduce the fastest known verification method which is the first one

in Shewchuk’s adaptive algorithm. Our adaptive algorithm also adopts it as the
first one and call it “Method A” in this paper. Method A computes (2.2) by pure
floating-point arithmetic

fA := fl((ax − cx)(by − cy) − (ay − cy)(bx − cx)). (4.1)

Let eA be defined by

eA := fl((|(ax − cx)(by − cy)| + |(ay − cy)(bx − cx)|). (4.2)

If an inequality

|fA| > fl((3u + 16u2)eA) =: errA (4.3)

is satisfied, then sign(fA) = sign(det(G)). The right-hand side of (4.3) is an a priori
error bound of fA. Computing (4.1) requires 7 flops.2 To calculate eA, we can reuse
the intermediate results in the computation of (4.1). If taking the absolute value
of a floating-point number is counted as 1 flop, then Method A requires 12 flops
and 1 branch. If (4.3) is not satisfied, then we proceed to the next method.

4.2. Method B
Next, we develop our Method B which is almost as robust as Shewchuk’s second

method [8, Figure 21] but works faster.
In Method B, we treat only the 4 elements p1:4 to speed up the method.

Of course, it is possible to apply and repeat Algorithm 4 (ExtractSum) for p1:4

straightforwardly. However, to speed up further, we remark on the data structure
among the 16 elements of p.

When we apply [x, y] = TwoProduct(a, b) or [x, y] = TwoDiff(a, b) for a, b ∈ F,
it holds that

|y| ≤ u|x|. (4.4)

From (2.3) and (2.5), we obtain

|e1| ≤ u|t1|, |e2| ≤ u|t2|, |p9| ≤ u|fl(t1e2)|, |p15| ≤ u|fl(e1e2)|. (4.5)

From the fact p1 = fl(t1t2), (4.5) and the monotonicity of floating-point arithmetic,
it holds that

|p9| ≤ u2|p1|, |p15| ≤ u3|p1|.

2Flops denotes the number of floating-point operations [11]. Please remark that it does not
mean “floating-point operations per seconds.”

222 K. Ozaki, T. Ogita, S.M. Rump and S. Oishi

Since the similar discussions can be applied for the other elements of p, we have
the following inequalities:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
3≤i≤8

|pi| ≤ u · max(|p1|, |p2|),
max

9≤i≤14
|pi| ≤ u2 · max(|p1|, |p2|),

max(|p15|, |p16|) ≤ u3 · max(|p1|, |p2|).
(4.6)

Moreover, as in (2.5), we obtain the partial vector p1:4 as

[p1, p3] = TwoProduct(t1, t2), [p2, p4] = TwoProduct(−t3, t4). (4.7)

From (4.4) and (4.7), we have

|p3| ≤ u|p1|, |p4| ≤ u|p2|. (4.8)

Therefore, it can be seen that there are big differences in the order of magnitude
among pi, 1 ≤ i ≤ 16.

We show that we can omit to apply ExtractSum to p1 and p2. This is due
to the following theorem by Sterbenz [4] for the subtraction of two floating-point
numbers of the same sign:

Theorem 4.1 (Sterbenz [4]). For x, y ∈ F (x, y 	= 0), assume that 1/2 ≤
x/y ≤ 2. Then fl(x − y) = x − y.

From (2.3), (2.5) and (4.1), we can see that fA = fl(p1+p2). Suppose Method A
failed, which means the criterion (4.3) is not satisfied. Then |fA| ≤ fl((3u+16u2)eA).
A little computation yields 1/2 ≤ p2/p1 ≤ 2, so that Theorem 4.1 implies

fA = fl(p1 + p2) = p1 + p2 (if Method A failed).

From this, we have

16∑
i=1

pi = fA +
16∑

i=3

pi. (4.9)

Now, we apply ExtractSum to the right-hand side of (4.9). From (4.1) and (4.6),
it holds that

max
(
|fA|, max

3≤i≤16
(|pi|)

)
≤ errA.

Considering the data structure of fA and pi, 3 ≤ i ≤ 16 from (2.3) and (4.6), we
can see that it is sufficient to regard n = 12 for setting σk, k ≥ 1. Therefore, we
can safely set M1 = �log2(12 + 2)� = 4, M2 = �log2 errA� and σ1 = 2M1+M2 . By
using this σ1, we apply [p′3:4, α0] = ExtractSum(p3:4, σ1). Let α1 := fl(α0 + fA),
then α1 = α0 + fA (see Fig. 4.1).

Adaptive and Efficient Algorithm for 2D Orientation Problem 223

Fig. 4.1. The relation among fA, p3 and p4.

Next we construct the criterion of Method B. Here, Method B transforms∑16
i=1 pi as

16∑
i=1

pi = α1 + p′3 + p′4 +
16∑

i=5

pi.

Let g := p′3 + p′4 +
∑16

i=5 pi. If |α1| > |g| is satisfied, then sign(α1) = sign(det(G)).
Let e′ = (1 + u)eA. From (4.2) and (2.5), it holds that

8∑
i=5

|pi| ≤ 2ue′,
14∑

i=9

|pi| ≤ 3u2e′,
16∑

i=15

|pi| ≤ u3e′. (4.10)

From [6, Lemma 3.2], it holds that

|p′i| ≤ uσ1 for i = 3, 4, (4.11)

which implies |p′3| + |p′4| ≤ 2uσ1. From this and (4.10), we have

|g| ≤ (2u + 3u2 + u3)e′ + 2uσ1 = (2u + 3u2 + u3)(1 + u)eA + 2uσ1

≤ (2u + 5u2 + 4u3 + u4)(eA + σ1). (4.12)

Considering an a priori error bound of floating-point computations for (4.12),
we have

|g| ≤ (2u + 5u2 + 4u3 + u2)(1 + u) · fl(eA + σ1)

= (1 + u)−1(1 + u)2(2u + 5u2 + 4u3 + u4) · fl(eA + σ1)

= (1 + u)−1(2u + 9u2 + 16u3 + 14u4 + 6u5 + u6) · fl(eA + σ1)

< (1 + u)−12u(1 + 6u) · fl(eA + σ1).

224 K. Ozaki, T. Ogita, S.M. Rump and S. Oishi

Note that 2u(1 + 6u) = fl(2u(1 + 6u)). Therefore, we finally have

|g| ≤ fl((2u + 12u2)(eA + σ1)) =: errB. (4.13)

Note that we can also bound σ1 as |σ1| ≤ 64ueA by a little computation but does
not use this bound to avoid the overestimation. Thus, the criterion for verification
of the sign of the determinant becomes

|α1| > errB. (4.14)

This criterion is almost the same as that of Shewchuk’s second method. Summa-
rizing the above-mentioned discussions, we here present our Method B.

Algorithm 5 (Proposed Method B). For fA, p3, p4 ∈ F, Method B trans-
forms fA + p3 + p4 into α1 + p′3 + p′4 without rounding errors. If flag = 1, then
sign(α1) = sign(G). Otherwise Method B failed to verify the sign of det(G).

function [p′3:4, α1,flag] = Method B(fA, p3:4)
flag = 0;
q = fl (σ1 + p3:4) − σ1; % ExtractSum(p3:4, σ1)
p′3:4 = fl(p3:4 − q);
α1 = fl((q1 + q2) + fA); % α1 = q1 + q2 + fA

if |α1| > errB % errB is defined in (4.13)
flag = 1;

end

Here, we remark on the flops count needed for Method B. To use ExtractSum

for p1:4 straightforwardly, it has to be used 3 times from the relation among p1:4

(see Fig. 4.1), which requires 48 flops. Our Method B requires only 8 flops and its
stopping criterion is almost the same as that of Shewchuk’s Method B. Moreover,
Shewchuk’s algorithm uses TwoSum 4 times in his Method B and it requires 24 flops.
Therefore, it is expected that our Method B is almost as robust as Shewchuk’s
Method B, and works faster.

4.3. Method C
At the beginning of Method C, we discuss treatments of p′3 and p′4 after

Method B. Once p3 and p4 are split by the extraction in Method B, the parts
p′3 and p′4 need no splitting again (see Fig. 4.1). Therefore, we can omit to apply
ExtractSum to p′3 and p′4. Let β1 := fl(p′3 + p′4), then β1 = p′3 + p′4 since

p′3, p
′
4 ∈ uσ2Z and |p′3| + |p′4| < σ2.

Here, it holds that

16∑
i=1

pi = α1 + β1 +
16∑

i=5

pi. (4.15)

Adaptive and Efficient Algorithm for 2D Orientation Problem 225

In Method C, we generate p5:8 by using TwoDiff in (2.3). Let d := α1 + β1 +∑8
i=5 pi, then d =

∑8
i=1 pi. We compute a floating-point approximation of d by

d̃ := fl(((α1 + β1) + (p5 + p6)) + (p7 + p8))

and consider its error bound. A standard error analysis for floating-point arith-
metic [4] yields

d̃ = [{(α1 + β1)(1 + δ1) + (p5 + p6)(1 + δ2)}(1 + δ4) + (p7 + p8)(1 + δ3)](1 + δ5),

where |δi| ≤ u. From this, we can obtain an upper bound of |d − d̃| as

|d − d̃| ≤ (3u + 3u2 + u3)|α1 + β1| + (3u + 3u2 + u3)
8∑

i=5

|pi|. (4.16)

From (2.5), (4.6) and the definition of eA, we have

fl

(
8∑

i=5

|pi|
)

≤ 2ueA. (4.17)

Inserting (4.17) into (4.16) yields

|d − d̃| ≤ (3u + 3u2 + u3)|α1 + β1| + 2u(3u + 3u2 + u3)eA =: f1. (4.18)

Here, we have to take p9:16 into account for the verification. From (2.5) and the
definition of eA, we have

16∑
i=9

|pi| ≤ 3u2eA + u3eA =: f2. (4.19)

From (4.18) and (4.19), it holds that

∣∣∣∣∣
16∑

i=1

pi − d̃

∣∣∣∣∣ ≤
∣∣∣∣∣

16∑
i=1

pi − d

∣∣∣∣∣+ |d − d̃| =

∣∣∣∣∣
16∑

i=9

pi

∣∣∣∣∣+ |d − d̃|

≤ f1 + f2 = c1|α1 + β1| + c2eA,

where c1 := 3u + 3u2 + u3 and c2 := 9u2 + 7u3 + u4. To compute the error bound
by floating-point arithmetic, we have

∣∣∣∣∣
16∑

i=1

pi − d̃

∣∣∣∣∣ ≤ (1 + u)c1 fl(|α1 + β1|) + c2eA

= (1 + u)−2{(1 + u)3c1 fl(|α1 + β1|) + (1 + u2)c2eA}.

226 K. Ozaki, T. Ogita, S.M. Rump and S. Oishi

Here, a little computations yield

(1 + u)3c1 < fl(3u + 14u2),

(1 + u)2c2 < fl(9u2 + 24u3).

Finally, we have∣∣∣∣∣
16∑

i=1

pi − d̃

∣∣∣∣∣ ≤ fl((3u + 14u2)|α1 + β1| + (9u2 + 24u3)eA) =: errC. (4.20)

Thus, if |d̃| > errC is satisfied, then sign(d̃) = sign(det(G)) is guaranteed.

4.4. Method D
If neither Method A, B nor C can guarantee the sign of det(G), the fallback

method, Method D, is used.
To reduce the computational cost as much as possible, we aim to construct

Method D by generating the data of p adaptively. For the purpose, we consider the
data structure of p again. Let p(1) := p. After Method C, the elements p

(1)
1:4 have

already been computed. From (4.6) and the definition of σ1, the following equality
holds by the same discussion in Subsection 4.2:

fl
((

σ1 + p
(1)
9:16

)− σ1

)
= 0. (4.21)

Therefore, we first apply ExtractSum with σ1 to only p
(1)
5:8, i.e., we generate p

(1)
5:8

and execute [
p
(2)
5:8, α2

]
= ExtractSum

(
p
(1)
5:8, σ1

)
.

Let t1 := τ1 = fl(α1 + α2), where α1 has been computed in Method B, then t1 =
α1 + α2 since we use the same principle of AccSum in [6]. We proceed to the next
ExtractSum with σ2. Let p

(2)
9:16 := p

(1)
9:16. Since the same discussion as above can be

applied for σ2, it holds that

fl
((

σ2 + p
(2)
15:16

)− σ2

)
= 0. (4.22)

Therefore, we generate only p
(2)
9:14 and apply ExtractSum to p

(2)
5:14 as

[
p
(3)
5:14, β2

]
= ExtractSum

(
p
(2)
5:14, σ2

)
.

Let τ2 := β1 + β2, where β1 has been computed in Method C. Let t2 := fl(t1 + τ2),
then t2 = t1 + τ2. If the stopping criterion for t2, which is mentioned later, is not
satisfied, then we finally generate p

(3)
15:16 and apply ExtractSum iteratively to p

(k)
5:16 as

[
p
(k+1)
5:16 , τk

]
= ExtractSum

(
p
(k)
5:16, σk

)
, k ≥ 3

until the stopping criterion for tk := tk−1 + τk is satisfied.

Adaptive and Efficient Algorithm for 2D Orientation Problem 227

Here, we define the stopping criterion for Method D. From [6, Lemma 3.2], it
holds that

max
5≤i≤16

∣∣p(k+1)
i

∣∣ ≤ uσk, k ≥ 2. (4.23)

Since tk =
∑k

i=1 τi, it holds that

det(G) =
16∑

i=1

pi = tk +
16∑

i=5

p
(k+1)
i , k ≥ 2.

From (4.23), the following inequality holds:

∣∣∣∣∣
16∑

i=5

p(k+1)

∣∣∣∣∣ ≤
16∑

i=5

|p(k+1)| ≤ 12uσk = fl(12uσk), k ≥ 2.

Therefore, if |tk| > fl(12uσk) is satisfied, then det(G) = det(tk) is guaranteed.
Here, we remark on an acceleration of the algorithm. If α1 + β1 = 0, then it

holds from (4.15) that

16∑
i=1

pi =
16∑

i=5

pi.

Therefore, we can reset σ1 from p5:8 as

σ′
1 = 2M1+M ′

2 ,

where M ′
2 := �log2 max|p5:8|�. Even if replacing σ1 by σ′

1, the discussions in this
section is also true. Since there is a possibility that both |p3| and |p4| are much
larger than max|p5:8| (see Fig. 4.2), it may significantly speed up the method. The
following algorithm can guarantee the sign of the determinant:

Fig. 4.2. The big difference in order of magnitude.

228 K. Ozaki, T. Ogita, S.M. Rump and S. Oishi

Algorithm 6 (Proposed Method D). After obtaining α1 and β1 in Meth-
ods A, B and C, this method can definitely verify the sign of det(G).

function s = Method D(α1, β1, p5:8)[
p
(2)
5:8, α2

]
= ExtractSum(p5:8, σ1)

t1 = fl(α1 + α2);

(Generate p9:14 and set p
(2)
9:14 := p9:14.)[

p
(3)
5:14, β2

]
= ExtractSum

(
p
(2)
5:14, σ2

)
τ2 = fl(β1 + β2);
t2 = fl(t1 + τ2);
if |t2| > fl(12uσ2)

s = sign(t2);
return;

end
(Generate p15:16 and set p

(3)
15:16 := p15:16.)

k = 2;
repeat

k = k + 1;[
p
(k+1)
5:16 , τk

]
= ExtractSum

(
p
(k)
5:16, σk

)
tk = fl(tk−1 + τk);

until |tk| > fl(12uσk)
s = sign(tk);

4.5. Method D′: a special case
There is an alternative method which can be applied for a special case where the

exponent range of pi for 1 ≤ i ≤ 16 is sufficiently narrow. Suppose p13, p14 	= 0. If

uσ4 <
1
2
u2 min(|p13|, |p14|) =

1
2
u2 min(fl(|e1e2|),fl(|e3e4|)) (4.24)

is satisfied, then it can easily be proved that once splitting p
(k)
i with σk, p

(j)
i for

j ≥ k + 1, no splittings with σj are needed again (see Fig. 4.3).

Fig. 4.3. Narrow distribution of pi, 1 ≤ i ≤ 16.

Adaptive and Efficient Algorithm for 2D Orientation Problem 229

Hence in this case, we can construct a more efficient algorithm than Method D.
The following algorithm can be applied if the special condition (4.24) is satisfied.

Algorithm 7 (Proposed Method D′).

function s = Method D′(α1, β1, p5:8)[
p
(2)
5:8, α2

]
= ExtractSum

(
p5:8, σ1

)
;

t1 = fl(α1 + α2);

(Generate p9:14 and set p
(2)
9:14 := p9:14.)[

p
(3)
9:14, β

′
2

]
= ExtractSum

(
p
(2)
9:14, σ2

)
β2 = fl

(
β′

2 +
∑8

i=5 p
(2)
i

)
;

τ2 = fl(β1 + β2);
t2 = fl(t1 + τ2);
if |t2| > fl(12uσ2)

s = sign(t2);
return;

end
(Generate p15:16 and set p

(3)
15:16 := p15:16.)[

p
(4)
15:16, τ

′
3

]
= ExtractSum

(
p
(3)
15:16, σ3

)
;

τ3 = fl
((

τ ′
3 +

∑14
i=9 p

(3)
i

))
;

t3 = fl(t2 + τ3);

t4 = fl
(
t3 +

(
p
(4)
15 + p

(4)
16

))
;

s = sign(t4);

If we can use Method D′ instead of Method D, it can be expected that the
verification of the sign of det(G) becomes fairly faster.

5. Numerical examples

We present some numerical results showing the effectiveness of our adaptive
algorithm proposed so far. We use two different computer environments; One
is a PC with Intel Pentium 4 (3.3 GHz) CPU and Intel C compiler (ICC) ver-
sion 9.0 with compile options -O3 -aW. The other is a PC with AMD Athlon 64
(2.2 GHz) CPU and GNU C Compiler (GCC) version 4.1.1 with compile options
-O3 -march=athlon64 -funroll-loops.

The following three methods are implemented on both computer environments:
• R1: Orient2d fast by Shewchuk [8] (exact).
• A1: Orient2d adapt by Shewchuk [8] (adaptive).
• A2: Our proposed adaptive algorithm (adaptive).

Here, “exact” means that the method adopts the most robust algorithm as the first
step, which is not an adaptive algorithm, and “adaptive” means that their own
Methods A, B, C and D are adaptively applied in order. Therefore, computing

230 K. Ozaki, T. Ogita, S.M. Rump and S. Oishi

times for both A1 and A2 strongly depend on the difficulty of problems. The
problems can be grouped into the following four cases:
• PA: Problems where Method A can verify the result.
• PB: Problems where Method A fails to verify and Method B successes.
• PC: Problems where Methods A and B fail to verify and Method C successes.
• PD: Problems where Methods A, B and C fail to verify and Method D suc-

cesses.
For each case, we generate a million sets of the coordinates a, b and c whose elements
are pseudo-random (floating-point) numbers.

In Tables 5.1 and 5.2, we display the sum of the elapsed time (sec) for each
case on the Pentium 4 and the Athlon 64 architectures, respectively.

Table 5.1. Computing time (sec) in various problems on Pentium 4 and ICC.

Algorithm PA PB PC PD

R1 (Orient2d fast) 0.679 0.679 0.680 0.681
A1 (Orient2d adapt) 0.033 0.253 0.291 1.050
A2 (our adaptive algorithm) 0.033 0.190 0.244 0.659

Table 5.2. Computing time (sec) in various problems on Athlon 64 and GCC.

Algorithm PA PB PC PD

R1 (Orient2d fast) 0.308 0.336 0.296 0.316
A1 (Orient2d adapt) 0.008 0.080 0.100 0.384
A2 (our adaptive algorithm) 0.008 0.052 0.080 0.280

From Tables 5.1 and 5.2, we can confirm that A1 is as fast as A2 for the
problems PA because both A1 and A2 finish at Method A by Shewchuk. For the
problems PB, A2 is faster than A1 due to the difference of flops counts. In A1 and
A2, almost the same computations are done in their own Method C, so that the
advantage of our Method B against Shewchuk’s one is preserved. As a result, A2
becomes faster than A1 also for the problems PC. For the ill-conditioned problems
PD, our method A2 works fastest, which means even faster than R1.

We can not guarantee that our method always works faster than the others;
The computational speed of our method strongly depends on the property of the
input data (the number of zero/nonzero elements, distribution of the data) and
computer environment (CPU, compiler and its compile options), etc. Nevertheless,
we can confirm that our proposed method works efficiently in many numerical
examples on some computer environments.

Acknowledgments. This research was partially supported by CREST pro-
gram, Japan Science and Technology Agency (JST).

Adaptive and Efficient Algorithm for 2D Orientation Problem 231

References

[1] ANSI/IEEE, IEEE Standard for Binary Floating Point Arithmetic, Std 754–1985 edition.
IEEE, New York, 1985.

[2] T.J. Dekker, A floating-point technique for extending the available precision. Numer. Math.,
18 (1971), 224–242.

[3] J. Demmel and Y. Hida, Fast and accurate floating point summation with application to
computational geometry. Numerical Algorithms, 37 (2004), 101–112.

[4] N.J. Higham, Accuracy and Stability of Numerical Algorithms, second edition. SIAM Pub-
lications, Philadelphia, 2002.

[5] T. Ogita, S.M. Rump and S. Oishi, Accurate sum and dot product. SIAM J. Sci. Comput.,
26 (2005), 1955–1988.

[6] S.M. Rump, T. Ogita and S. Oishi, Accurate floating-point summation part I: Faithful
rounding. SIAM J. Sci. Comput., 31 (2008), 189–224.

[7] S.M. Rump, T. Ogita and S. Oishi, Accurate floating-point summation part II: Sign, K-fold
faithful and rounding to nearest. SIAM J. Sci. Comput., 31 (2008), 1269–1302.

[8] J.R. Shewchuk, Adaptive precision floating-point arithmetic and fast robust geometric
predicates. Discrete & Computational Geometry, 18 (1997), 305–363.

[9] J.R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation. Computa-
tional Geometry: Theory and Applications, 22 (2002), 21–74.

[10] MATLAB Programming version 7, the Mathworks.
[11] G.H. Golub and C.F. Van Loan, Matrix Computations, third edition. The Johns Hopkins

University Press, 1996.

