
Accurate Matrix Multiplication by using Level 3 BLAS Operation

Katsuhisa Ozaki†, Takeshi Ogita‡,†, Siegfried M. Rump∗ and Shin’ichi Oishi†,∗∗

†Faculty of Science and Engineering, Waseda University
3-4-1 Okubo, Shinjyuku-ku, Tokyo, 169-0075 Japan

‡Department of Mathematics, Tokyo Woman’s Christian University
2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan

* Institute for Reliable Computing, Hamburg University of Technology
Schwarzenbergstr. 95, 21071 Hamburg, Germany

** CREST, Japan Science and Technology Agency
Email: k ozaki@aoni.waseda.jp

Abstract—This paper is concerned with an accurate
computation of matrix multiplication. Recently, an accu-
rate summation algorithm was developed by Rump, Ogita
and Oishi. One of the key techniques of their method is
a new type of error-free splitting. To use this strategy, we
investigate a method of obtaining an accurate result of ma-
trix multiplication by mainly using Level 3 BLAS opera-
tion. Finally, we present numerical examples showing the
effectiveness of the proposal algorithm.

1. Introduction

This paper is concerned with an accurate computation
for matrix multiplication. Let A and B be floating-point ma-
trices. To obtain an accurate result of matrix multiplication
AB, there are the following possibilities:

• Accurate sum and dot product [1, 6]

• Multiple-precision arithmetic [5, 7]

Recently, an accurate summation algorithm was developed
by Rump, Ogita and Oishi [3, 4], which outputs a faithfully
rounded result of the exact sum of floating-point numbers.
This method avoids using a sorting for input data, branch
in the main loops and direct access for mantissa bit or ex-
ponent bit which make a performance of computation slow.
Therefore, their method is not only less amount of compu-
tations but also fast in terms of measured computing time.
Moreover, only usual floating-point arithmetic is needed in
their algorithm so that we can portably implement their al-
gorithm.

In this paper, we investigate a method of computing ac-
curate matrix multiplication by using mainly level 3 BLAS
(Basic Linear Algebra Subroutines). Based on the strat-
egy of the accurate summation algorithm [3], the proposed
method does not need multi-precision library nor some
extended precision arithmetic like double-extended preci-
sion. Since BLAS routines are optimized for an architec-
ture in use, such an optimized BLAS is so fast that some
BLAS routines achieve near peak performance. More-
over, most of the optimized BLAS automatically adapts

to multithreaded environments. Our method mainly uses
this BLAS, therefore, it is easy to accommodate to parallel
computation without changing a serial code.

Finally, we present numerical examples for illustrating
the effectiveness of proposed method.

2. Error-Free Split

In this section, we define notations used in this paper
and explain the key technique of the accurate summation
algorithm AccSum developed by Rump, Ogita and Oishi.
All computations are done by floating-point arithmetic de-
fined by IEEE 754, especially, double precision. Let F be
a set of floating-point number and u = 2−53 be unit round-
off. fl(· · ·) shows that an expression inside the parenthesis
is computed by floating-point arithmetic. We use a Matlab
code for readability.

For a floating-point number p ∈ F, let σ and M be con-
stants defined by

σ = 2M2dlog2 |p|e, M = 2k (k ∈ Z).

The following algorithm plays an important role in
AccSum.

Algorithm 1 (Rump-Ogita-Oishi [3]) For p ∈ F, this al-
gorithm transforms q + p′ = p.

function [q, p′] = ExtractScalar(p, σ)
q = fl((σ + p) − σ);
p′ = fl(p − q);

Here, we introduce the properties of q and p′. We assume
that

|p| < 2−Mσ (1)

is satisfied. When executing

[q, p′] = ExtractScalar(p, σ),

it holds from [3] that

|p′| ≤ uσ (2)

q ≤ σ2−M (3)

q ∈ uσZ (4)

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 508 -

We use the error-free splitting and the properties (2)–(4) to
develop a method obtaining the accurate result of matrix
multiplication.

3. Improvement of accuracy for matrix multiplication

In this section, we specialize the strategy of the accurate
summation algorithm and investigate a method of improv-
ing the accuracy of matrix multiplication.

First, we define a constant M′ as

M′ =

⌈
log2(n + 1) + 53

2

⌉
. (5)

Let A and B be A ∈ Fm×n, B ∈ Fn×p respectively. Let ma

and mb be

ma = max
1≤i≤m,1≤ j≤n

|Ai j|, mb = max
1≤i≤n,1≤ j≤p

|Bi j|.

Next we define two constants σ′, σ′′ as

σ′ = 2M′2dlog2 mae, σ′′ = 2M′2dlog2 mbe. (6)

We here split A into two floating-point matrices satisfying

A = A(1) + A(2). (7)

We denote a matrix EA ∈ Fm×n whose all elements are ones.
Using Algorithm 1, we have

A(1) = (A + σ′EA) − σ′EA, A(2) = A − A(1). (8)

For B, we can similarly have

B(1) = (B + σ′′EB) − σ′′EB, B(2) = B − B(1) (9)

where EB ∈ Fn×p whose all elements are ones. After these
splittings, matrix multiplication AB can be transformed as
follows:

AB = (A(1) + A(2))(B(1) + B(2))

= A(1)B(1) + A(1)B(2) + A(2)B(1) + A(2)B(2)

= A(1)B(1) + A(1)B(2) + A(2)B. (10)

Now we notice that there is no rounding error in the com-
putation of A(1)B(1).

Theorem 1 From the computations (5), (6), (8) and (9),
there is no rounding error in fl(A(1)B(1)) no matter what the
order of floating-point operations so that

fl(A(1)B(1)) = A(1)B(1).

Proof. For (i, j) element of A(1)B(1), we aim to prove

fl(
n∑

k=1

A(1)
ik B(1)

k j) =

n∑

k=1

A(1)
ik B(1)

k j .

From the definition of M′ and a little consideration, we ob-
tain

ma ≤ 2−M′σ′, mb ≤ 2−M′σ′′.

It shows that the assumption (1) is satisfied for all elements
A and B, and we can use the relations (2)–(4). From (4), it
holds that

A(1)
ik ∈ uσ′Z, B(1)

k j ∈ uσ′′Z. (11)

From (11), we have

A(1)
ik B(1)

k j ∈ u2σ′σ′′Z

and
n∑

k=1

A(1)
ik B(1)

k j ∈ u2σ′σ′′Z. (12)

From (3), we obtain

A(1)
ik ≤ 2−M′σ′, B(1)

k j ≤ 2−M′σ′′.

Here we consider an upper bound of |∑ A(1)B(1)|:
∣∣∣∣∣∣∣

n∑

k=1

A(1)
ik B(1)

k j

∣∣∣∣∣∣∣ ≤
n∑

k=1

|A(1)
ik ||B(1)

k j |

≤ n2−M′σ′2−M′σ′′

= n2−2M′σ′σ′′ =: t (13)

To substitute (5) into (13), we obtain

t ≤ n2−2M′σ′σ′′ = n2−2d log2(n+1)+53
2 eσ′σ′′

=
nσ′σ′′

22d log2(n+1)+53
2 e

≤ nσ′σ′′

2log2(n+1)+53

=
n

(n + 1)
uσ′σ′′ < uσ′σ′′

From (12) and (14), it is shown that the least bit of the result
and all intermediate values in the dot product are multiple
of u2σ′σ′′ and the upper bound of the dot product is less
than uσ′σ′′. Thus, there is no rounding error since all bits
of the elements of A(1)B(1) are inside of range of mantissa.
These complete the proof. �

In (10), there may be rounding errors in the computation
of A(1)B(2) and A(1)B. This is an a priori error analysis for
matrix multiplication:

|AB − fl(AB)| ≤ γn|A||B|, γn =
nu

1 − nu

For our method, it holds

|A(1)B(2) − fl(A(1)B(2))| ≤ γn|A(1)||B(2)|,
|A(2)B − fl(A(2)B)| ≤ γn|A(2)||B|.

Here, the element of A(2) and B(2) seem to be smaller than
those of A(1) and B, respectively. Therefore, it is expected
that the accuracy of result will be improved.

To make an algorithm more efficient, we discuss to take
σ′ and σ′′ smaller. Considering the independency of com-
putations for matrix multiplication, we can independently
take σ′ row-wise and σ′′ column-wise. We redefine σ′ and
σ′′ as a floating-point vector such that

σ′i = 2M′2log2 max1≤ j≤p |Ai j |, σ′′i = 2M′2log2 max1≤i≤r |Bi j |.

- 509 -

We define the following two matrices:

P1 = diag(σ′), P2 = diag(σ′′)

To split A and B, we compute the following procedures:

A(1) = (A + P1EA) − P1EA , A(2) = A − A(1)

B(1) = (B + EBP2) − EBP2 , B(2) = B − B(1)

We here present an algorithm:

Algorithm 2 Let A ∈ Fm×n, B ∈ Fn×p, this algorithm com-
putes matrix multiplication AB.

function C = Mul2(A, B)
mu = max(abs(A), [], 2);
temp = 2.ˆ(ceil(log 2(mu) + (53 + log 2(q))/2));
σ′ = repmat(temp, 1, q);
A(1) = (A + σ′) − σ′;
A(2) = A − A(1);
mu = max(abs(B));
temp = 2.ˆ(ceil(log 2(mu)) + ceil((53 + log 2(q))/2));
σ′′ = repmat(temp, q, 1);
B(1) = (B + σ′′) − σ′′;
B(2) = B − B(1);
C = A(1)B(1) + (A(1)B(2) + A(2)B);
end

Remark 1 It is better to use an accurate summation algo-
rithm to A(1)B(1) +(A(1)B(2) +A(2)B) in Algorithm 2. Error is
affected from the order of computation. We recommend to
use Sum2 [1] or ExpansionSum [2] and so on. However,
total computational cost is almost not changed.

Comparing to a result obtained by usual floating-point
arithmetic, it is expected that the accuracy of a result from
proposal method will be improved.

Our method needs matrix multiplication 3 times. The
cost of error-free splittings is almost negligible when n is
not so small compared to m and p.

If we split A and B into many matrices, it is expected
that the accuracy of the computed result is improved more
effectively. For example, we split the matrices into 3 parts
by the similar procedure to (5),(6), (8) and (9):

A =

3∑

i=1

A(i), B =

3∑

i=1

B(i)

then we can compute AB as

AB = A(1)B(1) + A(1)B(2) + A(2)B(1)

+ A(1)B(3) + (A(2) + A(3))(B(2) + B(3)) + A(3)B(1)

It involves 6 matrix products. In this computation, there is
no rounding error in fl(A(1)B(1)), fl(A(1)B(2)) and fl(A(2)B(1)).
When splitting A and B into k matrices, respectively,

A =

k∑

i=1

A(i), B =

k∑

i=1

B(i).

We can prove the following result:

fl(A′i B
′
j) = A′i B

′
j, i + j ≤ k.

4. Reducing amount of working space

When we executing Algorithm 2, we must store
A1, A2, B1, B2, σ

′(σ′′) on a memory. We assume that a
matrix is needed as working space in the computation of
C = A(1)B(1) + A(1)B(2) + A(2)B. If we apply Algorithm
2 straightforwardly, we must prepare the working space to
store 6 matrices in total. It seems to be expensive so that we
consider the way to reduce the amount of working space.
For simplicity, we assume that A and B are n-by-n floating-
point matrices, respectively.

Since all dot products in matrix multiplication are inde-
pendent each other, we can divide C into many blocks and
compute it independently. For example, when dividing C
into 2-by-2 blocks, we compute the following four proce-
dures:

C(1 : r, 1 : r) =Mul2(A(1 : r, :), B(:, 1 : r))

C(r + 1 : n, 1 : r) =Mul2(A(r + 1 : n, :), B(:, 1 : r))

C(1 : r, r + 1 : n) =Mul2(A(1 : r, :), B(:, r + 1 : n))

C(r + 1 : n, r + 1 : n) =Mul2(A(r + 1 : n, :), B(:, r + 1 : n))

where r = dn/2e. Here we denote a constant s as the size
of working space to store a matrix. Then, the amount of
working space of A1, A2, B1, B2, σ in Algorithm 2 become
s/2 and the amount of working space storing an intermedi-
ate result in the computation C becomes s/4. Total working
space becomes approximately

5
2

s +
1
4

s =
11
4

s.

Generally, when we divide the matrix d-by-d parts, the re-
quired amount of working space becomes approximately

5
d

s +
1
d2

s

We present an algorithm saving the working space.

Algorithm 3 We apply Mul2 in Algorithm 2 by using d-
by-d block matrix products.

function C = Mul2r(A, B, d)
[m, n] = size(A);
[n, p] = size(B);
lm = 1 : ceil(m/d) : m − 1;
lp = 1 : ceil(p/d) : p − 1;
lm(d + 1) = m;
lp(d + 1) = p;
for i = 1 : d

for j = 1 : d
C(lm(i) : lm(i + 1), lp(j) : lp(j + 1)) =

Mul2(A(lm(i) : lm(i + 1), :), B(:, lp(j) : lp(j + 1)));
end

end

It is certain that significant overhead occurs in Algorithm
3 on Matlab. We will check the performance of Algorithm
3 by numerical examples in the next section.

- 510 -

Table 1: Comparison of absolute errors.

φ M1 M2

1 1.5916e-012 1.1369e-013
3 4.8828e-004 2.3842e-007
5 3.2768e+004 2.0480e+003
7 1.7592e+013 1.7180e+010
9 3.6893e+019 2.8823e+017

Table 2: Comparison of relative errors.

φ M1 M2

1 5.1133e-008 3.5700e-012
3 9.5149e-008 5.6098e-011
5 2.1130e-008 3.0247e-009
7 3.4875e-009 2.2729e-009
9 2.3077e-009 3.6800e-009

5. Numerical Examples

In this section, we present numerical examples to illus-
trate the effectiveness of our algorithm. First, we generate
the matrices A and B as

(rand(10000) − 0.5). ∗ exp(φ ∗ randn(10000)).

where the function ’rand’ makes uniformly distributed
pseudo random numbers. The function ’randn’ returns a
pseudo random, scalar value drawn from a normal distribu-
tion with mean 0 and standard deviation 1. Getting φ larger,
there is big difference in the magnitude in the elements. We
compare the accuracy of the following methods:

• M1: Usual floating-point computation (2n3 flops)

• M2: Algorithm 2 (6n3 flops)

Table 1 displays the maximum of absolute errors. Table
2 displays the maximum of relative errors. These results
show that the accuracy is improved. When φ is large, the
effectiveness of our method weakens since the constant σ′

and σ′′ are taken row-wise and column-wise respectively
so that these constants are not suited for all dot products.
Elapsed time of M1 is 48 sec and elapsed time of M2 is
155 sec on Core 2 Extreme 3.0 GHz and Matlab R2007b.
It is certain that our method includes three matrix products
so that elapsed time for M2 is about 3 times slower than
that for M1.

Table 3 displays the elapsed times to execute

C = Mul2r(A, B, d)

for various d. When d turns d + 1, the performance drops
about 10 percent. It can be seen that there is trade off be-
tween the performance and required amount of memory.

Table 3: Comparison of elapsed time and amount of mem-
ory.

d time working space

1 155 6 s
2 173 11/4 s
3 191 16/9 s
4 206 13/8 s
5 216 26/25 s

In case of d = 5 from Table 3, we only prepare almost a
matrix as working space.

The advantage of our method is that the optimized BLAS
can be applied straightforwardly. Of course, we can im-
prove the accuracy of dot product by using the loop. How-
ever, it slows down the performance on the interpreter lan-
guage, for example, Matlab. Some routines from BLAS
use multithreads automatically so that we can easily do a
parallel computation.

Acknowledgments

This research was partially supported by CREST pro-
gram, Japan Science and Technology Agency (JST)
and Grant-in-Aid for Specially Promoted Research (No.
17002012: Establishment of Verified Numerical Computa-
tion) from the Ministry of Education, Science, Sports and
Culture of Japan.

References

[1] T. Ogita, S. M. Rump, S. Oishi: Accurate sum and dot
product, SIAM J. Sci. Comput., 26 (2005), 1955–1988.

[2] J. R. Shewchuk: Adaptive precision floating-point
arithmetic and fast robust geometric predicates, Dis-
crete & Computational Geometry 18 (1997), 305–363.

[3] S. M. Rump, T. Ogita, S. Oishi: Accurate Floating-
Point Summation Part I: Faithful Rounding, submitted
for publication, 2007.

[4] S. M. Rump, T. Ogita, S. Oishi: Accurate Floating-
Point Summation Part II: Sign, K-fold Faithful and
Rounding to Nearest, submitted for publication, 2007.

[5] The MPFR Library: http://www.mpfr.org/

[6] J. Demmel, Y. Hida: Accurate and Efficient Floating
Point Summation, SIAM J. Sci. Comput., 25(4):1214–
1248, 2003.

[7] David H. Bailey: A Fortran-90 Based Multiprecision
System, ACM Transactions on Mathematical Software,
vol. 21, no. 4, 379-387.

- 511 -

	Navigation page
	Session at a glance
	Technical program

