Numerical Algorithms, 59(1), 95-118 (2011)

Error-Free Transformations of Matrix Multiplication by Using
Fast Routines of Matrix Multiplication and its Applications

Katsuhisa Ozaki - Takeshi Ogita - Shin’ichi Oishi -
Siegfried M. Rump

Received: date / Accepted: date

Abstract This paper is concerned with accurate matrix multiplication in floating-point arith-
metic. Recently, an accurate summation algorithm was developed by Rump, Ogita and Oishi
[Accurate Floating-Point Summation Part I: Faithful Rounding, STAM Journal on Scientific
Computing, 31:1 (2008), 189-224]. The key technique of their method is a fast error-free
splitting of floating-point numbers. Using this technique, we first develop an error-free trans-
formation of a product of two floating-point matrices into a sum of floating-point matrices.
Next, we partially apply this error-free transformation and develop an algorithm which aims
to output an accurate approximation of the matrix product. In addition, an a priori error es-
timate is given. It is a characteristic of the proposed method that in terms of computation as
well as in terms of memory consumption, the dominant part of our algorithm is constituted
by ordinary floating-point matrix multiplications. The routine for matrix multiplication is
highly optimized using BLLAS, so that our algorithms show a good computational perfor-
mance. Although our algorithms require a significant amount of working memory, they are
significantly faster than ‘gemmx’ in XBLAS when all sizes of matrices are large enough to
realize nearly peak performance of ‘gemm’. Numerical examples illustrate the efficiency of
the proposed method.

Katsuhisa Ozaki

Department of Mathematical Sciences, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku,
Saitama-shi, Saitama 337-8570 /

JST (Japan Science and Technology Agency), CREST

Tel.: +81-48-720-6089

Fax: +81-48-720-6081

E-mail: ozaki@sic.shibaura-it.ac.jp

Takeshi Ogita

Division of Mathematical Sciences, Tokyo Woman’s Christian University, 2-6-1 Zempukuji, Suginami-ku,
Tokyo 167-8585 /

JST (Japan Science and Technology Agency), CREST

Shin’ichi Oishi

Faculty and Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjyuku-ku, Tokyo 169-0072 /
JST (Japan Science and Technology Agency), CREST

Siegfried M. Rump

Institute for Reliable Computing, Hamburg University of Technology, Schwarzenbergstr. 95, 21071 Ham-
burg, Germany /

Faculty and Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjyuku-ku, Tokyo 169-0072

schneide
Textfeld
Numerical Algorithms, 59(1), 95-118 (2011)

Keywords Matrix multiplication, accurate computations, floating-point arithmetic,
error-free transformation

1 Introduction

This paper is concerned with accurate matrix multiplication in floating-point arithmetic. To
obtain an accurate result, there are several possibilities:

— an accurate algorithm for sum and dot product (for example, [4,9,11,12])
— a multiple-precision library (for example, [14,15,7,2])

We suggest other algorithms which mainly exploit standard matrix multiplications in pure
floating-point arithmetic rather than individual dot products.

Recently, an accurate summation algorithm was developed by Rump, Ogita and Oishi
[11], which outputs a faithfully rounded result of the summation of floating-point numbers.
Their method avoids sorting of input data, branches in a main loop and direct access to the
significand or exponent. Each of those would slow down the performance of computation on
present-day architecture significantly. By avoiding all of those, their method is not only fast
in terms of the number of floating-point operations but also in terms of measured computing
time. Moreover, only basic floating-point operations [1] are required for this method, so that
it can be implemented on all computational environments following the IEEE 754 standard.

We suggest an error-free transformation of the product of two floating-point matrices
into an unevaluated sum of floating-point matrices by applying the strategy of the accurate
summation algorithm in [11]. Applying our error-free transformation partially, we can sug-
gest algorithms which deliver an accurate matrix product by mainly using floating-point ma-
trix multiplications, which in turn are performed very fast by BLAS (Basic Linear Algebra
Subprograms) routines. As to optimized BLLAS, there are Intel Math Kernel Library, Goto
BLAS [6], ATLAS [13] and others available. These codes are highly optimized for particular
architectures. Some BLLAS routines in such libraries automatically use multi-threads. More-
over, there are subprograms for sparse matrix computations, for example, Sparse BLAS [17]
and UMFPACK [18]. Our algorithms mainly use such routines for matrix multiplication so
that they are not only very effective in terms of computational performance but also easy
and often automatically parallelizable.

This paper is organized as follows. In the following section, we introduce our notation
and present the key technique of splitting a floating-point number. Next, we establish an
error-free transformation of the product of two floating-point matrices into an unevaluated
sum of floating-point matrices. In Section 3, we investigate algorithms which output an
accurate result of matrix multiplication. In the final section, we give error estimations and
the level 3 fraction for the algorithms described in Section 3. Computational results confirm
the accuracy and speed of the method.

Algorithms are represented by MATLAB-like notation [19] for simplicity.

2 Error-Free Transformation of a Matrix Product

In this section, we investigate the error-free transformation of the product of two floating-
point matrices into an unevaluated sum of floating-point matrices.

2.1 Notation

We assume that all computations are performed in binary floating-point arithmetic as de-
fined by the IEEE 754 standard [1]. Let [F be the set of floating-point numbers and u be the
unit roundoff!, Then, the significand of a floating-point number has — log, u bits including
the implicit 1. Let fl(- - -) be denote that an expression inside the parentheses is evaluated
in floating-point arithmetic with rounding to nearest (round to even tiebreaking). Note that
double roundings are not allowed in fi(- - -). Throughout this paper, assume that neither over-
flow nor underflow occurs in fI(: - -). Inequalities for vectors are interpreted element-wise.
Say, for x,y € ", x > ymeans x; > y; for | <i <n.

2.2 Error-Free Splitting

We explain the technique used in the accurate summation algorithm developed by Rump,
Ogita and Oishi [11]. For p € F and M € N, the following is a definition of o

o = 2Mollog, Ipl (1)

Assume that o € F, i.e. no overflow occurs. The following algorithm is presented in [11].

Algorithm 1 (Rump-Ogita-Oishi [11]) Assume p € F and (1) is satisfied (note that |p| <
o). The following algorithm transforms p into p’,q € F by floating-point arithmetic such
thatp =q+p’.
function [q, p'] = ExtractScalar(p, o)
g=M0(o+p)-0);
pr=0(p-q;
The values g and p’ computed by Algorithm 1 satisfy

Ipl <o2™)
and
P’ < uo, 3)
lgl < 027,)
q € uo'Z. 5)

Note that (4) and (5) imply that there are at most —log, u — M nonzero leading bits in the
binary representation of g. Here a floating-point number has ”at most & nonzero leading bit”
means that f has a binary expansion f = Zfil m; - 2¢7F with o’ < a. Hence some of the
leading « bits may be zero.

Next, we introduce a splitting algorithm for a vector. For x € ", the following algorithm
divides x into x and x®.

Algorithm 2 (Rump-Ogita-Oishi [11]) Assume x € F' and o is a power of two satisfying

o > max |x;|.
1<i<n

! For IEEE 754 binary64 (double precision), u = 273 For the binary32 (single precision), u = 272%,

o uo
a bits
RO P
IS) £§2)
2 2®
2 T 2 T
unit in the first place unit in the last place

Fig. 1 Each rectangle depicts a floating-point number. Left and right end points of a rectangle show the
unit in the first place and in the last place, respectively. Algorithm 2 divides floating-point numbers into two
floating-point numbers.

The following algorithm transforms x into XV, x® such that x = xV + x@.

function [xV, x®] = ExtractVector(x, o)
fori=1:n
& = fl((o+x) - 0);
(2) _ LY.
X; —ﬂ(x,»—xl.),
end

The properties of Algorithms 1 and 2 are different from that of Dekker’s splitting algorithm
[3]. Dekker’s algorithm splits a floating-point number x into two parts x™,) satisfying
x = x4+ x@ with x| > @], where both parts have at most s — 1 nonzero bits with
s = I'%'I (see [11] for details), ExtractVector may produce xEl) =0and xV =

; x; (see
Figure 1).

Remark 1 Properties (2), (3) and (4) are still valid for o not being a power of two (see [10]).
In our approach, it is advantageous to assume o to be a power of two.

2.3 Image of error-free transformation

To understand the error-free transformation of a matrix product described in the next sub-
section, we first consider a dot product.
Let x,y € F', namely, x = (x1, x2,..., %), ¥y = 3’1, ¥2,...,y.)" and assume n < u~!.
In this subsection, we transform a dot product x”'y into an unevaluated sum of floating-point
numbers. First, we define a constant @ by
log, u + [log,]

a=-———0 | (©6)

—log, u bits
I (#)"
| | (x(n)T y®
| | (=) y

Fig. 2 Assume that vectors x and y are divided into x(" + x® and y(» + y®, respectively. A floating-point

i M\’ ; i ; My ;
evaluation of (x) ¥ does not cause rounding errors. It is expected that the magnitude of (x) yWis

T T
greater than the magnitude of (x(z)) yD and (x(z)) y.

We aim to split x into two floating-point n-vectors xV, x® such that

x= x4 4@,

where the binary representation of each element in x() has at most & nonzero leading bits.
The situation is depicted in Figure 1. If we use Algorithm 2, then it is possible to obtain two
such vectors by pure floating-point arithmetic. Similarly, we split y into y",y® € F* such

that y = y + y®_ After these splittings, the dot product x”y is calculated as

xly= (x(”)T ¥y + (x(l))T ¥+ (E(z))T . -

A similar splitting is used in ‘Issresidual’ in INTLLAB [20]. Note that there is no rounding
T
error in fl ((x(l)) y(l)) (see Figure 2). The reason is as follows: We execute
[x(l),g(z)] = ExtractVector(x, o), [y(l),y(z)] = ExtractVector(y, 1),

where the constant 7 is a power of two and T > max,«;«, |y;|- For suitable o and 7, we obtain

(1)

i

(

|x§1)| <2%0, x;’€ucZ and |y§1)| < 2%, yil) curZ forl<i<n.

A detailed discussion follows in next subsection. Now we have xl(.l)yl(.l) € v?o1Z, and the

dot product (x)"y1 is bounded by
T n
I(x(l)) Yy < Z ngl)yl(.l)l < 2’0t < uor, (8)
i=1
where the last inequality is derived from 2%¢ < (nu)~"'.

Remark 2 Tf a real number |f] is an integer multiple of 2" and f < 2"u™! is satisfied for
m €N, then f € F.

[log, 1] 1 2c g
|]
| ys"
|)

] 2Dy

,,,,,,,,,,,,,,,,,,,,)
S () 1™

~— —log, u bits ——
Fig. 3 This visualizes the dot product. Each of x(ll)y(ll), ey x(l")y(l") has at most 2a nonzero leading bits, so

MY 5 i i
that | (x) y'V] is representable in at most —log, u bit.

This remark and (8) imply that i((x")Ty™M) = (x1)TyM, see also Figure 3.
Exploiting (7) to calculate x”y, it is expected that the accuracy of the computed result
of x"y increases, in particular, if cancellation occurs in the computation. The reason is as

T
follows: fl ((x(l)) y(l)) does not cause rounding errors, so that the accuracy of the floating-

point result by (7) depends on the errors in fl ((x(l))Ty(z)) and fl ((x(z))Ty). Since |x(V| and
[y™M] are greater than |x®| and |y®|, respectively, except x’ = y(= 0, the order of the
T T

magnitude of the rounding errors in fl ((x(z)) y(l)) and fl ((x(z)) y) are usually smaller than
in fi(x"y).

Next we split x? into two floating-point numbers such that x» = x® + x®, where x@
has at most @ nonzero leading bits. Then x = x + x® + x®_ By repeating this splitting
k — 1 times, we have

x:x(1)+x(2)+...+£("), y:y(1)+y(2)+...+y(k),

where x?, y® (i < k) have at most @ nonzero leading bits. After that, we expand

(2

xTy = (x(l) +xP 4+ g(k))r (y(l) +y7 4+ + X(k)). ©)

By factorizing some parts as follows:

Xy = Z (x(i))T YO & kz_i ((x(i))T X(k—i+1)) + (I(k))Ty (10)
i=1

i+j<k

because
k-1

ylkeirl) Z YO 4y R o D) B,

J=k—i+1

53 bits

]

27

(

(2T y@
I (@)

(zM)" y®

(x@))T y®@

(

27

| | (Iac—l))T y@

| | (g(k))Ty

T .
Fig. 4 In this figure the number of nonzero leading bits in (x“)) yY(i+ j < k) does not exceed — log, u. The

T
computation of fl ((x(’)) y(-’)) may cause rounding errors only fori + j =k + L.

Note that utilizing the recursive definition of y*~*1 reduces the number of terms in (10) to
about one half compared to a full expansion of (9). We stress that there is no rounding error
in each dot product in the summation of the first term in (10) (see Figure 4 for illustration),
such that

(x(i))T Yy =1 ((x(i))T y(j)) fori+ j<k.

Using similar arguments, it can be expected that the result of the floating-point evalua-
tion of (10) is more accurate than that of (7). By repeating the splitting, there exists some
p € Nsuch that x = 37| x© where all elements in x have at most & nonzero leading bits.
Figure 5 is the image of the splitting of x. Similarly,

q
y=>7 qeN

=1
so that all elements of x, y) have at most @ nonzero leading bits. The dot product x”y is
Ty =0+ x@ 4)TN 1@ 4y,

If we expand the above expression straightforwardly, we can compute each fi((x®)y¥))
without rounding error, i.e.

YD = AP YD) for (1 <i<p, 1< j<q).

« bits « bits « bits « bits
| | T T
xgu xgz) xgs)
| | T2
xg) wg) xg) xy)
| T3
wg) xg) xg)
| 5,
xg) xg) wf) w%)

Fig. 5 This figure illustrates the splittings. Each floating-point number has at most @ nonzero leading bits.

If each fi(x?)!'y) is stored into s; € F, the dot product can be transformed into the un-
evaluated sum of floating-point numbers s; such that x'y = 3/ s;. This is an error-free

transformation of the dot product.
2.4 Proposed method
We extend the error-free transformation of the dot product to that of a matrix product. For

A = (a;;) € ™ and B = (b;;) € F*?, we develop an error-free transformation for the
multiplication AB. We assume 7 < u~'. First, we define a constant 8 by?

(1D

5= [log, n] —log, u _[logyn—log, u
2 2 ’

where the second equality is not difficult to prove. We also define two vectors o) €
F", v e F? by
(1) (1)
oV =28 .20 LD =280

where two vectors PV and Q1) are defined by
(1) _ ., 1 _ .
P =log, max laijll, Q" = [log, max b]. (12)
Remark 3 Purpose of computing 2" " and 22 s to find f, g € F" which are powers of 2

such that
max la;| < f, max|b;| < g.
1<j<n 1<i<n

We need not to assume in (12) that all row vectors in A and column vectors in B are not zero
vectors if we use the function NextPowerTwo in [11].

2 From (6) and (11), we could confirm that @ + B =—log,u.

We split A and B as follows:
AL Zq ((A +oD .y — oM. eT) . A® =1 (A _A<1))
BV =1 ((B fe-@_e. (T(l))T) . BY=n(B-BY), (13)

where e = (1,1,..., 1), Then, as in Algorithm 1,

A=AD 1 A® B=pBD 4B,
Next, we define ® and 7@ from A® and B® by

o? =227 D=0,
where P® and Q® are defined by

(2) _ (2) (2) _ (2)
P =log, fg,% |ﬂ,’j I, Qj = [log, {2&72 |Q,‘j [1-
Using these vectors, we compute
A® —q ((A(Z) +0P. @, eT) . A®=1f (A(Z) _ A(Z)) ,
B —f (@(2) e @) y_e. (T(z))T) . BY=1(B% - B?).
The above computations are also the extended variants of Algorithm 1, so that we have
AD 2 AD L A® | A= AD 1 AD 4 4G
B = g® 4y B® g pgh 4 pg® , go).

Generally, let ™, 7™ be

o™ =200 A =080, (14)
where P™ and O™ are defined by

(W) _ (w) (W) _ (w)
P =[log, max la;; "1, Q;" =log, max Ib;; 11
Then " "
(w) P (w) o
a1 <25, 1B < 2%

We obtain A®, B, AW+D) and B¥+D by

AW = f (@(W) + oM. eT) — oW eT) , A(WH) =1 (A(W) _ A(W)) ,

B™ =1 (@“ +e- @) y-e- (r<"‘>)T) . BV = (B™ ~ BY). (15)
Repeating the calculations (14) and (15), there exist some constants n4, ng € N such that
A= A0 B=)'BY, A"V =0,. B"=0,, (16)

where O,,, denotes the m-by-n zero matrix. If there is a large difference in the order of
magnitude among the elements in the rows of A or the columns of B, then n, or ng in
(16) becomes large, respectively, and the amount of working space increases. In this case,
many matrix products need to be computed. However, it is expected that several matrices
are sparse in this case. By utilizing the sparse representation and sparse matrix products, the
amount of working space decreases and the algorithm works faster.

10

Remark 4 An upper bound of n, and ng can be obtained as follows: If max;<;<, Igg”"“)l is

k
less than the last bit of min<x<, 4,20 lai| for all i, that is

@D < on min agl, 1<i<m,

max |a,
1<k<n, a;j#0

1<k<n —

then the splitting is finished. We take an upper bound on the left-side in the above-mentioned
inequality as follows:

(4)
P < u2f+ L max o)

max |a, [V < uo!™ = w22 "
! I<k<n —*

1<k<n —

IA

w2’ 12 . max |a"™V
() L<k<n "

IN

< (2P max ayl
1<k<n

Therefore, we aim to find n4 satisfying the following:

(u2f*lym max lagl <2u min ayl, 1<i<m.
<Kk<n

1<k<n, ay#0
Let my be
. 2 MmN <f<n,a,20 |aik|
my = mn ———————
I<i<m MaX)<r<n |ail
then

2Py < amy,.

Finally, we obtain n,4 as
log, u + log, my

> logyu+pg+1

Therefore, ny should be the smallest integer satisfying the above-mentioned inequality. Us-
ing similar arguments, it is possible to obtain the upper bound of ng. Let mp be

2 ming <iep by 20 bl

mp = min
I<j<sp MaXi<k<p |bjl

Then we have
log, u + log, mp

log,u+p+1
Therefore, the matrix product AB can be calculated as
AB = [A<’>] (B(S)] .

Now we present the following theorem stating that there is no roundoff error in i(A®” B®), 1 <
r<na,l <s<ng.

Theorem 1 Let A € F™" and B € F™P. Applying (14) and (15) repeatedly, (16) is satisfied
for A and B, and there is no roundoff error in (A B®), 1 <r<ns, 1 <s<np ie.

ﬂ(A(r)B(S)) = AMWB®)

11

Proof. For all (i, j) elements in AB, we aim to show
f [Z a;pbg;y] SO0, 1<ism 1<j<p.
k=1 k=1

From (15), A” and BY are generated using o and 7, respectively. From (14), we can
use the relations (3), (4) and (5). From (2) we have

<2700, B <22 I<ism 1<j<p 1<k<n,

and by (5) it follows that

(r) (r) () (s)

a;; €euo’Z, bi; € llTjS Z. (17)

From (17) we obtain
aby) e w7z, (18)

which implies
al(.,?b,(f) €u O'(r)T(?)Z (19)
k=1

It follows by (4) that

a1 <277 -7,) <2770 (20)

From (20) we calculate upper bounds of the dot products

Z (")b(Y) Z |a(")||b(?)| < Z (2—,30-1("') . 2_ﬁT§-Y))

k=1
= n27ﬁo'l(.r) - ﬂr;” =n2 ¥ oY, @1

and by (11) we obtain

logy n-logo u
2 —=———

n2—2ﬁ < n- 1 < n2_1°g1 n+log, u - (22)

From (21) and (22) we have

n

() 1,()
Z ay by;

k=1
so that the relations (18), (19) and (23) show

{u o2 < |Zk L b(s)

< uo_(r) (Y) (23)

¢ <uo” -7V Yayb) # 0

24)
i a(r)b(f) =0if 3 agl:)bkj — (

From Remark 2, this means that there is no roundoff error in (A B®)).This completes the
proof. [
Theorem 1 implies an error-free transformation of a matrix product by

AB = Z fi(AD B,

1<i<ng, 1< j<ng

It means that the product AB of two floating-point matrices can be transformed into an un-
evaluated sum of nsnpg floating-point matrices, provided no overflow and underflow occurs.

Next we give an algorithm for error-free transformation of the matrix A into an uneval-
uated sum of floating-point matrices.

12

Algorithm 3 Let ¢ with 0 < 6§ < 1 be the criterion for using the sparse formula. Concretely,
if the number of nonzero elements in an m-by-n matrix is less than dmn, a sparse represen-

I
tation is used. Algorithm Split_A(A, £) transforms A into Z D" (¢ < ¢) without rounding

r=1

errors by (14) and (15).

function D = Split_Mat(A,¢,d)

q = size(A,?2);

k=1,

B = fl([(-log,(w) + log 2(¢))/2)1);

D{1} = zeros(size(A));

while (k < ¢)
(1 =max(abs(4),[],2); % u(i) = max;<j<, la;|
if (max(u) ==0) % check a;; = 0 for all (i, j)

return,;

end
w = fI(2."(ceil(log 2(u)) + B));
S =repmat(w,1,q); %S =w-e’
Dk} =fl((A+S5)-S);
A = fl(A - D{k});
% Checking sparsity of D{k}
if (nnz(Dfk}) < § = m = n), D{k} = sparse(D{k}); end

k=k+1;
end
ifk==10

Di{k} = A;
end

end

nj
If condition (16) is required, set £ = oco. In that case, we can find n4 such that A = Z D"

r=1
na

(A= D{r} in MATLAB notation).
r=1

Similarly, the matrix B is split into an unevaluated sum of floating-point matrices B =
¢

Z E® by E = (Split Mat(B',())
s=1
This suggests the following algorithm:

T

Algorithm 4 For two matrices A € F™", B € TP, this algorithm transforms the matrix
product AB into an unevaluated sum of floating-point matrices without rounding errors such
that

nang
AB = Z co, O epren,
i=1

13

function C = EFT_Mul(A, B, 9)
[m,n] = size(A); [n, p] = size(B);
D = Split_Mat(A, inf, §); ns = length(D);
E = Split_Mat(B?,inf,§); np = length(E);
forr=1:ng, E{r) = E{r}T; end
t=1;
forr=1:ny
fors=1:np
C{t} = i(Dfr} = E{s});
t=t+1;
end
end
end

After this transformation we can apply accurate summation algorithms for floating-point
numbers. Exploiting the algorithms in [11,12] we can guarantee

— element-wise signs,

a faithful result,

the nearest result, or

a result with K-fold accuracy

of the matrix product. If we apply such accurate summation algorithms, then the additional
cost for using an accurate summation algorithm becomes O(nyngmp) flops®. If there is no
sparse computation in Algorithm 4, then the costs of Algorithm 4 becomes 2nsngmnp flops.
Therefore, it is expected that the computing time for the usage of accurate summation algo-
rithms is not too expensive compared to that of Algorithm 4 for large n.

2.5 Numerical Examples

In this section we show numerical examples to illustrate the efficiency of the proposed algo-
rithm. First, we generate matrices A, B by

(rand(n) — 0.5). * exp(¢ * randn(n)). (25)

Here, all elements of A and B are binary64 floating-point numbers. The function randn(n)
returns an n-by-n matrix containing pseudo-random values drawn from the standard normal
distribution. The function rand(n) returns an n-by-n matrix containing pseudo-random val-
ues drawn from the standard uniform distribution on the open interval (0, 1). The function
exp(X) returns the componentwise exponential of X. The items n4 and ng labeled in Tables 1
and 2 show that the matrices A and B are split into an unevaluated sum of n4 and ng floating-
point matrices, respectively. Let #; be computing time for dense matrix multiplication AB by
pure floating-point arithmetic, #, be computing time for Algorithm 4. The examples in Ta-
ble 1 are tested using Intel Core 2 Duo 1.2 GHz and MATLAB 2009a, n = 1000. We set ¢ in
Algorithm 4 as 0.1. The examples in Table 2 use Intel Core 2 Extreme 3.0 GHz and MAT-
LAB 2007b, n = 2000. Again, § in Algorithm 4 is taken as 0.1. The item ‘ratio’ in Tables 1
and 2 denotes t,/t;. When ¢ in (25) increases, ny and ng become larger. When ¢ = 1, both
A and B are divided into an unevaluated sum of four floating-point matrices. This means 16

3 Here flops means a number of floating-point operations as defined in [5]. Note that it does not mean
“floating-point number operations per second’.

14

Table 1 The ratio of computing time of Algorithm 4 to the built-in matrix product for various problems with

n = 1000 (Intel Core 2 Duo).

ratio (no sparse)

ratio (using sparse)

1 4 4 18.7 13.0
5 6 6 40.9 29.8
101 9 9 85.0 421
15 (12 12 151 66.1

Table 2 The ratio of computing time of Algorithm 4 to the built-in matrix product for various problems with
n = 2000 (Intel Core 2 Extreme).

¢ [na np

ratio (no sparse)

ratio (using sparse)

1 4 4 19.7 20.8
5 6 6 415 32.8
101 9 9 89.0 74.9
15| 12 12 154 108

matrix products in Algorithm 4. Since we use the MATLAB built-in sparse format, the ratio
becomes 13.0, which is less than 16. When ¢ becomes much larger, applying sparse routine
can reduce the computing time significantly.

Remark 5 Sparse matrix multiplication by MATLAB is executed with a single thread. If
this point is improved in the future, the performance of our method is also improved.

3 Application of the Error-Free Transformation of a Matrix Product

The algorithm in the previous section first transforms a matrix product into an unevalu-
ated sum of floating-point matrices. Applying accurate summation algorithms, for example
[11,12,10], produces an accurate approximation of the product independent of the condition
number. In this section, we apply only a partial error-free transformation in order to compute
an approximation of the product with improved accuracy (compared to the ordinary prod-
uct). We also present numerical results. Mathematical properties of the proposed algorithm
will be discussed in the next section.

3.1 Accurate matrix multiplication

First, we divide the matrices A and B into unevaluated sums of two floating-point matrices
by (13). Then the matrix multiplication AB can be calculated by

AB = (AD + AP)BY + B, (26)
As in ‘Issresidual’ in INTLAB [20] we expand the above-mentioned expression into
AOVBDL 4 AORD) L A@OBD 4 4@ B = 4O BM) 4 (A(I)B(Z) +A(2)B). 7

Recall from Theorem 1 that there is no roundoff error in the computation fI(A’ B1V). Here,
roundoff errors may occur only in the computations in (A B?) and fi(A® B). However,
it is expected that the order of magnitude in A® and B® is smaller than that of A and

15

B, respectively. Thus, roundoff errors in fi(A® B) and fI(AV B®) are usually less than that
in fi(AB). Therefore, compared to the result of fi(AB), the accuracy of the result is often
improved by using the formula (27).

Moreover, it is possible to extend this strategy into the case of using an unevaluated sum
of three floating-point matrices. In this case, the matrix product AB is expanded into

AB = (AD + A® 1 A®)BD + B 1 BO)), (28)

Collecting some parts in the above expression we obtain

AB = AVBD 4 (AQBD 4+ ADBDY 4 (ADBO) 1 A RO 4 AB) By

where there is no roundoff error in i(A® BM), (A BD) and (A B?) as by Theorem 1.
It can be expected that the accuracy is improved compared to (27). If we split the matrices A
and B into unevaluated sum of k floating-point matrices respectively by (14) and (15) such
that

k=1 k=1
A=N'AD L A® B Z BY 4+ g®
i=1 Jj=1

where

AG-D 2 AG=D A gi=D _pi=D gD)<<k A=A BV =B,

then we compute the matrix product AB by

k=1
Z ADBD 4 Z ADRk=i+D) | A0 p (29)
i+j<k i=1

This involves k(k — 1)/2 + k matrix products. From Theorem 1, it was proved that

AADBY) = ADBYD i+ j<k.

Next, we present an algorithm computing the matrix product AB by (29):

16

Algorithm 5 For matrices A € F"™" and B € ™7, this algorithm outputs an accurate
approximation of AB using (29).

function C = Acc_Mul(A, B, k,)
[m,n] = size(A); [n, p] = size(B);
D = Split_Mat(A,k,95); ha = length(D);
E = Split_Mat(B”,k,6); hg = length(E);
fori=1:hg E{i}=Efi}"; end
[=0;
for r=1:min(hy, k- 1)
for s =1 : min(hg, k- 1)

if(r+s<=k)
[=1+1;
G{l} = i(D{r} = E{s}); % error-free
end
end
end
forr=1:hy
F = zeros(n, p);
fors=k—r+1:hg, F=1(F+ E{s}); end
[=1+1;
G{l} = 1(D{r} = F);
end
C =G{1};
fori=2:1
C =I(C + G{i});
end

end

Remark 6 We recommend using an accurate summation algorithm for the final summation
of [floating-point matrices ZLl G{i} in the last loop of Algorithm 5. The additional cost for
the use of an accurate summation algorithm is relatively small except when the inner dimen-
sion 7 is very small. Otherwise, we apply the pure floating-point summation in ascending
order of indices i. The reason is that the magnitude of G{i} is almost known in advance.

3.2 Numerical results

We show some numerical examples to illustrate the efficiency of Algorithm 5. First, we
generate matrices A and B € F”" by (25) with n = 1000, respectively. We compare the
accuracy of results and computing times of the following six methods:

— M, : Pure floating-point matrix multiplication by A * B in MATLAB (21* flops)

— M,: Issredisual in INTLAB [20], (67° + O(n?) flops, —1ssresidual(A, B, zeros(n)))
— Ms: Algorithm 5, k = 2 (613 + O(n?) flops, Acc_Mul(4, B, 2,0.2))

— My: Algorithm 5, k = 3 (121 + O(n?) flops, Acc_Mul(4, B, 3,0.2))

— Ms: Algorithm 5, k = 4 Q0 + O(n?) flops, Acc_Mul(A, B, 4,0.2))

— Mg: XBLAS [7] (371 + O(n?) flops, gemmx(1, A, B, 'x’))

17

Table 3 Comparison of RelErr(AB,C).

¢ | M, M, M; My Ms Mg

1 5.64e-010 8.12¢-011 7.95e-015 2.20e-016 3.27e-016 1.11e-016
5 3.48e-011 2.39e-011 7.28e-012 2.19e-016 3.24e-016 1.11e-016
10 | 2.90e-011 2.68¢e-011 8.88e-011 1.59¢-012 2.21e-014 1.11e-016
15 | 6.81e-012 5.29¢-012 5.39¢-012 5.60e-012 4.18e-012 1.11e-016

Table 4 Comparison of the computing times.

¢ [Mi My My My Ms Mq
1 1 330 334 741 104 99.1
5 1 329 335 7.62 11.7 959
10 1 330 240 341 860 849
15 1 330 274 381 713 97.1

Let C be a computed result by method M, M,, M3, My, Ms or M. The maximum relative
error to the exact matrix product AB as displayed in Table 3 is defined by

RelErr(AB,C) := lrga}i(n [(AB);; — Cyjl/I(AB);jl, (AB);; # 0.

The exact matrix product AB is computed by multi-precision library with enough precision.
Table 3 shows the above-mentioned RelErr(AB, C). In Table 4, the computing times for
My, M, M3, My, Ms and Mg are displayed with that for M; being normalized to 1. These
examples are tested on Intel Core 2 Duo 1.2 GHz and MATLAB 2009a *. We downloaded
the MATLAB mex® code of Mg for the implementation from [16].

From Table 3 we see that the accuracy of the results of M, and the proposed methods are
improved when ¢ is small. When we look at ¢ = 10 in Table 4, the ratio of the computing
time of M3 is 2.40. If the computations are performed by the routine of dense matrix mul-
tiplication, the ratio should be larger than 3 since M3 involves three matrix multiplications.
This is the effect of using sparse matrix computations. Actually, D and E® in Algo-
rithm 5 become sparse matrices. From Table 4, the ratio of computing time for XBLAS is
much larger than expected by the ratio (375 /213) of the flop count. This is because My, M,
M3, My and Ms receive much benefit from the optimized BLLAS in terms of computational
performance while My does not.

As a drawback of our algorithm, the required amount of working space is significantly
larger than that for gemmx. In addition, if ¢ is large, the proposed method could not improve
the accuracy of the result efficiently, whereas XBLAS could output more accurate results
than our algorithm.

Next, we generate matrices A and B by

A =gallery('randsvd’, 1000, cnd, 3, 1000, 1000,1), B = A\ randn(n),

and compare the maximum of relative errors by M; to Mg (Table 5). For the detail of the
function gallery, see [8]. Here, cnd is the matrix condition number. If the condition num-
ber is large, then heavy cancellation occurs in the product of AB. Therefore, the more the

4 The CPU has 2 cores, however, the examples are tested with a single core since gemmx by [16] works
with single thread.
5 MATLAB provides interfaces to external routines written in other programming languages.

18

Table 5 Comparison of each RelErr(AB,C).

cond(A) | M1 Mz M3 M4 M5 M(,
10% 1.59e-007 6.15e-009 1.21e-013 2.21e-016 3.26e-016 1.11e-016
10% 1.74e-003 2.33e-006 4.45e-010 1.37e-015 2.17e-016 1.11e-016

1072 1.42e+001 1.25e-002 5.32e-005 8.95e-012 2.13e-016 1.48e-015

condition number increases, the more difficult it is to obtain an accurate result. From Table 5
M, and Ms are comparable to Mg in terms of the accuracy for condition number 10*. For
condition number 102, Ms is also comparable to M. We stress that the computing times in
this example are similar to those displayed in Table 4, so that M5 is much faster than M.

4 The characteristic of the proposed method

In this section, we describe properties of our method. First, we will provide an a priori error
estimate of Algorithm 5. Next, we will give the level 3 fraction of the algorithm.

4.1 A priori error estimate for the proposed method

We assume that each matrix product in (29) is stored into G® € F™?, As for details, each
matrix product in the first term in (29) is stored from GV to G*¥*~D/2) Each matrix product
in the second term in (29) is stored from G**=D/2+1) o G*,=D/2+k) Namely, we have

GO = AVBD, GO = ADRD) GO - AQ BN GRE-D/2) _ pk-Dp
G(k(k—l)/2+1) — A(l)B(k) G(k(k—l)/2+2) — A(Z)B(/»’—l) o G(k(k—l)/2+k) — A(k)B_
Moreover, we define G := fi(G™) for all v.

Theorem 2 Assume that

k=1 k(k—1)/2+k
C = Z ﬂ(A(l)B(/)) + Z ﬂ(A(l)é(k*lH)) + ﬂ(é(k)B) — Z G®.
i+j<k i=1 k=1
Then,
T
IC = AB| < nky, - 2P0 . (277) (227) = E. (30)

If DV is the result ofﬂ(zlz(:kl_l)/%k G®), then

K(k=1)/2+k
IDY — C| < Yi-1y/248-1 Z IG|
=1

k(k=1)/2+k G(k)

If D is the result of a summation algorithm for Y, pa

[11], then

with faithful rounding as in
k(k—1)/2+k

Z GO

i=1

ID? - C| < 2u

19

Therefore, if we apply ordinary floating-point summation in final summation in Algorithm 5,

then
k(k—1)/2+k

IDV — AB| < |C = AB| + D = C| = E + yig1y244-1 Z IGO. (1)
i-1
If we apply a summation algorithm with faithfully rounded result, then

k(k=1)/2+k
ID® — AB| < |C — AB| +|D® - C| = E + 2u| Z GD. (32)
i=1

Proof. The error bounds of |[D") — C| and |D® — C| are easily obtained by an a priori error
analysis and definition of the faithful rounding. Therefore, we show only the error bound of
|C — AB|. Lety, be

YV forneN. (33)

= nu
Then from [8], an upper bound of the rounding error of the floating-point matrix product
fi(AB) is

|AB — fi(AB)| < y,|AllBl. (34)
From (29) we obtain
k(k—1)/2+k k=1
|C —AB| = Z GO — Z ADBU) _ ZA(i)é(k*l‘rl) —é(k)B
i=1 i+ j<k i=1
k(k=1)/2+k k(k—=1)/2+k
— GO _ Go
k(k—=1)/2+k
< > I6P-69.

i=1

Since there is no rounding error in fI(A? BY) for i + j < k (see Theorem 1), we obtain an
upper bound of |C — AB| using (34) as

k(k—1)/2+k
C-aBl< > 1G0-GP<y, > APIBY = F,
i=k(k—1)/2+1 i+ j=k+1

where we use B = B. By extending (3) and (4) to matrix operation, we obtain
AD| < 2B . g0 T |BD <2 B (T(j))T, i j<k, (35)
MO <u o@D B <ue- (fDY i<k ij# 1 (36)
From the definition of c® in (14) and P, we obtain

g-(l) = 23 . ZPES) — 25 . 2[‘10g2 max<j<n \QS)H

We take an upper bound for @ by using (36) as follows:
a® < 2B 2|’log3 maxicjen (o V")l _ 2B . zlogl max; < je, (ol Deel);

=28 max (u- o ely =28 u. gD = . gl (37)
<j<n

20

where h := —log, u. Here for X;; € R™", we define
T
max X;; = | max X;;, max X,j,..., max X,,;] €R".
1<j<n 1<j<n 1<j<n 1<j<n

Note that all elements in u - =" are powers of 2. Applying (37) recursively yields
@ < 2B =) < 2B-M (=2 o< QBIN=1) () — pB=h=1) . B PV (38)
By substituting (38) to (35), we have
AD| < 2B P T (39)
Substituting (38) to (36) yields

|é(i)| <u-28.B-mi-2) P LT < pB=mi-1) PV T
Using similar arguments for B, we obtain
1B < 26-WU-D . (2Q(1))T’ 1BY| < 26-W0D . (QQ(U)T_ (40)
Note that (40) is also satisfied for j = 1. From (39) and (40), err; is bounded by

_h\(i— (1) (i N
|C—AB|§F§7,,‘Z’;12(/3 W 1>-(2”)-eT-z(ﬂ Y 1>-e-(2Q)
i+j=k+

= 260D (3PV) . o o (227) @1
Vn szzkﬂ () e e ()

= nk - Vi - z(ﬁ—h)(kfl) . (2P“)) (2Q(1))T O

In the estimate E is dominant. Since the upper bound |C — AB| depends on row-wise or
column-wise maximum elements in A and B, we cannot compare (34) with (32) straightfor-
wardly. However, when 26~h <« 1 and k increases, the order of magnitude of E; decreases
with the factor around 267, For example, in binary64, n = 1000 yields 26~ = 272, Also,
n = 10000 yields 26~ = 2719 This is the reason why our method can produce the accurate
approximation of a matrix product. We give the following corollary.

Corollary 1 Assume that both the matrices A and B are divided into k floating-point matri-
ces and we apply the accurate summation algorithm for the final summation in Algorithm 5.

If
brs
bry

2w < rs

< 2% for all combinations of indices and w > 0 (42)

)

aij

is satisfied, then we obtain

VnlAllB. (43)

ID? — AB| < (2(/3—/1)(k—1)+2w+1 + 2(1 - ”“))
n

21

Proof.
From the definition of PV and O™, and (42), we have
T
n(2")(2¢") < 22/A|IBI. (44)
From (30), we obtain
ICl < |AB| + E < |A|B| + E. 45)

By substituting (44) and (45) into (32), and a little consideration, (43) can be obtained [J.
If there is not much difference in the order of the magnitude in the elements in the same
row in A and the elements in the same column in B, k = 2 is enough to obtain a better bound
than (33) except for huge n. Suppose, as an example, 1072 < g; i bij < 10? for all i, j and
n = 1000. Then
ID® — AB| < 27%,|A||B|.

4.2 Level 3 fraction

In order to show the performance of the proposed method, we derive a level 3 fraction for
Algorithm 5:
Acc Mul(A, B,k,6), 0<d6<1

Here, the level 3 fraction shows the amount of matrix multiplication in the given algorithm
[5]. In this paper, we consider the ratio:

computational costs for dense matrix products
computational costs for Algorithm 5

The computational costs for Algorithm 5 are counted by ‘flops’. To simplify the discussion
simple, let A, B € F>" be square matrices. Then the number of matrix products becomes
k(k — 1)/2 + k =: t. Let s be the number of sparse matrix products. It implies that the
number of dense matrix products is — s. Computational costs for dense matrix products are
2n3(t - 5) flops. For sparse matrix multiplication, we count the maximal computational costs
as 2s6n° flops. Note that the costs for splitting matrices and others are O(n?) flops. If 7 is
large to extent, in total, the minimal ratio of the amount of dense matrix products in whole
computations becomes

2n3(t — s) N t—=s
23t —s)+s5 2003 +0m2) t+s@S-1)

This ratio confirms that for few sparse matrix products the level 3 fraction for our algorithm
is quite high. Namely, our method derives full benefit of the optimization by BLLAS.

(46)

5 Conclusion

In this paper, we have investigated an error-free transformation of a matrix product. We
transformed the product of two floating-point matrices into an unevaluated sum of floating-
point matrices without roundoff errors. Using this error-free transformation, we presented
a method which outputs an accurate approximation of the matrix product. Our method
uses mainly level 3 routines by optimized BLAS resulting a good performance. Finally,
we showed why our method produces an accurate approximation of the matrix product. The
accuracy of the computed result increases with the number of summands by the error-free
transformation of the matrix product.

22

References

—_

10.
11.

12.

. IEEE Standard for Floating-Point Arithmetic, Std 754-2008, 2008.
. David H. Bailey: A Fortran-90 Based Multiprecision System: ACM Transactions on Mathematical Soft-

ware 21:4, 379-387 (1995).

. T.J. Dekker: A floating-point technique for extending the available precision, Numerische Mathematik

18:3, 224-242 (1971).

. J. Demmel, Y. Hida: Accurate and Efficient Floating Point Summation, SIAM J. Sci. Comput. 25:4,

1214-1248 (2003).

. G. H. Golub, C. F. Van Loan: Matrix Computations, Third Edition, The Johns Hopkins University Press,

1996.

. K. Goto, R. V. D. Geijn: High-performance implementation of the level-3 BLAS, ACM Transactions on

Mathematical Software 35:1, Article No. 4 (2008).

. X. Li, J. Demmel, D. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Kang, A. Kapur, M. Martin,

B. Thompson, T. Tung, D. Yoo, Design, Implementation and Testing of Extended and Mixed Precision
BLAS, ACM Transactions on Mathematical Software 28:2, 152-205 (2002).

. N.J. Higham: Accuracy and Stability of Numerical Algorithms, second edition, SIAM Publications,

Philadelphia, 2002.

. T. Ogita, S. M. Rump, S. Oishi: Accurate sum and dot product, SIAM J. Sci. Comput. 26, 1955-1988

(2005).

S.M. Rump: Ultimately Fast Accurate Summation. STAM J. Sci. Comput. 31:5, 3466-3502 (2009).

S. M. Rump, T. Ogita, S. Oishi: Accurate Floating-Point Summation Part I: Faithful Rounding, SIAM J.
Sci. Comput. 31:1, 189-224 (2008).

S. M. Rump, T. Ogita, S. Oishi: Accurate Floating-Point Summation Part II: Sign, K-fold Faithful and
Rounding to Nearest, SIAM J. Sci. Comput. 31:2, 1269-1302 (2008).

. C.R. Whaley, A. Petitet and J.J. Dongarra: Automated empirical optimizations of software and the AT-

LAS project, Parallel Computing 27, 3-35 (2001).

. The MPFR Library: http://www.mpfr.org/
. exflib - extend precision floating-point arithmetic library:

http://www-an.acs.i.kyoto-u.ac.jp/ " fujiwara/exflib/exflib-index.html

. http://www.eecs.berkeley.edu/ " yozo/

. The NIST Sparse BLAS: http://math.nist.gov/spblas/original.html

. http://www.cise.ufl.edu/research/sparse/umfpack/

. MATLAB Programming version 7, The MathWorks.

. SM. Rump: INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Com-

puting, pages 77-104. Kluwer Academic Publishers, Dordrecht, 1999.

