
Componentwise Verified Solutions of Linear Systems Suited for Java

K. Ozaki1, T. Ogita2,3, S. Miyajima3, S. Oishi3, S. M. Rump4

1 Graduate School of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
2 CREST, Japan Science and Technology Agency (JST)

3 Faculty of Science and Engineering, Waseda University, Japan
4 Inst. f. Computer Science III, Hamburg University of Technology, Germany

Email: k ozaki@suou.waseda.jp

Abstract—A fast and portable verification method is
proposed for computing tight and componentwise error
bounds for approximate solutions of linear systems. This
method requires no switch of rounding mode so that it is
applicable in Java keeping the portability. Finally numer-
ical examples are presented to show the efficiency of this
method.

1. Introduction

In this paper, we are concerned with a verification for an
approximate solution of a linear system

Ax = b , (1)

where A is a real n×n matrix and b a real n-vector. For veri-
fication for an approximate solution of (1), various methods
have been proposed (e.g. [7, 8, 5, 11]). Especially in this
paper, we consider the verification method for approximate
solutions of linear systems implementable on a wide range
of programming language including Java.

Here, it should be explained why special attention must
be paid for Java. On the one hand, Java has remarkable
splendid features. For instance, it is a portable program-
ming language, i.e. it is designed to be independent of op-
erating systems and compilers. Thus, once one develops
a Java’s program, one can obtain the same result on ev-
ery platform. The performance of Java has recently been
surprisingly increased via developments of its optimization
techniques. As a result, recently, Java has been used in high
performance computing. On the other hand, to keep the
portability, the switch of rounding modes in IEEE 754 stan-
dard has not been supported independently in Java. There-
fore, to verify an approximate solution of (1) keeping the
portability, we should develop a method which does not use
the directed rounding of IEEE 754.

We have recently proposed a fast verification method
suited for Java [9], which does not use the directed round-
ing. In [9], we used only the round-to-nearest mode to give
verified normwise error bounds. For this aim, we have uti-
lized a priori error estimates for floating-point arithmetic.
Moreover, an accurate and portable dot product algorithm
proposed in [6] has been introduced into the method to
avoid overestimation which is often observed when using
a priori error estimates.

However, such a normwise estimation does not neces-
sarily give a tight bound for each entry of an approximate
solution because the normwise bound often depends on an
entry whose absolute value is the largest in all entries of
the solution vector. Namely, if there is a big difference
among the solution in terms of the order of magnitude, its
normwise error bound should be overestimated for an entry
whose absolute value is relatively small.

The purpose of this paper is to propose a fast verifica-
tion method which supplies a tight and componentwise er-
ror bound keeping the portability of Java. The proposed
method is based on Ogita-Oishi-Ushiro method [5] which
gives a tight and componentwise error bound for an ap-
proximate solution of (1). Following [9], we utilize a priori
error estimates and a fast and portable dot product algo-
rithm to avoid switching the rounding mode and to obtain
a tight error bound in Java. Finally, the results of numeri-
cal experiments are presented to show the efficiency of this
method.

2. Floating-Point Arithmetic in Java

In Java, the formats of IEEE 754 single and double pre-
cisions are adopted with respect to the floating-point num-
bers [3]. The round-to-nearest mode is set up in default.
However, the switch of rounding modes is not supported.
The extended precisions for single and double precisions
are admitted by IEEE 754, respectively. In Java, the ex-
tended precisions as “widefp mode” are set up in default.
However, such extended precisions depend on CPUs in use
so that it lessens portability of computational result. To
keep the portability, one should use “strictfp mode”. In this
mode computations are executed strictly in IEEE 754 sin-
gle or double precision. Therefore, computational results
are always the same in every computer environment pro-
vided that one uses strictfp mode.

Let F be a set of floating-point numbers. Let fl(· · ·) be
the result of a floating-point computations, where all oper-
ations inside parentheses are executed by ordinary floating-
point arithmetic only in round-to-nearest mode. We assume
that no over/underflow occurs.

We cite here the notations used in this paper. Let u be
the unit roundoff (especially, u = 2−53 in IEEE 754 double
precision). For a, b ∈ F and x, y ∈ F

n, we will use the

2005 International Symposium on Nonlinear
Theory and its Applications (NOLTA2005)

Bruges, Belgium, October 18-21, 2005

749

following relations [7]:

|a + b| ≤ (1 + u)fl(|a + b|) (2)

(1 + u)n|a| ≤ fl
(|a|

1 − (n + 1)u

)
(3)

‖x‖∞ = fl(‖x‖∞) (4)

Note that x ≤ y means xi ≤ yi for all i. Moreover, we denote
by |x| the nonnegative vector with |x| = (|x1|, . . . , |xn|)T . For
real matrices, similar notations will be used.

We briefly review an accurate algorithm of calculating
dot products and matrix-vector products with error bounds
proposed in [6]. For x, y ∈ F

n, their algorithm

[res, err] = DotKErr(x, y,K)

calculates an approximation res of xT y as if calculated in
K-fold the working precision and its error bound err such
that

res − err ≤ xT y ≤ res + err.
The algorithm DotKErr consists of only ordinary floating-
point operations, so that an accurate dot product and its er-
ror bound can be calculated without directed rounding. We
can apply the algorithm for calculating matrix-vector prod-
ucts. We assume that we can calculate an accurate matrix-
vector product z = Ax + αy for A = (ai j) ∈ F

m×n, x, y ∈ F
n

and α ∈ F as if calculated in K-fold the working precision
and its error bound as follows:

z = MVK(A, x, α, y,K)

or
z = MVKErr(A, {x(1), x(2), . . . , x(m)}, α, y,K)

and

[zmid, zrad] = MVKErr(A, {x(1), x(2), . . . , x(m)}, α, y,K).

The latter calculates zmid and zrad such that

zmid − zrad ≤
m∑

k=1

Ax(k) + αy ≤ zmid + zrad.

3. Previous Verification Methods

In this section, we briefly review a method of obtaining
a verified error bound for an approximate solution of (1).

3.1. Ogita-Rump-Oishi Method

A verification method for (1) without directed rounding
has been proposed by Ogita, Rump and Oishi [7]. In [7],
some a priori error estimates for floating-point arithmetic
are presented.

If floating-point numbers α and β can be obtained such
that ‖RA − I‖∞ ≤ α < 1 and ‖R(Ax̃ − b)‖∞ ≤ β, then A is

nonsingular and an error bound of an approximate solution
x̃ of (1) is given as

‖x̃ − A−1b‖∞ ≤ fl
(
β/(1 − α)

1 − 3u

)
. (5)

Ogita-Rump-Oishi method gives a way of calculating α
and β without directed rounding. We denote the algo-
rithm presented in [7] which calculates an upper bound α
of ‖RA − I‖∞ as α = Alpha.Std(A,R). It holds that

α ≤ fl(‖RA − I‖∞) + cnu · cond(A), (6)

where cond(A) := ‖A‖2 · ‖A−1‖2. We also denote the algo-
rithm presented in [7] which calculates an upper bound β
of ‖R(Ax̃ − b)‖∞ as β = Beta.Std(A, x̃, b,R).

It is known that the bound using a priori error estimates
often becomes pessimistic to a certain extent. Therefore,
in [9] we have improved the estimation of β by combining
the a priori error analysis [7] with the accurate dot product
algorithm [6]. The algorithm presented in [9] denotes β =
Beta.New(A, x̃, b,R).

We here present an algorithm presented in [9] which cal-
culates an upper bound of ‖x̃ − A−1b‖∞.

Algorithm 1 (Ozaki et al. [9]) Let A ∈ F
n×n and b ∈ F

n.
Let R be an approximate inverse of A and x̃ an approxi-
mate solution of Ax = b. Then the following algorithm
calculates an upper bound err of ‖x̃ − A−1b‖∞.

function err = Ozaki.Method(A, x̃, b,R)
α = Alpha.Std(A,R)
if α ≥ 1, error(’verification failed’), end
β = Beta.New(A, x̃, b,R)
err = fl((β/(1 − α))/(1 − 3u))

4. A New Method

In this section, we propose a new method of calculat-
ing tight and componentwise error bounds for approximate
solutions of linear systems.

We first introduce a theorem presented by Ogita, Oishi
and Ushiro [5].

Theorem 1 (Ogita et al. [5]) Let A, b, x̃ be as in Algo-
rithm 1. Let r := Ax̃ − b and z̃ be an approximate solution
of Az̃ = r. Then it holds that

|x̃ − A−1b| ≤ |z̃| + ‖A−1‖∞ ‖Az̃ − r‖∞ e, (7)

where e = (1, . . . , 1)T ∈ R
n.

To obtain tight and componentwise error bounds, we
here utilize the Ogita-Oishi-Ushiro method. Regarding z̃
in (7) as the sum of vectors

∑m
k=1 |z̃(k)| with z̃(k) ∈ F

n, we
have

|x̃ − A−1b| ≤
m∑

k=1

|z̃(k)| + ‖A−1‖∞
∥∥∥∥∥∥∥

m∑
k=1

Az̃(k) − r

∥∥∥∥∥∥∥∞
e. (8)

750

On estimating an upper bound of ‖A−1‖∞, if we obtain α
such that ‖RA − I‖∞ ≤ α < 1, then

‖A−1‖∞ ≤ ‖R‖∞1 − α . (9)

From (2), an upper bound of ‖R‖∞ can be calculated by

‖R‖∞ ≤ (1 + u)n−1Rnorm, (10)

where Rnorm := fl (‖R‖∞). It follows that

‖A−1‖∞ ≤ ‖R‖∞1 − α ≤ (1 + u)n−1 Rnorm

1 − α. (11)

We next consider estimating
∥∥∥∑m

k=1 Az̃(k) − r
∥∥∥∞. We de-

note z̃(k) ∈ F
n for k = 1, . . . ,m as correction vectors for an

approximate solution x̃, which are calculated as follows:

for k = 1 : m

r(k) = MVK(A, {x,−z̃(1), . . . ,−z̃(k−1)},−1,b, k + 1)
z̃(k) = fl(Rr(k))

end

Moreover, an inclusion of r(m+1) := r − ∑m
k=1 Az̃(k) can be

calculated using MVKErr by

[rmid, rrad] = MVKErr(A, {x,−z̃(1), . . . ,−z̃(m)},−1,b,m + 2).

Using (2), we have

‖r(m+1)‖∞ ≤ (1 + u)rnorm, (12)

where rnorm := fl (‖|rmid| + rrad‖∞). From (4), (11) and (12),
we have

‖A−1‖∞‖r(m+1)‖∞
≤ (1 + u)n Rnormrnorm

1 − α
≤ fl

(
(Rnormrnorm)/(1 − α)

1 − (n + 4)u

)
=: βnew. (13)

Using (2) and (3), we can calculate an upper bound of∑m
k=1 |zk | as

m∑
k=1

|z̃(k)| ≤ fl
(∑m

k=1 |z̃(k)|
1 − mu

)
=: t. (14)

From (13) and (14), we finally have

|x̃ − A−1b| ≤ fl
(t + βnewe

1 − 2u

)
. (15)

Even if ‖A−1‖∞ is large, it can be expected to obtain suf-
ficiently small ‖r(m+1)‖∞ as m increases. Therefore, the sec-
ond term βnewe is almost negligible by this approach. We
now present the following algorithm.

Algorithm 2 Let A, b, R and x̃ be as in Algorithm 1. Then
the following algorithm calculates an upper bound y of |x̃−
A−1b|.

function y = Proposal.Method(A, x̃, b,R,m)
α = Alpha.Std(A,R)
if α ≥ 1, error(’verification failed’), end
for k = 1 : m

r(k) = MVK(A, {x,−z̃(1), . . . ,−z̃(k−1)},−1, b, k + 1)
z̃(k) = fl(Rr(k))

end
[rm, rr]=MVKErr(A, {x,−z̃(1), . . . ,−z̃(m)},−1, b,m + 2)
rnorm = fl(‖|rmid| + rrad‖∞)
Rnorm = fl(‖R‖∞)

βnew = fl
(

(Rnormrnorm)/(1 − α)
1 − (n + 4)u

)

t = fl
(∑m

k=1 |z̃(k)|
1 − mu

)

y = fl ((t + βnewe)/(1 − 2u)) % e = (1, . . . , 1)T

In Algorithm 2, it requires 2n3 flops to calculate α for
bounding RA − I and O(n2) for the other computations, so
that Algorithm 2 requires still 2n3 flops in total. Therefore,
it can be expected that computing time for Algorithm 2 is
almost the same as that for Algorithm 1. We will confirm
it by numerical experiments in the next section.

5. Numerical Experiments

In this section, we illustrate the effectiveness of the pro-
posed method. Following two methods are implemented
on a PC with Pentium M 1.1GHz CPU and J2SDK1.4.2 06
as Java compiler and VM with IEEE 754 double precision
and strictfp mode:

Method A Normwise error bound (Algorithm 1)

Method B Componentwise error bound (Algorithm 2)

We use JAMA [4], which is a Java matrix package, for cal-
culating an approximate inverse R and an approximate so-
lution x̃ of Ax = b.

First, we choose A a floating-point n×n matrix whose en-
tries are pseudo-random numbers uniformly distributed in
[−1, 1]. We put b := fl(A · c) with c := (10, 20, . . . , 10n)T .
As x̃, we use an approximate solution with almost the maxi-
mum accuracy in double precision obtained by the iterative
refinement method (cf. e.g. [2, pp. 126–127]).

In Table 1, computing time for applying Methods A
and B for various n, for an LU factorization (LU) using
Gaussian elimination and for calculating R (INV) are dis-
played. The notation B(m) means that Method B is applied
as Proposal.Method(A, x̃, b,R,m).

751

Table 1: Comparison of computing time (sec) for various
n.

n LU INV A B(1) B(2) B(3)
100 0.1 0.4 0.03 0.04 0.06 0.09
500 0.41 2.98 1.35 1.36 1.68 2.34

1000 3.41 23.9 9.64 10.1 11.5 14.4
2000 26.7 199 74.4 75.8 82.4 95.6

Table 2: Comparison of error bounds for various cond(A)
with n = 1000.

cond(A) A B (for x1) B (for x1000)
102 9.09e-13 5.00e-16 7.19e-14
104 9.06e-13 8.29e-18 7.05e-13
106 9.05e-13 8.39e-16 6.10e-14
108 9.04e-13 1.51e-17 2.94e-13
1010 9.85e-13 2.19e-16 1.77e-13

From Table 1, it can be seen that computing time for
Method B is comparable to that for Method A even if m in-
creases. Computing time for B(1) is almost the same as that
for Method A. Although computing time for B(3) is about
30% as much as that for Method A, computing time for the
whole verification process strongly depends on calculating
the approximate inverse R.

Next, we fix n = 1000 and choose A a floating-point
n × n matrix with an arbitrary condition number cond(A)
presented by Rump [10]. We again put b := fl(A · c) with
c := (10, 20, . . . , 10n)T . Table 2 displays the error bounds
obtained by Methods A and B for the smallest solution x1

and the largest solution x1000. Of course, Method A gives
the same error bound for x1 and x1000. The number of iter-
ations m in Method B is adapted to cond(A).

Actually, when cond(A) is from 102 to 104, Method B
with m = 1 is sufficient to obtain a tight and component-
wise error bound for x̃. From Table 2, we can confirm that
Methods A and B give a tight normwise error bound and a
tight componetwise error bound for x̃, respectively.

In conclusion, it turns out that we can obtain a tight com-
ponentwise error bound for an approximate solution of a
linear system by Algorithm 2 using Gaussian elimination
with a little additional cost.

Acknowledgments

This research was partially supported by CREST pro-
gram, Japan Science and Technology Agency (JST), 21st
Century COE Program (Productive ICT Academia Pro-
gram, Waseda University) from the Ministry of Education,
Science, Sports and Culture of Japan.

References

[1] ANSI/IEEE, IEEE Standard for Binary Floating
Point Arithmetic, Std 754–1985 edition, IEEE, New
York, 1985.

[2] G.H. Golub, C.F. Van Loan: Matrix Computations,
3rd edition, Johns Hopkins University Press, Balti-
more and London, 1996.

[3] J. Gosling, B. Joy, G. Steele, G. Bracha: The
Java Language Specification, 2nd edition, Addison-
Wesley, 2000.

[4] MathWorks, NIST: JAMA – A Java Matrix Package.
http://math.nist.gov/javanumerics/jama/

[5] T. Ogita, S. Oishi, Y. Ushiro: Computation of sharp
rigorous componentwise error bounds for the approx-
imate solutions of systems of linear equations, Reli-
able Computing 9:3 (2003), 229–239.

[6] T. Ogita, S.M. Rump, S. Oishi: Accurate sum and dot
product, SIAM J. Sci. Comput., 26:6 (2005), 1955–
1988.

[7] T. Ogita, S.M. Rump, S. Oishi: Verified solution of
linear systems without directed rounding, Technical
Report No. 2005-04, Advanced Research Institute for
Science and Engineering, Waseda University, 2005.

[8] S. Oishi, S. M. Rump: Fast verification of solutions
of matrix equations. Numer. Math., 90:4 (2002), 755–
773.

[9] K. Ozaki, T. Ogita, S. Miyajima, S. Oishi, S.M.
Rump: A method of obtaining verified solutions for
linear systems suited for Java, Journal of Computa-
tional and Applied Mathematics, to appear.

[10] S.M. Rump: A class of arbitrarily ill-conditioned
floating-point matrices, SIAM J. Matrix Anal. Appl.,
12:4 (1991), 645–653.

[11] S.M. Rump: Verification methods for dense and
sparse systems of equations, Topics in Validated Com-
putations – Studies in Computational Mathematics (J.
Herzberger ed.), 63–136, Elsevier, Amsterdam, 1994.

752

