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FAST VERIFICATION OF SOLUTIONS OF MATRIX EQUATIONS

SHIN’ICHI OISHI∗ AND SIEGFRIED M. RUMP †

Abstract. In this paper, we are concerned with a matrix equation

Ax = b

where A is an n× n real matrix and x and b are n-vectors. Assume that an approximate solution ex is given together with an

approximate LU decomposition. We will present fast algorithms for proving nonsingularity of A and for calculating rigorous

error bounds for ‖A−1b − ex‖∞. The emphasis is on rigour of the bounds. The purpose of this paper is to propose different

algorithms, the fastest with 2
3
n3 flops computational cost for the verification step, the same as for the LU decomposition. The

presented algorithms exclusively use library routines for LU decomposition and for all other matrix and vector operations.

1. Introduction. Recently, an increasing number of papers is concerned with so-called computer-
assisted proofs. For example, the famous 300-years-old Kepler conjecture [3, 4], the double-bubble conjecture
[5], existence of eigenvalues below the essential spectrum of the Sturm-Liouville problem [1] and others have
been solved, partly with the help of numerical calculations. An obvious requirement for a numerical algorithm
to be usable in computer-assisted proofs is complete rigour including all possible numerical and floating point
errors. The purpose of this paper is to present fast algorithms of that type for systems of linear equations.

Let A be an n × n real matrix and x and b be n-vectors. In this paper, we are concerned with the matrix
equation

Ax = b.(1)

The purpose of this paper is to present fast algorithms answering the following:

i) Is the matrix A nonsingular?
ii) In case of A being nonsingular, estimate the distance between the exact solution of equation (1) and

a given approximate solution.

For a given approximate solution x̃, we consider the problem of calculating bounds of ‖A−1b− x̃‖∞, where
‖x‖∞ is the infinity norm in IRn:

‖x‖∞ = max
1≤i≤n

|xi|.(2)

Moreover, we calculate the computational cost using the unit ”flops”. Namely, the computational cost of a
basic floating point operation +,−, ·, / is counted as one flop. For example, a matrix multiplication requires
2n3 + O(n2) flops.

The following statement is well-known and a starting point of the discussions of this paper. Assume that
some approximate inverse R of the matrix A is given together with an approximate solution x̃ of equation
(1). If

‖RA− I‖∞ < 1(3)

is satisfied, then A−1 exists, and using A−1 = (I − (I −RA))−1R the following inequalities hold:

‖A−1‖∞ ≤ ‖R‖∞
1− ‖RA− I‖∞ , ‖A−1b− x̃‖∞ ≤ ‖R(Ax̃− b)‖∞

1− ‖RA− I‖∞ .(4)

The paper is organized as follows. We will solve i) and ii) with complete rigour. For this purpose we first
repeat some basic properties of floating point arithmetic following the IEEE 754 standard. Then, in Section
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3, we give algorithms for computing bounds according to (4) in floating point. We also show how similar
estimations can be derived without explicit computation of an approximate inverse R but based on a given
(approximate) LU decomposition.

In the following Section 4 we show how i) and ii) can be solved by a priori estimates for the LU decomposition,
where some technical parts of the proofs are deferred to an appendix. The a priori estimates cover all errors
and are valid in the presence of underflow.

The main advantage of these estimates, beside requiring only O(n2) flops, is that they are independent of the
order of execution of the operations in the LU decomposition and independent of the actual partial pivoting.
This implies that they are applicable to standard library routines.

Finally, we give some computational results in Section 5 showing performance and limits of the proposed
algorithms.

2. Floating Point System. Let IR denote the set of real numbers, and let IF denote a set of floating
point numbers. In the following we assume that floating point operations on IF satisfy the IEEE 754 arith-
metic standard [7]. This assumption is fulfilled on most PC’s and workstations, and on many mainframes.

More precisely, the following properties are used. For an arithmetic expression, denote by fl(·) its value
computed by floating point arithmetic. It is assumed that

fl(x op y) = (x op y)(1 + δ1) + η1

= x op y
1 + δ2

+ η2

(5)

for op ∈ {+,−, ·, /} and some |δi| ≤ u, |ηi| ≤ u. For double precision, u = 2−53 is the relative rounding error
unit, and u = 2−1074 the underflow unit. Moreover,

ηi = 0 for op ∈ {+,−} and
δiηi = 0 for op ∈ { ·, / },(6)

and a ∈ IF implies −a ∈ IF. An excellent treatment of floating point computations and error analysis can
be found in [6].

The above statements hold for rounding to nearest. Beside that we use rounding downwards and rounding
upwards in order to compute rigorous bounds. We assume the possibility to ”switch the rounding mode”.
That means, all operations following a statement

setround(down)

are rounded downwards until the next call to setround, and similarly for rounding upwards. This implies for

setround(down)
c = fl(a op b) % lower bound for a op b

setround(up)
c = fl(a op b) % upper bound for a op b

(7)

that c, c ∈ IF satisfy

c ≤ a op b ≤ c.(8)

This is true for all a, b ∈ IF and all op ∈ {+,−, ·, /}, also in the presence of underflow, and IEEE 754 ensures
that c, c ∈ IF are best possible.

Rounding properties (7) and (8) extend to vectors and matrices. We note that throughout the paper we will
use absolute value and comparison for vectors and matrices always entrywise. Let, for example, A,B ∈ IFn×n
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be given. Then

setround(down)
C = fl(A ·B)
setround(up)
C = fl(A ·B)

(9)

produces (floating point) matrices C,C ∈ IFn×n with

C ≤ A ·B ≤ C

for entrywise comparison, i.e. Cij ≤ (A · B)ij ≤ Cij for all i, j. This follows by repeated application of
(8). Note that this is independent of the order of execution of the operations in A · B. This observation is
important because it allows to use BLAS routines [2] with blocked and optimized algorithms. This does not
apply to fast matrix multiplication algorithms such as Strassen’s method (for an excellent treatise of this
and other fast matrix multiplication methods see [6, Chapter22]). These are sometimes used for very large
matrix dimensions. As has been mentioned, conventional blocking and optimization does not affect validity
of our bounds.

Calculation of bounds should be performed carefully. For example, for A ∈ IFn×n and x̃, b ∈ IFn, consider

setround(down)
res = fl(Ax̃− b) % lower bound for Ax̃− b

setround(up)
res = fl(Ax̃− b) % upper bound for Ax̃− b

Algorithm 2.1. Rigorous bounds for Ax̃− b

As before it follows

res ≤ Ax̃− b ≤ res(10)

by repeated application of (7) and (8), and we will use this in the following. Note that the same approach
applied to b−Ax̃ does not necessarily deliver correct results because of inappropriate rounding modes.

3. Verification of results. Using IEEE 754 arithmetic, especially (7), (8), (9) and Algorithm 2.1,
condition (3) can be checked and rigorous bounds (4) can be calculated as follows. Let A,R ∈ IFn×n and
x̃, b ∈ IFn be given and consider

setround(down)
G = fl(RA− I) % lower bound for RA− I

res = fl(Ax̃− b) % lower bound for Ax̃− b

setround(up)
G = fl(RA− I) % upper bound for RA− I

res = fl(Ax̃− b) % upper bound for Ax̃− b

resmid = fl((res + res)/2) % conversion to
resrad = fl(resmid − res) % midpoint radius

Algorithm 3.1. Bounds for RA− I and Ax̃− b

Note that there are no a priori assumptions on A, R, x̃ and b. Repeatedly using (7) and (8) implies RA− I ∈
[G, G] and Ax̃− b ∈ [res, res], both in the induced componentwise partial ordering for vectors and matrices.
Furthermore, resmid and resrad are both calculated with rounding upwards, which implies

resmid − resrad ≤ Ax̃− b ≤ resmid + resrad.(11)
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In the following, we will frequently use this transformation from infimum-supremum to midpoint-radius
bounds. The next algorithm checks nonsingularity of A and calculates upper bounds for ‖A−1‖∞ and
‖A−1b− x̃‖∞.

G = max{|G|, |G|} % componentwise absolute value and maximum
setround(down)
4 = fl(R · resmid) % lower bound for R · resmid
setround(up)
4 = fl(R · resmid) % upper bound for R · resmid
4 = fl(max(|4|, |4|) + |R| · resrad) % upper bound for |R(Ax̃− b)|
Gnorm = max

1≤i≤n

n∑
j=1

Gij % ‖RA− I‖∞ ≤ Gnorm

Rnorm = max
1≤i≤n

n∑
j=1

|Rij | % ‖R‖∞ ≤ Rnorm

4norm = max
1≤i≤n

4i % ‖R(b−Ax̃)‖∞ = |‖R(Ax̃− b)|‖∞ ≤ 4norm

D = −(Gnorm − 1) % 1− ‖RA− I‖∞ ≥ D

if D > 0 % A is nonsingular
Ainvnorm = Rnorm/D % ‖A−1‖∞ ≤ Ainvnorm
errnorm = 4norm/D % ‖A−1b− x̃‖∞ ≤ errnorm

else
print (’verification of nonsingularity of A failed’)

end

Algorithm 3.2. Rigorous bounds for ‖A−1‖∞ and ‖A−1b− x̃‖∞

To prove correctness we note that (11) implies

R · resmid − |R| · resrad ≤ R(Ax̃− b) ≤ R · resmid + |R| · resrad,

and by ∆ ≤ R · resmid ≤ ∆ and observing the rounding modes in Algorithm 3.2 it follows

|R(Ax̃− b)| ≤ max(|∆|, |∆|) + |R| · resrad ≤ ∆.

The other inequalities noted in the comments on the right follow similarly. Careful check of the rounding
modes implies that if Algorithm 3.2 terminates with success (D > 0), then

‖A−1‖∞ ≤ Ainvnorm and ‖A−1b− x̃‖ ≤ errnorm.

Algorithms 3.1 and 3.2 require together four switches of the rounding mode and, including the 2n3 flops to
calculate R, a total of 6n3 flops for rigorous computation of the bounds, a factor 9 to Gaussian elimination.
Other verification methods like in [8, 10, 11] require the same computing time.

A way to reduce computational costs is to replace the approximate inverse R. Let an approximate LU

decomposition be given, i.e. LU ≈ PA with a permutation matrix P carrying pivoting information. For
approximate inverses XL and XU of L and U , respectively, we may replace R by XUXLP . Inserting this
into (4) yields

‖A−1b− x̃‖ ≤ β
1− α with α = ‖XUXLPA− I‖∞ and

β = ‖XUXLP (Ax̃− b)‖∞,
(12)
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provided α < 1. The quantity α can be bounded by the following algorithm. Note that PA causes only a
permutation of the rows of A.

setround(down)
C = fl(XL · PA) % lower bound for XLPA

setround(up)
C = fl(XL · PA) % upper bound for XLPA

Cmid = fl((C + C)/2) % conversion to
Crad = fl(Cmid − C) % midpoint radius
setround(down)
C = fl(XU · Cmid − I) % lower bound for XU · Cmid − I

setround(up)
C = fl(XU · Cmid − I) % upper bound for XU · Cmid − I

4 = fl(max(|C|, |C|) + |XU | · Crad) % upper bound for |XUXLPA− I|
α = max

1≤i≤n

n∑
j=1

∆ij % upper bound for ‖XUXLPA− I‖∞

Algorithm 3.3. Rigorous bound for ‖XUXLPA− I‖∞
Obviously, α < 1 proves nonsingularity of the matrix A.

Given an approximate LU decomposition, additional computational costs for proving nonsingularity are as
follows. For computation of XL and XU , totally 2

3n3 flops are needed, and 5n3 flops for Algorithm 3.3,
summing to 17

3 n3 flops, a slight improvement to the first approach. However, the actual performance in
terms of elapsed time is better for the first approach with Algorithms 3.1 and 3.2 because 4n3 flops are spent
to compute bounds for RA − I, and this code allows better optimization than the product of a triangular
matrix and a full matrix.

Using the results of Algorithms 2.1 we may bound β as follows.

res = max{|res|, |res|} % componentwise absolute value and maximum
4 = fl(|XU | · (|XL| · (P · res))) % upper bound for |XUXLP (Ax̃− b)|
β = max

1≤i≤n
∆i % upper bound for ‖XUXLP (Ax̃− b)‖∞

Algorithm 3.4. Rigorous bound for ‖XUXLP (Ax̃− b)‖∞
This algorithm requires only 4n2 operations. However, for ill-conditioned matrices the bound may become
pessimistic, in the worst case by about a factor cond(XU ) ∼ cond(U) ∼ cond(A). The overestimation
depends on the matrix.

It is superior - and requires totally only 5n2 flops - to bound β along the lines of Algorithms 3.1 and 3.2.
Assume resmid and resrad with (11) be given. These quantities can be computed by Algorithm 3.1 omitting
lines 2 and 5. Then the following algorithm calculates a bound for β.

setround(down)
c = fl(XL · (P · resmid)) % lower bound for XL · (P · resmid)
setround(up)
c = fl(XL · (P · resmid)) % upper bound for XL · (P · resmid)
cmid = fl((c + c)/2) % conversion to
crad = fl(cmid − c) % midpoint radius
setround(down)
c = fl(XU · cmid) % lower bound for XU · cmid
setround(up)
c = fl(XU · cmid) % upper bound for XU · cmid
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∆ = fl(max{|c|, |c|}+ |XU | · crad) % upper bound for |XUXLP (Ax̃− b)|
β = max

1≤i≤n
∆i % upper bound for ‖XUXLP (Ax̃− b)‖∞

Algorithm 3.5. Rigorous bound for ‖XUXLP (Ax̃− b)‖∞
It is a common heuristic that in an LU decomposition the factor L is well-conditioned, whereas the condition
cond(A) moves into U . This means cond(U) ∼ cond(A) but cond(L) ∼ 1. Hence the bounds for XLP (Ax̃−b)
will, in general, be narrow such that the final bound β will be of good quality.

In the next section we will derive a verification method requiring only 2
3n3 flops.

4. Fast Verification. For given PA ≈ LU and XL ≈ L−1, XU ≈ U−1, the computationally expensive
part in (12) was to bound α = ‖XUXLPA− I‖∞. Given XL and XU , we will derive a method to compute
such a rigorous bound in O(n2) flops. The method is based on estimations of the residuals ‖PA − LU‖∞,
‖XLL− I‖∞ and ‖XUU − I‖∞:

‖XUXLPA− I‖∞ ≤ ‖XUXL(PA− LU)‖∞ + ‖XU (XLL− I)U‖∞ + ‖XUU − I‖∞.(13)

We first derive an estimation of ‖PA−LU‖∞. For the moment assume no pivoting is necessary, i.e. P = I.
Every implementation of an LU decomposition is based on solving the n2 nonlinear equations (LU)ij−Aij = 0
for Lik and Ukj . As an example, consider Doolittles’s method (Algorithm 9.2 in [6]).

for k = 1 : n

for j = k : n

Ukj = Akj −
k−1∑
i=1

LkiUij

end
for i = k + 1 : n

Lik = (Aik −
k−1∑
j=1

LijUjk/Ukk

end
end

Every other, mathematically equivalent variant of Gaussian elimination implements the same formulas to
compute Ukj and Lik, only in a different order of computation.

The necessary floating point analysis including underflow is rather technical and deferred to the appendix.
Corollary 7.2 can be applied to every variant of Gaussian elimination and yields for the computed values
L̃ik, Ũkj ,

|Akj −
k−1∑
i=1

L̃kiŨij − Ũkj | ≤ γn

k∑
i=1

|L̃ki| |Ũij |+ n
1−nu · u, j > k,

|Aik −
k∑

j=1

L̃ijŨjk| ≤ γn

k∑
j=1

|L̃ij | |Ũjk|+ n+|eUkk|
1−nu · u, i > k.

Finally, Gaussian elimination with pivoting is equivalent to Gaussian elimination without pivoting applied
to a permuted matrix. Henceforth, we have the following result.

Theorem 4.1. For given n × n real matrix A suppose L,U are computed by some variant of Gaussian
elimination such that PA ≈ LU , where P is a permutation matrix storing pivoting information. If nu < 1,
then, also in the presence of underflow,

|PA− LU | ≤ γn · |L| · |U |+ ne + diag(|U |)
1− nu

· eT · u,(14)

where e = (1, . . . , 1)T , diag(|U |) = (|U11|, . . . , |Unn|)T , γn = nu/(1 − nu) and u, u are the relative rounding
error and underflow unit, respectively (u = 2−53 and u = 2−1074 in IEEE 754 double precision).
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In the same way we analyze ‖XUU − I‖∞ and ‖XLL− I‖∞ using Lemma 7.3 and observing that we need a
small right residual.

Theorem 4.2. Let a nonsingular triangular n × n matrix T be given, and suppose, the rows xT
i of an

approximate inverse X are computed by substitution, in any order, of n linear systems TT · xi = ei, ei

denoting the i-th column of the identity matrix. Then, including possible underflow,

|XT − I| ≤ γn|X| |T |+ ne + diag(|T |)
1− nu

eT · u.(15)

For unit triangular T it is

|XT − I| ≤ γn|X| |T |+ neeT

1− nu
· u.(16)

By inserting (14), (15) and (16) into (13) we obtain

α = ‖XUXLPA− I‖∞
≤ ‖ |XU | |XL| |PA− LU |e‖∞ + ‖ |XU | |XLL− I| |U |e‖∞ + ‖ |XUU − I|e‖∞
≤ γn‖ |XU | |XL| |L| |U |e‖∞ + δn‖ |XU | |XL|(ne + diag(|U |))‖∞ · u

+γn‖ |XU | |XL| |L| |U |e‖∞ + nδn‖ |XU |e‖∞‖ |U |e‖∞ · u
+γn‖ |XU | |U |e‖∞ + δn‖ne + diag(|U |)‖∞ · u

with δn = n/(1− nu). Summarizing we have the following result.

Proposition 4.3. For given n× n real matrix A suppose L,U are computed by some variant of Gaussian
elimination with partial pivoting, where pivoting information is stored in some permutation matrix P such
that LU ≈ PA. Suppose XL, XU are rowwise computed inverses of L,U , respectively by successive solution of
LT x = ei, U

T x = ei. Assume nu < 1. Then, including possible underflow, bounds for α := ‖XUXLPA−I‖∞
can be computed in O(n2) flops by

α ≤ 2γn‖ |XU |(|XL|(|L|(|U |e)))‖∞ + γn‖ |XU |(|U |e)‖∞ + ε · u,(17)

where

ε = δn{(‖ |XU |(|XL|e)‖∞ + 1)(n + max
1≤i≤n

|Uii|) + n‖XUe‖∞‖Ue‖∞},

δn := n/(1 − nu), e = (1, . . . , 1)T , u denoting the relative rounding error unit and u the underflow unit
(u = 2−53 and u = 2−1074 in IEEE 754 double precision).

Obviously, the upper bound for α can be computed on O(n2) flops, and the term δ · u covering underflow is
usually negligible. We note that the proposition holds similarly for complete pivoting or no pivoting, with
well-known advantages and disadvantages.

Henceforth, ‖XUXLA− I‖∞ can be estimated in O(n2) flops such that additional computational cost of the
entire verification process is 2

3n3 + O(n2) flops, basically the time spent to calculate XL and XU . By the
same method and using (4) we obtain bounds for ‖A−1‖∞ in the same computing time.

We mention again that all three methods use standard library routines for computing an approximate inverse
R or an approximate LU decomposition. The only additional code to be written uses again standard library
routines for matrix-matrix and matrix-vector multiplication. Especially, no interval arithmetic routines have
to be written nor to be used.

5. Computational results. The described methods for verification of nonsingularity of A and for
rigorous bounds of ‖A−1b− x̃‖∞ compute quantities α, β such that α < 1 implies A to be nonsingular and
then β/(1− α) is an upper bound for ‖A−1b− x̃‖∞. For the first method,

α1 = ‖RA− I‖∞ and β1 = ‖R(Ax̃− b)‖∞
7
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Figure 5.1. Geometrically distributed singular values

for the second

α2 = ‖XUXLPA− I‖∞ and β2 = ‖XUXLP (Ax̃− b)‖∞,

and for the third we used the a priori estimation (17) and β3 = β2. We distinguish and give computational
results for these three methods:

method R Algorithms 3.1 and 3.2 6n3 flops
method LU Algorithms 3.3, 2.1 and 3.5 17

3 n3 flops
method a priori LU Estimation (17), Algorithms 2.1 and 3.5 2

3n3 flops

As a set of test matrices we take randsvd matrices from the Test Matrix Toolbox [6, Chapter 26.3]. These
are random matrices we prespecified singular values and henceforth prespecified condition number. A certain
mode controls distribution of singular values. All test matrices A are approximately normed to 1. The right
hand side is always A · e such that an approximate solution is e = (1, . . . , 1)T .

All calculations are performed in Matlab [9]. Rigorous computations are supported by Matlab Resease 5.3f
under Windows by a built-in routine

machine_dependent(’setround’,m),

where m = −∞ switches the processor permanently into rounding downward mode, and similarly m = +∞
into rounding upward mode. All computations were performed on a 300 MHz Pentium I Laptop.

For the first example we generate matrices of fixed dimension n = 200 in standard mode = 3 with dif-
ferent condition numbers. This means singular values are geometrically distributed σi = ρ1−i for ρ =
cond2(A)1/(n−1), 1 ≤ i ≤ n. We average the final error bound ‖A−1b− x̃‖∞ ≤ β/(1− α) on kmax = 10 test
cases and display ‖A−1b− x̃‖∞ versus cond(A). The results are shown in Figure 5.1.

The results show that i) both LU based methods give bounds weaker by a factor <∼n than the method based
on R, ii) both LU bounds are almost identical, and iii) the a priori LU bound is limited to condition number
<∼1010 for dimension n = 200. That means that for moderate condition numbers the a priori LU method
may be an alternative to produce rigorous and fast error bounds.
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Figure 5.2. Arithmetically distributed singular values

For mode 1 (one large singular value) and mode 5 (random singular values with uniform distribution), the
results look quite similar. For mode 2 (one small singular value) and mode 4 (arithmetically distributed
singular values) the situation changes as shown in Figure 5.2. Now all three bounds are almost identical
from a certain condition number on. Again, the limit of application of the a priori LU bound is about
cond(A)<∼1010. For mode 2 the figure is almost identical to Figure 5.2.

Next we display the behaviour for fixed condition number 108 and different dimensions. For the standard
mode 3 the situation is as shown in Figure 5.3. Here, i) again both LU methods give bounds weaker by a
little less than the dimension n, and ii) both LU -bounds are close. All three methods compute bounds up
to the maximum dimension n = 1000.

For modes 1 and 5 the situation is almost the same as in Figure 5.3, and for modes 2 and 4 we have the
following, different behaviour as shown in Figure 5.4. As in Figure 5.2, all three bounds are very close
together. For mode 2 the figure is almost identical.

Sometimes, norm bounds and a priori bounds are particularly pessimistic for triangular matrices. We tested
this by

n = 200; T = tril(2 ∗ rand(n)− 1,−1) + 5 ∗ diag(2 ∗ rand(n, 1)− 1);

i.e. triangular T with little increased diagonal in order to keep the condition number moderate. We ran
quite a number of such examples, and a typical result is as shown in Table 5.5.

cond(T ) ‖A−1b− x̃‖∞ method R method LU a priori LU

7.2 · 108 5.9 · 10−10 2.4 · 10−7 4.2 · 10−7 4.2 · 10−7

Table 5.5. Triangular system

The correct value for ‖A−1b− x̃‖∞ was obtained by multiple precision calculation and shows that all three
methods are conservative by a factor a little larger than the dimension n = 200. The LU based bounds are
both identical and a little larger than the bound based on R.
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Finally we mention that the error bounds ‖A−1b − x̃‖∞ ≤ β/(1 − α) are governed by the quality of β;
the bound for α needs only to be a little less than 1 without much influencing the quality of the final error
bound. Now suppose that some higher precision internal floating point format is available, typically twice the
working precision. Then alternative bounds for α may be computed if only in Algorithm 2.1 the computation
of the residual Ax̃−b is performed in higher precision. In addition, at most five residual iterations are applied
such that the final methods are as follows.
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• For given x̃, perform at most five residual iterations

x̃ = fl(x̃−R(Ax̃− b)) or x̃ = fl(x̃−XUXLP (Ax̃− b)),

where the residual Ax̃− b is computed in doubled precision and rounded to working precision.
• Calculate bounds res, res for the residual Ax̃ − b by Algorithm 2.1 in doubled precision, round the

result to working precision and proceed as before with method R, method LU and a priori LU ,
respectively.

We stress again that only the calculation of the residual is to be replaced by the user, all the rest are
computations by standard library routines.

The floating point residual iteration produces an approximate solution x̃ accurate to the last bit. And
rigorous error bounds of high accuracy are computed by the three methods. Figure 5.6 displays results for
mode 3 in randsvd, geometrically distributed singular values.
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double precision residual: n = 200, kmax = 10, mode=3, x R ∗ LU + a priori LU

Figure 5.6. Doubled precision residual, geometrically distributed singular values

The computed error bounds are of high accuracy. For very ill-conditioned matrices, the quality decreases
for method R because of the limited number of five residual iterations, but still some 11 figures are verified.
The bounds by all three methods are almost identical up to moderately conditioned matrices, again with a
limit for the condition number of about 1010 for the a priori LU method. The LU method works up to a
condition number 1013. For the other modes of randsvd matrices the results look very similar.

Finally we display in Figure 5.7 results for fixed condition number 108 and varying dimension n. Here the
results are identical for methods R and LU up to the largest dimension n = 1000, and for the a priori LU

method, accuracy decreases slightly to 5 · 10−16 for n = 1000. The accuracy is always near the relative
rounding error unit. For other modes of randsvd matrices results are quite similar.

6. Conclusion. We presented three methods for verification of nonsingularity of a given matrix and
for the computation of rigorous error bounds for systems of linear equations. The third method uses a priori
error estimates for a computed LU decomposition and requires only 2

3n3 additional flops for the verification.
The method is applicable to moderately conditioned matrices. An application to complex linear systems is
straightforward.
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Figure 5.7. Doubled precision residual, geometrically distributed singular values

The main point of all three methods is that only standard library routines are used, for example BLAS. This
implies a wide range of applicability from PC’s to parallel computers, and it implies competitive computing
times to purely numerical algorithms.

Finally, if some higher precision is available, a simple routine for computation of residuals yields error bounds
of very high accuracy.

7. Appendix. In the following we develop bounds for the backward error of LU decomposition and
inversion of triangular matrices. The analysis is standard except that it covers underflow. We use notation
and properties of Section 2 and assume nu < 1 for n denoting the matrix dimension. Furthermore we note
[6, Lemma 3.1]

n∏

i=1

(1 + δi)ρi = 1 + Θn(18)

for |δi| ≤ u, ρi ∈ {1,−1} and some |Θn| ≤ γn := nu/(1 − nu). The first lemma extends Lemmata 8.2 and
8.4 in [6] to the presence of underflow.

Lemma 7.1. Let y = (c−
k−1∑
i=1

aibi)/bk be evaluated in floating point. Then the computed ỹ, no matter what

the order of evaluation and including possible underflow, satisfies

bkỹ(1 + Θ(0)
k ) = c−

k−1∑

i=1

aibi(1 + Θ(i)
k−1) + (k − 1)(1 + Θ(k)

k−1)η
(0) + bk(1 + Θ(1)

k )η(1),(19)

where |Θ(i)
j | ≤ γj and |η(i)| ≤ u for all i, j. If bk = 1, so that there is no division, then |Θ(i)

j | ≤ γj−1 for all
i, j and η(1) = 0.
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Proof. We proceed as in [6] by first fixing the order of evaluation. Consider

s = c

for i = 1 : k − 1
s = s− aibi

end
y = s/bk

For the special case k = 4, repeated application of (5) and (6) yields for the computed value s̃

s̃ = (((c− a1b1(1 + δ1)− η1)(1 + δ′1)− a2b2(1 + δ2)− η2)(1 + δ′2)− a3b3(1 + δ3)− η3)(1 + δ′3),

where |δi|, |δ′i| ≤ u and |ηi| ≤ u. For general k it follows

s̃ = c ·
k−1∏

j=1

(1 + δ′j)−
k−1∑

i=1

(aibi(1 + δi) + ηi) ·
k−1∏

j=i

(1 + δ′i).

Dividing by
k−1∏
j=1

(1 + δ′i) and using (18) yields

s̃ · (1 + Θk−1) = c−
k−1∑

i=1

aibi(1 + Θi) + (k − 1)(1 + Θ′k−2)η(20)

with |Θi|, |Θ′i| ≤ γi for all i and |η| ≤ u. Furthermore,

ỹ = s̃/(bk(1 + δk)) + ηk or bkỹ(1 + δk) = s̃ + bk(1 + δk)ηk

for |δk| ≤ u, |ηk| ≤ u. By (20) it follows

bkỹ(1 + Θk) = c−
k−1∑

i=1

aibi(1 + Θi) + (k − 1)(1 + Θ′k−2)η + bk(1 + Θ′k)η′,(21)

where |Θi|, |Θ′i| ≤ γi for all i and |η|, |η′| ≤ u. From (20) and (21) it is not difficult to see (19), after a little
thought and observing that c is, by any order of evaluation, always afflicted with at least one factor 1+ δ′i.

Corollary 7.2. Let y = (c −
k−1∑
i=1

aibi)/bk be evaluated in floating point. Then for the computed ỹ, no

matter what the order of evaluation and including possible underflow, it is
∣∣∣∣∣c−

k−1∑

i=1

aibi − bkỹ

∣∣∣∣∣ ≤ γk(
k−1∑

i=1

|aibi|+ |bkỹ|) +
k + |bk|
1− ku

· u.(22)

For bk = 1, i.e. no division necessary, it is
∣∣∣∣∣c−

k−1∑

i=1

aibi − bkỹ

∣∣∣∣∣ ≤ γk(
k−1∑

i=1

|aibi|+ |bkỹ|) +
ku

1− ku
.(23)

Proof. Follows from Lemma 7.1 and 1 + γk = (1− ku)−1.

From this we can estimate the backward error of a triangular linear system.

Lemma 7.3. Let a linear system Tx = b with triangular matrix T be solved by backward or forward sub-
stitution, respectively. Then no matter what the order of evaluation and including underflow, the computed
solution x̃ satisfies

|b− T x̃| ≤ γn|T | |x̃|+ ne + diag(|T |)
1− nu

· u,
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where e = (1, . . . , 1)T . For unit triangular T it is

|b− T x̃| ≤ γn|T | |x̃|+ ne

1− nu
· u.

Proof. The k-th elimination step, e.g. for lower triangular T , is

x̃k = fl((bk −
k−1∑

i=1

Tkix̃i)/Tkk).

By (22) it follows for general T

|bk − (T x̃)k| ≤ γk(|T | |x̃|)k +
k + |bk|
1− ku

· u,

and using (23) for unit triangular T proves the Lemma.
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