
Numerical Verification Method for Dense Linear Systems with
Arbitrarily Ill-conditioned Matrices

Takahisa OHTA†, Takeshi OGITA∗,†, Siegfried M. Rump‡, and Shin’ichi OISHI†,∗

†Faculty of Science and Engineering, Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
∗ CREST, Japan Science and Technology Agency

‡Inst. f. Computer Science III, Hamburg University of Technology
Schwarzenbergstr. 95, Hamburg 21071, Germany,

Email: tohta@fuji.waseda.jp, ogita@waseda.jp, rump@tu-harburg.de, oishi@waseda.jp

Abstract—This paper is concerned with the problem of
verifying an accuracy of a computed solution of linear sys-
tems with an arbitrarily ill-conditioned coefficient matrix.
In this paper, a method of obtaining an accurate computed
solution of such linear systems and its verified error bound
is proposed. The proposed method is based on the accurate
computation of dot product and IEEE standard 754 arith-
metic. A verified and accurate computed solution with a
desired tolerance can be obtained by the proposed method
with iterative refinement. Numerical results are presented
for illustrating the effectiveness of the proposed method.

1. Introduction

We are concerned with numerical verification method for
a computed solution x̃ of a linear system

Ax = b, (1)

where A is a real n × n matrix and b is a real n-vector.
Condition number of A is defined by

κ(A) := ‖A‖ · ‖A−1‖. (2)

When A is nonsingular and b is perturbed to b + ∆b, the
exact solution is perturbed to of the order κ(A) · ‖∆b‖, i.e.
for a perturbed linear system A(x + ∆x) = b + ∆b it holds
that ‖∆x‖

‖x∗‖ ≤ κ(A)
‖∆b‖
‖b‖ . (3)

When using double precision floating-point arithmetic
defined by IEEE standard 754, the relative precision of
mantissa of a floating-point number is 2−53 = 1.11 · · · ×
1016. Therefore if condition number is larger than of the
order 1016, then the computed solution, which has round-
ing errors, has only one or no correct digit in mantissa, so
that it is the limit of calculation in double precision. In
such case, we can use higher precision arithmetic. How-
ever, if all calculations are done using multiple-precision
arithmetic, it requires significant computational cost.

To overcome this, we develop a fast method of calculat-
ing an accurate approximate inverse of A whose condition

number can be arbitrarily large. In the proposed method,
higher precision arithmetic is used only for dot product
including matrix-vector product and matrix-matrix prod-
uct. Using the method, we propose a fast verification algo-
rithm for extremely ill-conditioned linear systems without
multiple-precision arithmetic except for dot product.

2. Accurate Dot Product

Let F be a set of IEEE 754 double precision floating-
point numbers. For vector x, y ∈ Fn calculating a dot prod-
uct

xT y =
n∑

i=1

xiyi

plays a prominent role in scientific computing, so that sev-
eral algorithms of calculating the dot product have been
developed, among them

• super-long accumulator for dot product [1]

• doubly compensated summation [6, 2]

• XBLAS [3]

• fast arbitrary precision sum and dot product [4]

To know details, see references. In particular, Higham’s
book [2, Chapter 4] is very readable.

In general, computational speed of multiple-precision
arithmetic is some hundred times slower than that of dou-
ble precision arithmetic because such multiple-precision
arithmetic is implemented by software simulation while the
double precision arithmetic can be executed by hardware
instructions. Limited to the computation of dot product,
however, higher precision arithmetic can be executed in
reasonable computational cost only some ten times slower
than the double precision arithmetic.

In this paper we assume that a function

DotExact(expression, parameter)

calculates the expression term as if computed in exact
arithmetic and rounded to (sum of) double precision num-
ber(s) according to the parameter term. For example, for

2005 International Symposium on Nonlinear
Theory and its Applications (NOLTA2005)

Bruges, Belgium, October 18-21, 2005

745



A ∈ Fm×p, B ∈ Fp×n, the operation

C1:k = DotExact(AB, k)

calculates Ci ∈ Fm×n, i = 1, 2, . . . , k such that
∣∣∣∣∣∣∣

k∑

i=1

Ci − A · B
∣∣∣∣∣∣∣ ≤ max(2−52|Ck |, realmin · E), (4)

where |Ci| ≥ 252|Ci+1| for i = 1, 2, . . . , k − 1, realmin :=
2−1022 which is the smallest positive normalized floating-
point number of IEEE 754 double precision and E is an
m × n matrix of all ones. These are necessary for rigor-
ousness of the result verification including the presence of
underflow.

3. Proposed Method

In this section we propose a fast verification method of
calculating a componentwise error bound of a computed
solution of a linear system Ax = b with A being an arbitrar-
ily ill-conditioned matrix.

3.1. Componentwise Verification Method

Yamamoto’s theorem [9] is useful as calculating a com-
ponentwise error bound of a computed solution of Ax = b.

Theorem 1 (Yamamoto [9]) Let A be a real n × n matrix
and b a real n-vector. If there exists a real n × n matrix R
for G := RA − I with the n × n identity matrix I such that

‖G‖∞ < 1, (5)

then A is nonsingular and for an arbitrary real n-vector x̃

|x̃ − A−1b| ≤ |R(Ax̃ − b)| + ‖R(Ax̃ − b)‖∞
1 − ‖G‖∞ t, (6)

where t satisfies
⎛⎜⎜⎜⎜⎜⎜⎝

n∑

j=1

|G1 j|, . . . ,
n∑

j=1

|Gn j|
⎞⎟⎟⎟⎟⎟⎟⎠

T

≤ t. (7)

In practice, an approximate inverse of A and an approx-
imate solution of Ax = b are chosen as R and as x̃, respec-
tively. In our proposed method, we set x̃ as an approximate
solution of Ax = b using iterative refinement through an ac-
curate computation of residual Ax̃ − b by DotExact intro-
duced in Section 2. A preconditioner R is calculated with
the product-type iterative method proposed in next section
for satisfying ‖RA − I‖∞ < 1 by use of DotExact.

3.2. Accurate Approximate Inverse

When condition number of A is greater than 1016, it is
difficult to apply the verification methods (e.g. [5]) with the
IEEE 754 double precision computation because it might
become ‖RA − I‖∞ ≥ 1. To overcome this we will propose

a method of calculating R which satisfies ‖RA − I‖∞ < 1
using higher precision arithmetic.

In order to utilize the property of IEEE 754 double pre-
cision floating-point arithmetic, we consider to express R
as the sum of double precision floating-point matrices such
as

R1:k :=
k∑

i=1

Ri for Ri ∈ Fn×n,

where |Ri| ≥ 252 · |Ri+1|, i = 1, 2, . . . , k − 1. Here we pro-
pose the following algorithm which is an extended version
of the method presented in [8]. In this paper we express
algorithms by a MATLAB-like style.

Algorithm 1 Calculation of an accurate approximate in-
verse R =

∑k
i=1 Ri of a real square matrix A:

function R(k)
1:k = AccInv(A, k)

R(1)
1 = inv(A)

for i = 2 : k
C = DotExact(R(i−1)

1:i−1 · A, 1)
T = inv(C)
R(i)

1:i = DotExact(T · R(i−1)
1:i−1, i)

end

We observe that Algorithm 1 can be applied to the prob-
lem with condition number κ(A) satisfying

κ(A) � 1016(k−1) ∼ 1016k. (8)

We will confirm it by numerical experiments in Section 4.
Normally, the condition number κ(A) is not known in

advance, so that it is preferable to calculate R satisfying
‖RA−I‖∞ < 1 by iterative refinement automatically adapted
to the condition of A. In fact, it is possible to design such
an algorithm with a stopping criterion, say fl(‖C − I‖∞) ≤
10−3, for the iterative refinement. In addition, using (4) and
rounding mode controlled computation [5], an inclusion of
RA − I and therefore an upper bound of ‖RA − I‖∞ can be
calculated. Thus, we can verify the nonsingularity of A and
obtain an accurate approximate inverse R of A.

3.3. Verification Method for Linear Systems

Let r be a residual for an approximate solution x̃ of a lin-
ear system Ax = b as r := Ax̃− b. If A is nonsingular, error
of x̃ for the exact solution x∗ := A−1b is given by a solution
p∗ := A−1r of a linear system Ap = r and x∗ = x̃ − p∗.
Here, we assume that ‖r‖ � 0 because if A is nonsingular
and elements of r are all zeros, then x̃ is the exact solution
of Ax = b. Thus the iterative refinement method can be
written as follows.

1. Calculate Ax̃ − b with higher precision. (r̃ ← Ax̃ − b)

2. Solve Ap = r̃ using R. ( p̃← R · r̃)

3. Update x̃. (x̃new ← x̃ − p̃)

746



We combine this iterative refinement method with the
proposed verification method, i.e. we propose a method
which calculates x̃ ∈ Fn and y ∈ Fn satisfying

∣∣∣∣∣∣
x̃i − x∗i

x̃i

∣∣∣∣∣∣ ≤ tol, (x̃i � 0) (9)

with a desired tolerance tol and

|x̃ − x∗| ≤ y. (10)

Here, we list characteristics of the proposed method.

• If we do not know in advance which precision is suf-
ficient to calculate an accurate inverse R, the method
calculates R adaptively by iterative calculations.

• Higher precision arithmetic is necessary in only ma-
trix product and matrix-vector product.

• Therefore a fast algorithm can be implemented in
terms of measured computing time.

We will confirm the usefulness of the proposed method
by numerical experiments in the next section.

4. Numerical Experiments

In this section we present some results of numerical
examples to illustrate the performance of the proposed
method. We used a PC with Pentium 4 2.53GHz CPU. All
calculations were done on MATLAB 7 with IEEE 754 dou-
ble precision.

4.1. Hilbert Matrix

First we consider the Hilbert matrix as an example of a
linear system whose condition number is larger than 1016.
The (i, j)-element of the n × n Hilbert matrix H = (hi j) is

hi j =
1

i + j − 1
. (11)

To avoid the rounding errors in constructing a coefficient
matrix, we set A := s · H where s is a common multiplier
from 2 to 2n−1. This technique is valid for at least n ≤ 20.
Let n = 20 and b := A · z where zi = (−1)i for 1 ≤ i ≤ 20.
Since calculation of b causes no rounding error, the exact
solution x∗ of Ax = b becomes exactly z. We set n = 20 and
tol = 10−9. When n = 20, we find κ(A) = 2.45 · · · × 1028.
The result is as follows:

>> n=20; [A,b,cnd]=myhilb(n); cnd

cnd =

2.452156585815303e+028

>> [x,y]=AccVerLin(A,b,1e-9); [x,y]

*** calculation of approximate inverse ***

k = 2

*** verification for a linear system ***

*** with iterative refinement ***

loop = 1, max. rel. error = 1.095537e-004

loop = 2, max. rel. error = 8.874301e-010

ans =

-1.000000000000000e+000 8.617077e-025

1.000000000000000e+000 9.640417e-024

-1.000000000000000e+000 1.062221e-021

1.000000000000000e+000 4.941914e-020

-9.999999999999992e-001 7.780127e-016

9.999999999999695e-001 3.054625e-014

-9.999999999994678e-001 5.324606e-013

9.999999999996297e-001 3.709047e-013

-9.999999999960786e-001 3.925436e-012

9.999999999602059e-001 3.980825e-011

-1.000000000120782e+000 1.208331e-010

1.000000000595174e+000 5.953339e-010

-9.999999998351981e-001 1.649530e-010

9.999999994154054e-001 5.849744e-010

-1.000000000637741e+000 6.379809e-010

9.999999991127588e-001 8.874301e-010

-9.999999999849613e-001 1.513451e-011

9.999999999542837e-001 4.574802e-011

-9.999999999890732e-001 1.093710e-011

9.999999999997991e-001 2.018749e-013

The first column of ans displays a computed solution
x̃, and the second column the right-hand side of inequality
(10), i.e. an error bound y of x̃. Therefore it means x̃ − y ≤
x∗ ≤ x̃ + y. When loop = 1, we did not apply the iterative
refinement method. After loop = 2, we apply (loop − 1)
times iterative refinements. Moreover, max. rel. error
means the maximum relative error of x̃, an upper bound of
max1≤i≤n |x̃i − x∗i |/|x̃i|.

Next we change b and tol, i.e. set b = (1, 1, · · · , 1)T ∈ R20

and tol = 10−12. Then the result is as follows:

>> b=ones(n,1);

>> [x,y]=AccVerLin(A,b,1e-12); [x,y]

*** calculation of approximate inverse ***

k = 2

*** verification for a linear system ***

*** with iterative refinement ***

loop = 1, max. rel. error = 9.044724e-004

loop = 2, max. rel. error = 3.366434e-009

loop = 3, max. rel. error = 1.366729e-014

ans =

-3.743263442685729e-015 5.116025e-029

...

2.579979360165119e-004 2.070311e-020

4.2. Larger Condition Number Matrix

To construct an example of a floating-point n × n matrix
A with larger condition number, we use Rump’s method [7]
of generating arbitrarily ill-conditioned matrices. We set a
right-hand side vector as b := (1, 1, . . . , 1)T ∈ Rn. We also
set n = 100，κ(A) ≈ 10100 and tol = 10−12. Then the result
of the proposed verification method is as follows:

747



>> n=100; A=randmat(n,1e+100); b=ones(n,1);

>> [x,y]=AccVerLin(A,b,1e-12);

*** calculation of approximate inverse ***

k = 8

*** verification for a linear system ***

*** with iterative refinement ***

loop = 1, max. rel. error = 6.93e-06

loop = 2, max. rel. error = 4.79e-11

loop = 3, max. rel. error = 4.27e-16

elapsed time is 8.109000 sec.

Finally we consider a larger size problem and change
conditions, i.e. we set n = 500，κ(A) ≈ 1050 and tol =
10−12. Then the result is as follows:

>> n=500; A=randmat(n,1e+50); b=ones(n,1);

>> tic; [x,y]=AccVerLin(A,b,1e-12); toc

*** calculation of approximate inverse ***

k = 5

*** verification for a linear system ***

*** with iterative refinement ***

loop = 1, max. rel. error = 3.776758e-009

loop = 2, max. rel. error = 1.023496e-016

elapsed time is 190.500000 sec.

From these results, it turns out that we can verify the
nonsingularity of A and calculate a verified and accurate
approximate solution x̃ of a linear system Ax = b whose
condition number is extremely large by use of the proposed
method and the iterative refinement method.

Acknowledgments

This research was partially supported by CREST pro-
gram, Japan Science and Technology Agency (JST), 21st
Century COE Program (Productive ICT Academia Pro-
gram, Waseda University) from the Ministry of Education,
Science, Sports and Culture of Japan and Individual Re-
search of Waseda University Grant for Special Research
Projects (No. 2005A-884).

References

[1] U. W. Kulisch, W. L. Miranker, “The arithmetic of the
digital computer: A new approach,” SIAM Review, 28
(1986), 1–40.

[2] N. J. Higham, “Accuracy and Stability of Numerical
Algorithms,” 2nd ed., SIAM Publications, Philadel-
phia, PA, 2002.

[3] X. Li, et al., “Design, implementation and testing of
extended and mixed precision BLAS,” ACM Trans.
Math. Softw., 28 (2002), 152–205.

[4] T. Ogita, S. M. Rump, S. Oishi, “Accurate sum and dot
product,” SIAM J. Sci. Comput., 26:6 (2005), 1955–
1988.

[5] S. Oishi, S. M. Rump, “Fast verification of solutions
of matrix equations,” Numer. Math. 90:4 (2002), 755–
773.

[6] D. M. Priest, “On Properties of Floating Point Arith-
metics: Numerical Stability and the Cost of Accurate
Computations,” PhD thesis, University of California at
Berkeley, 1992.

[7] S. M. Rump, “A class of arbitrarily ill-conditioned
floating-point matrices,” SIAM J. Matrix Anal. Appl.,
12:4 (1991), 645–653.

[8] S. M. Rump, “Approximate inverses of almost
singular matrices still contain useful information,
Forschungsschwerpunktes Informations- und Kommu-
nikationstechnik,” Technical Report 90.1, Hamburg
University of Technology, 1990.

[9] T. Yamamoto, “Error bounds for approximate solutions
of systems of equations,” Japan J. Appl. Math., 1:1
(1984), 157–171.

748


