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Abstract. A simple method of calculating an error bound of computed solutions
of general sparse linear systems is proposed. It is well known that the verification
for sparse linear systems is still difficult except for the case where it is known in
advance that the coefficient matrix has special structures such as M-matrix. The
new verification algorithm is based on direct methods such as LU factorization.
Results of numerical experiments are presented for illustrating that computational
cost of calculating an error bound of an obtained computed solution is acceptable
in practice.
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1. Introduction

In this paper, we are concerned with the accuracy of a computed
solution of a linear system

Ax = b, (1)

where A is a real n × n matrix and b is a real n-vector. Our goal is to
verify the nonsingularity of A and to estimate an error bound ε of a
computed solution x̃ of (1) for the exact solution x∗ = A−1b such that

‖x̃ − x∗‖∞ ≤ ε. (2)

Recently, fast verification methods (cf., for example, [9, 12]) have
been developed to calculate rigorous and tight bounds for (2) on com-
puters abiding by IEEE standard 754 for floating point arithmetic.

However, it is well known that the verification for sparse linear sys-
tems is still difficult except for the case where we know in advance that
the coefficient matrix A belongs to a certain special matrix class, e.g.,
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diagonally dominant matrix, M-matrix, H-matrix and totally nonnega-
tive matrix. The reason of difficulty for sparse systems is mainly due to
the destruction of its sparsity which occurs in the verification process.
Thus the verification for sparse linear systems with interval coefficients
becomes one of the open problems in Grand Challenges and Scientific
Standards in Interval Analysis [8] presented by Neumaier. In this paper,
we consider sparse systems including banded systems.

In the present state, fast verification algorithms for sparse system
with

− monotone matrix [10] including M-matrix,

− H-matrix (deduced from the case of M-matrix),

− symmetric positive definite matrix [9, 15, 17],

− symmetric matrix [9, 16] and

− general matrix [15]

have already been known. Here, the first and the second cases can be
treated with a favorable iterative method such as Gauss-Seidel, SOR or
conjugate gradient method, and the others require the direct method
such as LU or Cholesky factorization. The conventional verification
algorithms for sparse matrices via direct methods are based on the
estimation of the smallest singular value of A. For example, when A
is a symmetric positive definite matrix, the conventional algorithms
[9, 15] use Cholesky or LDLT factorization of a shifted matrix A − αI
with positive constant α. This approach needs some inverse iterations
for estimating a suitable α. Moreover, if A is a general matrix, the
algorithm becomes more complicated and needs more computational
resources.

The purpose of this paper is to develop a new verification algorithm
for a general sparse matrix using LU factorization as one of the di-
rect methods. In verification process of the proposed method, it is not
necessary to bound the smallest singular value of A. Only the method
requires is an LU factorization of A, which can be obtained to calculate
a computed solution of (1). The proposed method is very simple, so that
it is easy to understand and use it. We think this is very important point
for practical use and implementations, especially in case of treating
sparse matrices because it is not necessary for users to implement a lot
of additional routines, i.e., only we need is the existing direct solver for
UT x = b (hopefully sparse right-hand side is possible) and LT x = b. A
main goal of the article is to show that it is possible to compute tight
upper bounds for (2).
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We shall present results of numerical experiments which document
that the computational cost of calculating an error bound of an ob-
tained computed solution is acceptable in practical use.

2. Verification theory

Let A = (aij) be a real n × n matrix and Y = (yij) an approximate
inverse of A. Let also b be a real n-vector and x̃ an approximate solution
of Ax = b. It is well known that if it holds that

‖Y A − I‖ < 1, (3)

where I stands the n × n identity matrix, then A is nonsingular,∥∥∥A−1
∥∥∥ ≤ ‖Y ‖

1 − ‖Y A − I‖ , (4)

and ∥∥∥x̃ − A−1b
∥∥∥ ≤ ‖Y (Ax̃ − b)‖

1 − ‖Y A − I‖ . (5)

Based on this, we present a theorem to verify the nonsingularity of
A and to bound the maximum norm of its inverse,

∥∥A−1
∥∥∞, and the

error bound of the approximate solution,
∥∥x̃ − A−1b

∥∥∞.

THEOREM 1. Let A be a real n × n matrix and b a real n-vector.
Let also x̃ be an approximate solution of Ax = b. Let further e(j) =
(e(j)

1 , . . . , e
(j)
n )T be a unit n-vector corresponding to the j-th column of

the n × n identity matrix I = (eij), i.e.,

e
(j)
i :=

{
1 (i = j)
0 (i �= j) ,

and y(j) = (y(j)
1 , . . . , y

(j)
n )T an n-vector corresponding to the transpose

of the j-th row of an approximate inverse Y = (yij) of A, i.e., y
(j)
i :=

yji. If α satisfies

max
1≤j≤n

∥∥∥AT y(j) − e(j)
∥∥∥
1
≤ α < 1, (6)

then A is nonsingular,

∥∥∥A−1
∥∥∥∞ ≤

max1≤j≤n

∥∥∥y(j)
∥∥∥
1

1 − α
(7)

and ∥∥∥x̃ − A−1b
∥∥∥∞ ≤

max1≤j≤n

∣∣∣(Ax̃ − b)T y(j)
∣∣∣

1 − α
. (8)
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Proof. It follows by yij = y
(i)
j and eij = e

(j)
i = e

(i)
j that

‖Y ‖∞ = max
1≤i≤n

n∑
j=1

|yij| = max
1≤i≤n

n∑
j=1

∣∣∣y(i)
j

∣∣∣ = max
1≤i≤n

∥∥∥y(i)
∥∥∥
1

(9)

and

‖Y A − I‖∞ = max
1≤i≤n

n∑
j=1

∣∣∣∣∣
n∑

k=1

yikakj − eij

∣∣∣∣∣ = max
1≤i≤n

n∑
j=1

∣∣∣∣∣
n∑

k=1

y
(i)
k akj − e

(i)
j

∣∣∣∣∣
= max

1≤i≤n

n∑
j=1

∣∣∣∣(AT y(i) − e(i)
)

j

∣∣∣∣
= max

1≤i≤n

∥∥∥AT y(i) − e(i)
∥∥∥
1
. (10)

Combining (3), (4), (9) and (10) proves (7). Moreover,

‖Y (Ax̃ − b)‖∞ = max
1≤j≤n

∣∣∣(Ax̃ − b)T y(j)
∣∣∣

and (5) proves (8). �

3. Verification using LU factorization

Suppose L, U and P are given by LU factorization (with partial piv-
oting) of A in floating-point arithmetic such that PA ≈ LU . Consider
the following matrix equation

Y A = I

for Y . This is equivalent to

AT y(j) = e(j) for j = 1, . . . , n.

Therefore, if L and U are the exact LU factors of A, then

(P T LU)T y(j) = e(j)

and
y(j) = P T L−T U−T e(j).

We now present an algorithm of calculating an error bound on∥∥x̃ − A−1b
∥∥∞ based on the fast verification algorithm proposed by Oishi

and Rump [12, 13].

ALGORITHM 1. Calculation of an error bound on
∥∥x̃ − A−1b

∥∥∞:
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function [x̃, err] = vlin lu(A, b)
[L,U, P ] = lu(A); % LU factorization: PA ≈ LU

x̃ = fl (U\(L\(Pb))) ;
setround(−1);
r = fl (Ax̃ − b) ;
setround(+1);
r = fl (Ax̃ − b) ;
rmid = fl ((r + r)/2) ; rrad = fl (rmid − r) ;
α = 0; β = 0;
for j = 1 : n

setround(0);

t = fl
(
UT \e(j)

)
; % Solve UT t = e(j) for t

y = fl
(
P T (LT \t)

)
; % Solve LT P T y = t for y

setround(−1);

t = fl
(
AT y − e(j)

)
; φ = fl

(
yT rmid

)
;

setround(+1);

t = fl
(
AT y − e(j)

)
; φ = fl

(
yT rmid

)
;

t = max(|t| , |t|);
φ = fl

(
max(

∣∣∣φ∣∣∣ , ∣∣∣φ∣∣∣) + |y|T rrad

)
;

α = max(α,fl (‖t‖1)); β = max(β, φ);
if α ≥ 1

error(’verification failed.’)
end

end
err = fl (β/ − (α − 1)) ; % fl� (β/ − (α − 1)) ≥ β/(1 − α)

Note that the verification method can be used with the ordering strate-
gies for sparse matrix, e.g., the (approximate) minimum degree permu-
tation and the reverse Cuthill-McKee ordering (cf., for example, [4, 5]),
i.e., our algorithm does not depend on the process of obtaining the
LU factors. Even if one uses not only a row permutation P but also
a column permutation Q in the LU factorization, it is easy to modify
the algorithm by considering PAQ ≈ LU instead of PA ≈ LU . In
addition, the algorithm can be done by blockwise for j with adapting
the block size to the computer environment. Of course, this requires
more memory space, but may achieve less computing time in practical
use.
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4. Numerical examples

To illustrate that the proposed verification method gives a tight error
bound of a computed solution of a linear system Ax = b, we shall
report results of numerical experiments. We have used a PC with Intel
Pentium IV 3.46GHz CPU and Matlab 7.0.4 [18]. This computer envi-
ronment satisfies the IEEE 754 standard. To solve sparse linear systems
Ax = b by LU factorization, Matlab uses UMFPACK [2]. Moreover, we
set block size 100 for Algorithm 1.

The coefficient matrices used in the numerical experiments are taken
from the Harwell-Boeing collection [3]. Although these matrices may be
symmetric and even positive definite, we treat such matrices as general
matrices because we purely want to evaluate the performance of the
proposed method. We put the right-hand side vector b = (1, . . . , 1)T if
b is not provided by the example.

Next, we prepared some coefficient matrices and right-hand side
vectors (NW∗∗)1 whose origins are the problems computing an approx-
imate minimum eigenpair of Orr-Sommerfield equations for Poiseuille
flow by Newton-Raphson iteration with piecewise cubic Hermite base
function. These matrices are unsymmetric.

In Tables I and II, the results of the numerical experiments are
displayed. Here, nnz(A) for a sparse matrix A means the number of
nonzero elements of A. In the column labeled by α, an upper bound
on ‖RA − I‖∞ is given. The quantity ε refers to the maximum error
bound of the computed solution of Ax = b, i.e.

∥∥x̃ − A−1b
∥∥∞ ≤ ε. In the

column labeled by t, elapsed time (sec.) for the verification is given. The
notation n/a in the table means that the data are not available because
the verification of the computed solutions failed (α ≥ 1). We omit the
results of problems when the problem size is small (roughly less than
1,000) or the problem is similar to the one listed in Table I. We also
omit the case where an approximate solution cannot be obtained by
UMFPACK on Matlab, which usually means the problem is extremely
ill-conditioned. These results document that if we can obtain computed
solutions, then we can also get their verified error bounds in almost all
cases.

In conclusion, it turns out that verified error bounds of approximate
solutions of sparse linear systems by the proposed verification method.
It seems that the verification method is useful in case where it is not
known that the coefficient matrix of a linear system has structures such
as M-matrix or symmetric positive definite. Therefore, we can construct
the hybrid verification method for linear system; for small dimensions

1 Thanks to Profs. M. T. Nakao and Y. Watanabe for providing the test matrices.
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Table I. Verification results for sparse linear systems with Harwell-Boeing collec-
tion. The notation n/a means that the data are not available.

Problem n nnz(A) nnz(L + U) α ε t (sec.)

1138 BUS 1,138 4,054 5,392 6.9e-11 7.0e-11 2.51

BCSSTK09 1,083 18,437 115,447 6.7e-12 6.1e-12 3.56

BCSSTK13 2,003 83,883 529,869 6.6e-10 6.7e-10 20.8

BCSSTK15 3,948 117,816 1,225,222 2.0e-10 1.5e-10 86.4

BCSSTK17 10,974 428,650 2,076,228 2.1e-09 1.5e-09 515.

BCSSTK25 15,439 252,241 2,847,888 2.0e-08 2.1e-08 987.

BLCKHOLE 2,132 14,872 189,045 5.6e-10 3.7e-12 13.7

GEMAT11 4,929 33,108 60,387 4.2e-10 3.5e-10 52.6

GEMAT12 4,929 33,044 61,473 9.2e-10 4.3e-10 51.9

LNSP3937 3,937 25,407 277,332 1.9e-02 9.7e-10 41.2

LSHP1009 1,009 6,865 74,881 1.4e-10 1.4e-12 2.98

LSHP2233 2,233 15,337 210,778 3.7e-10 5.2e-12 16.2

LSHP3466 3,466 23,896 420,469 3.7e-09 2.6e-11 45.3

MAHINDAS 1,258 7,682 14,736 1.2e-08 3.0e-09 1.29

NNC1374 1,374 8,588 49,954 1.5e-01 9.1e-02 4.21

ORANI678 2,529 90,158 111,060 2.6e-12 8.7e-13 12.0

ORSREG 1 2,205 14,133 154,159 1.3e-12 1.2e-12 12.8

PLAT1919 1,919 32,399 132,605 8.6e+01 n/a 10.3

PSMIGR 1 3,140 543,160 5,821,707 4.5e-09 4.5e-09 244.

PSMIGR 2 3,140 540,022 6,714,444 5.3e-09 1.5e-09 271.

PSMIGR 3 3,140 543,160 5,821,707 8.0e-13 3.5e-12 244.

SAYLR4 3,564 22,316 294,830 1.1e-09 8.4e-10 37.6

SHERMAN1 1,000 3,750 18,180 1.2e-12 1.8e-12 1.03

SHERMAN3 5,005 20,033 187,091 9.5e-12 6.9e-12 22.7

SHERMAN5 3,312 20,793 126,962 4.8e-13 4.1e-13 8.23

WATT 1 1,856 11,360 99,762 3.4e-13 3.3e-13 8.02

WATT 2 1,856 11,550 105,589 1.3e-12 1.3e-12 8.23

WEST1505 1,505 5,414 8,262 2.0e-09 2.5e-09 2.80

WEST2021 2,021 7,310 10,879 2.4e-09 2.9e-09 5.17

the method for dense matrix is available. When the coefficient is sym-
metric matrix, then we can try the super-fast verification method for
positive definite matrix in [17]. If it can be proved that the coefficient
is H-matrix, e.g. using iterative criterion [6], then the fast verification
method [10] can be utilized. Otherwise, the proposed method in this
paper may become a fallback algorithm.
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Table II. Verification results for sparse linear systems from Orr-Sommerfield
equations for Poiseuille flow. The notation n/a means that the data are not
available.

Problem n nnz(A) nnz(L + U) α ε t (sec.)

NW398 398 5,508 7,845 5.4e-09 5.0e-09 0.35

NW1998 1,998 27,908 31,901 9.4e-06 9.4e-06 10.2

NW3998 3,998 55,908 63,901 1.6e-04 1.6e-04 44.2

NW7998 7,998 111,908 128,134 3.1e-03 3.4e-03 186.

NW19998 19,998 279,908 324,113 5.2e-01 1.1e+00 1,179.

NW29998 29,998 419,908 544,197 1.34+00 n/a 2,668.
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