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Abstract

A fast method for enclosing all eigenpairs in symmetric positive def-
inite generalized eigenvalue problems is proposed. Firstly theorems on
verifying all eigenvalues are presented. Next a theorem on verifying all
eigenvectors is presented. The proposed method is developed based on
these theorems. Numerical results are presented showing the efficiency
of the proposed method. As an application of the proposed method, an
efficient method of enclosing all eigenpairs in the quadratic eigenvalue
problem is also sketched.
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1 Introduction

In this paper, we are concerned with the accuracy of computed eigenpairs in the
generalized eigenvalue problem

Ax = λBx, A,B ∈ R
n×n, λ ∈ R, x ∈ R

n (1)

where A is symmetric and B is symmetric positive definite. Here an eigenpair (λ, x)
denotes a pair of an eigenvalue λ and its corresponding eigenvector x. The prob-
lem (1) arises in many applications of scientific computations, e.g. stationary analysis
of circuits, image processing, structure analysis and so forth.

Since B is symmetric positive definite, there exists a Cholesky factorization of B
such that

B = LLT , L ∈ R
n×n (2)

where L is nonsingular lower triangular. Substituting (2) into (1), we obtain

L−1AL−T LT x = λLT x. (3)

Therefore (1) is equivalent to the standard eigenvalue problem (3) with eigenpairs
(λ, LT x), where L−1AL−T is a real symmetric matrix. In the Cholesky-QR method
(e.g. [4, p. 463]), the QR algorithm is applied to (3) and consequently all eigenpairs
in (1) are computed. In the MATLAB function eig, this method is adopted for
computing all eigenpairs in (1).

There are several methods for calculating guaranteed error bounds for approximate
eigenvalues and eigenvectors, e.g. [1, 2, 6, 16, 17, 19, 24, 26]. On enclosing a few
specified eigenvalues, see [1, 2, 24, 26]. On a few specified eigenpairs, see [16, 17].
On all eigenvalues, see [6]. In [19] methods are presented for computing inclusions of
multiple eigenvalues and a basis for a corresponding invariant subspace. Moreover in
[20] it is shown how to compute an inclusion of an individual eigenvector to a multiple
eigenvalue of geometric multiplicity one. Excellent overviews on perturbation theory
for matrix eigenvalues can be found in [3, 15, 23].

In this paper, we propose a fast method of enclosing all eigenpairs for the gener-
alized eigenvalue problem, which is the expansion of the verification method for the
standard eigenvalue problem [10]. The proposed method supplies error bounds for
each approximate eigenpair in (1). In [20] it is also shown that we cannot expect to
be able to compute an inclusion in floating-point of an individual eigenvector to a
multiple eigenvalue which is not of geometric multiplicity one. Since this is also shown
for normal, so especially for Hermitian or symmetric matrices, it limits the following
considerations to matrices with only simple eigenvalues. Moreover some techniques for
accelerating the proposed method are suggested. The proposed method, where these
techniques are used, allows the presence of underflow in floating-point arithmetic. This
paper also includes some numerical examples to show the performance and properties
of the proposed method.

As an application of the proposed method, we also sketch an efficient method of
enclosing all eigenpairs (λ, x) in the quadratic eigenvalue problem

(λ2A + λB + C)x = 0, A, B, C ∈ R
n×n, λ ∈ R, x ∈ R

n

where A is symmetric negative definite, B is symmetric and C is symmetric positive
definite. This problem arises in, e.g. the dynamic analysis of rotating structures.
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2 Utilized Theorems

In this section, we introduce some theorems which are used in Section 3.

2.1 Theorems on Verifying All Eigenpairs in the Standard

Eigenvalue Problem

In this section, we refer the theorems on enclosing all eigenpairs in the standard eigen-
value problem: For i = 1, . . . , n

Ax(i) = λix
(i), A ∈ R

n×n, λi ∈ R, x(i) ∈ R
n (4)

where A is symmetric, λi is an eigenvalue of A and x(i) is an eigenvector corresponding
to λi.

In this section, we assume that approximate eigenvalues λ̃i and eigenvectors x̃(i)

for all i in (4) are given. Let D̃ and X̃ be an n × n diagonal matrix and an n × n
approximately orthogonal matrix defined as

D̃ := diag(λ̃1, . . . , λ̃n) and X̃ := (x̃(1), . . . , x̃(n)),

respectively, so that AX̃ ≈ X̃D̃ and I ≈ X̃T X̃ where I denotes the n × n identity
matrix. Additionally we define n × n residual matrices Rs and Gs as

Rs := AX̃ − X̃D̃ and Gs := I − X̃T X̃. (5)

First we cite Theorems 1 and 2 on verifying λ̃i.

Theorem 1 (Rump) Let A be a real symmetric n × n matrix. Let λi and λ̃i for
i = 1, . . . , n be the true eigenvalues in (4) and their approximations such that

λ1 ≤ · · · ≤ λn and λ̃1 ≤ · · · ≤ λ̃n,

respectively. Let Rs and Gs be defined as in (5). If ‖Gs‖2 < 1, it holds for all i that

|λi − λ̃i| ≤ ‖Rs‖2

1 − ‖Gs‖2
. (6)

The proof of Theorem 1 is due to the third author.

Proof The result follows from the more general theorem by Cao, Xie, and Li [3], see
for example Theorem 11.10.1 in [15], which states

|λi − λ̃i| ≤ ‖Rs‖2

σ1(X̃)
, (7)

where σ1(X̃), . . . , σn(X̃) denote the singular values of X̃ such that σ1(X̃) ≤ · · · ≤
σn(X̃). To show that (7) implies (6) we have to show

1

σ1(X̃)
≤ 1

1 − ‖Gs‖2

if ‖Gs‖2 < 1, which is equivalent to

1 − σ1(X̃) ≤ ‖Gs‖2.
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For σ1(X̃) ≥ 1, this is obvious. Otherwise we have

‖Gs‖2 = ρ(Gs) = max
1≤i≤n

|1 − λi(X̃
T X̃)| = max

1≤i≤n
|1 − σi(X̃)2|

≥ 1 − σ1(X̃)2 ≥ 1 − σ1(X̃),

where ρ(Gs) and λ1(X̃
T X̃), . . . , λn(X̃T X̃) denote the spectral radius of Gs and the

eigenvalues of X̃T X̃, respectively. Thus the result follows.
2

The advantage of (6) is that Gs is symmetric, so ‖Gs‖2 = ρ(Gs) is easily estimated
by Perron-Frobenius Theory. Therefore, the error bound (6) is easily and effectively
computable.

Theorem 2 (Wilkinson [25]) Let A, λ̃i and λj be defined as in Theorem 1. Let
x̃(i) be an approximate eigenvector in (4) corresponding to λ̃i. Then it holds that

min
1≤j≤n

|λj − λ̃i| ≤ εi, εi :=
‖r(i)‖2

‖x̃(i)‖2
, (8)

where

r(i) := Ax̃(i) − λ̃ix̃
(i). (9)

Next we present Theorem 3 on verifying x̃(i).

Theorem 3 (Miyajima et al. [10]) Let λi and λ̃i for some i be defined as in The-
orem 1. Assume that |λi − λ̃i| ≤ ηi for each i. Let r(i) be defined as in (9). Moreover
let ρi and ξi be defined as follows:

ρi :=











λ̃2 − λ̃1 − η2 (i = 1)

min(λ̃i − λ̃i−1 − ηi−1, λ̃i+1 − λ̃i − ηi+1) (2 ≤ i ≤ n − 1)

λ̃n − λ̃n−1 − ηn−1 (i = n)

(10)

ξi :=
‖r(i)‖2

ρi

. (11)

If ρi > 0 and ξi < ‖x̃(i)‖2 hold, then there exists an eigenvector x̂(i) corresponding to
λi such that

∥

∥

∥
x̂(i) − x̃(i)

∥

∥

∥

2
≤ ξi. (12)

2.2 Miscellaneous Lemmas

In this section, we cite miscellaneous lemmas.
First we introduce Lemma 1 about a matrix norm.

Lemma 1 (Miyajima et al. [9]) Let Q̃ be a real n × n matrix. Let I and ei be the
n × n identity matrix and the i-th column of I for i = 1, . . . , n, respectively. Then it
holds that

1 − ‖I − Q̃T Q̃‖∞ ≤ ‖Q̃ei‖2. (13)
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Let λi and λ̃i be defined as in Theorem 1. Let λj be the true eigenvalue nearest to
λ̃i. Theorem 2 supplies an upper bound of distance between λ̃i and λj . Hence it does
not necessarily follow that min1≤j≤n |λj − λ̃i| = |λi − λ̃i| i.e. j = i. In the verification
for all eigenvalues, it is required that j = i holds strictly to utilize the upper bound of
min1≤j≤n |λj − λ̃i| as the error bound for λ̃i. Therefore we cite Lemmas 2 and 3 with
respect to checking whether j = i holds.

Lemma 2 (Miyajima et al. [9]) Let λi and λ̃i for i = 1, . . . , n be sequences of real
numbers such that

λ1 ≤ · · · ≤ λn and λ̃1 ≤ · · · ≤ λ̃n,

respectively. Assume that |λi − λ̃i| ≤ δ for all i. Suppose






λ̃i+1 − λ̃i > 2δ (i = 1)

λ̃i − λ̃i−1 > 2δ ∧ λ̃i+1 − λ̃i > 2δ (2 ≤ i ≤ n − 1)

λ̃i − λ̃i−1 > 2δ (i = n)

(14)

holds for some i. Then

min
1≤j≤n

|λj − λ̃i| = |λi − λ̃i| for some i.

Figure 1 illustrates the case that λ̃i − λ̃i−1 > 2δ ∧ λ̃i+1 − λ̃i > 2δ holds.~�i�1 ~�i ~�i+1Æ Æ Æ Æ�i
Figure 1: The case that λ̃i − λ̃i−1 > 2δ ∧ λ̃i+1 − λ̃i > 2δ holds.

Lemma 3 (Miyajima et al. [9]) Let λi, λ̃i for i = 1, . . . , n and δ be defined as in
Lemma 2. Assume that min1≤j≤n |λj − λ̃i| ≤ εi for each i. Suppose that some partial
sequence λ̃k, . . . , λ̃k with 1 ≤ k < k ≤ n are clustered such that

λ̃k − λ̃k−1 > 2δ ∧ λ̃k+1 − λ̃k > 2δ ∧ λ̃k+1 − λ̃k ≤ 2δ (15)

for all k = k, . . . , k − 1. If it holds for all k = k, . . . , k − 1 that

εk + εk+1 < λ̃k+1 − λ̃k, (16)

then
min

1≤j≤n
|λj − λ̃k| = |λk − λ̃k| for all k = k, . . . , k.

Figure 2 illustrates the case that (15) and (16) hold.

Remark 1 Note that Lemmas 2 and 3 hold for any sequences λi and λ̃i.

In [9], Lemmas 2 and 3 are applied for the standard eigenvalue problem (4). We
stress that these lemmas are also applicable for the generalized eigenvalue problem
(1). In this paper, we utilize these lemmas for (1).
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Figure 2: The case that (15) and (16) hold.

3 Proposed Method for Verifying All Eigenpairs

in the Generalized Eigenvalue problem

In this section, we propose a fast method of enclosing all eigenpairs in the generalized
eigenvalue problem: For i = 1, . . . , n

Ax(i) = λiBx(i), A, B ∈ R
n×n, λi ∈ R, x(i) ∈ R

n (17)

where A is symmetric, B is symmetric positive definite, λi is an eigenvalue and x(i) is
an eigenvector corresponding to λi.

In this section, we assume that approximate eigenvalues λ̃i and eigenvectors x̃(i)

for all i in (17) are given. Let D̃ and X̃ be defined similar to those in (4) for λ̃i and
x̃(i) in (17), respectively, so that AX̃ ≈ BX̃D̃ and X̃T BX̃ ≈ I where I denotes the
n × n identity matrix. Additionally we define n × n matrices Rg and Gg as follows:

Rg := AX̃ − BX̃D̃ (18)

Gg := X̃T BX̃. (19)

3.1 Theorems on Verifying All Eigenvalues

In this section, we present theorems on verifying λ̃i for all i in (17).
At first we present Theorems 4 and 5 on verifying λ̃i.

Theorem 4 Let A and B be real symmetric n × n matrices. Let λi and λ̃i for i =
1, . . . , n be the true eigenvalues in (17) and their approximations such that

λ1 ≤ · · · ≤ λn and λ̃1 ≤ · · · ≤ λ̃n,

respectively. Let Rg and Gg be defined as in (18) and (19), respectively. If ‖I−Gg‖2 <
1 holds, then B is positive definite and it holds for all i that

|λi − λ̃i| ≤ δ̂, δ̂ :=
β‖Rg‖2

1 − ‖I − Gg‖2
,

where
β ≥

√

‖B−1‖2. (20)
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Proof Let P and Q be real n × n matrices. It is well known (e.g. [4, 13]) that P
is nonsingular if ‖I − QP‖p̂ < 1, 1 ≤ p̂ ≤ ∞. From this and ‖I − Gg‖2 < 1, X̃
is nonsingular. So it can be shown (e.g. [4, Theorem 8.1.17]) that B and Gg have
the same inertia. Therefore if Gg is positive definite, then B is also positive definite.
Accordingly we will prove that Gg is positive definite.

Since Gg is symmetric, the eigen decomposition of Gg can be written as Gg =
V TV T in which V is orthogonal and T = diag(λ1(Gg), . . . , λn(Gg)) where λ1(Gg), . . . , λn(Gg)
denote the eigenvalues of Gg such that λ1(Gg) ≤ · · · ≤ λn(Gg). Then it follows that

‖I − Gg‖2 = ‖I − V TV T ‖2 = ‖V (I − T )V T ‖2 = ‖I − T‖2

= max
1≤i≤n

|1 − λi(Gg)| ≥ |1 − λ1(Gg)| ≥ 1 − λ1(Gg).

Therefore if ‖I − Gg‖2 < 1, then 1 − λ1(Gg) < 1, which implies that Gg is positive
definite. Thus B is also positive definite.

Since B is positive definite, there exists the Cholesky factorization (2). Applying
Theorem 1 to (3) yields

|λi − λ̃i| ≤ ‖L−1AL−T LT X̃ − LT X̃D̃‖2

1 − ‖I − (LT X̃)T (LT X̃)‖2

. (21)

Utilizing (2) and (18), we have

‖L−1AL−T LT X̃ − LT X̃D̃‖2 = ‖L−1(AX̃ − LLT X̃D̃)‖2 = ‖L−1Rg‖2

≤ ‖L−1‖2‖Rg‖2. (22)

It is well known (e.g. [5, p.108]) that ‖CT C‖2 = ‖C‖2
2 holds for any matrix C, so that

‖L−1‖2 =
√

‖B−1‖2. (23)

From (20), (22) and (23), it holds that

‖L−1AL−T LT X̃ − LT X̃D̃‖2 ≤ β‖Rg‖2. (24)

Moreover utilizing (2) and (19), we obtain

1 − ‖I − (LT X̃)T (LT X̃)‖2 = 1 − ‖I − X̃T LLT X̃‖2

= 1 − ‖I − X̃T BX̃‖2

= 1 − ‖I − Gg‖2. (25)

Substituting (24) and (25) into (21) proves the theorem. 2

Remark 2 There are several methods (e.g. [11, 13, 14, 17, 21, 22]) to compute a
rigorous upper bound of ‖B−1‖2. By applying one of these methods, we can compute
β. For example, a fast method using Cholesky factorization of B − σI for appropriate
σ ∈ R can be utilized [17]. On the other hand, in Section 3.5, we present a new
faster method of calculating β in the case that a computed Cholesky factor of B and
its approximate inverse are given.
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Remark 3 Comparing to matrix 1-norm and ∞-norm, it is disadvantageous in com-
putational cost to compute matrix 2-norm with guaranteed accuracy. For a square
matrix P , it is known that ‖P‖2 ≤

√

‖P‖1‖P‖∞. Moreover, if P is symmetric in
particular, then it follows that ‖P‖2 ≤ ‖P‖∞. Thus, we obtain

δ̂ ≤ δ, δ :=
β
√

‖Rg‖1‖Rg‖∞
1 − ‖I − Gg‖∞

. (26)

In the proposed method, δ is computed instead of δ̂ to obtain the error bound of λ̃i

based on Theorem 4.

Theorem 5 Let λ̃i, λj and β be defined as in Theorem 4. Let x̃(i) be an approximate
eigenvector in (17) corresponding to λ̃i. Then it holds that

min
1≤j≤n

|λj − λ̃i| ≤ εi, εi :=
β‖r(i)‖2√

gi

(27)

where

r(i) := Ax̃(i) − λ̃iBx̃(i) (28)

gi := x̃(i)T Bx̃(i). (29)

Proof Applying Theorem 2 to (3) yields

min
1≤j≤n

|λj − λ̃i| ≤ ‖L−1AL−T LT x̃(i) − λ̃iL
T x̃(i)‖2

‖LT x̃(i)‖2
. (30)

Utilizing (2), (20), (23) and (28), we have

‖L−1AL−T LT x̃(i) − λ̃iL
T x̃(i)‖2 = ‖L−1(Ax̃(i) − λ̃iLLT x̃(i))‖2

= ‖L−1r(i)‖2

≤ ‖L−1‖2‖r(i)‖2 =
√

‖B−1‖2‖r(i)‖2

≤ β‖r(i)‖2. (31)

On the other hand, it holds that gi = (LT x̃(i))T (LT x̃(i)). Accordingly

‖LT x̃(i)‖2 =
√

gi. (32)

Substituting (31) and (32) into (30), we obtain the desired result. 2

Next we explain how Theorems 4 and 5 are related and used. For this purpose,
we present Theorem 6.

Theorem 6 Let δ and εi for i = 1, . . . , n be defined as in (26) and (27), respectively.
Then it holds for all i that

εi ≤ δ. (33)

Proof Let Rg and r(i) be defined as in (18) and (28), respectively. Then r(i) is
identical to the i-th column of Rg. Therefore we have

‖r(i)‖2 ≤ ‖Rg‖2 ≤
√

‖Rg‖1‖Rg‖∞. (34)
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On the other hand, let Y be defined as

Y := LT X̃ (35)

where L is defined as in (2). Let ei be defined as in Lemma 1. Then it holds that

1 − ‖I − Gg‖∞ = 1 − ‖I − Y T Y ‖∞ (36)
√

gi = ‖Y ei‖2. (37)

Applying Lemma 1 to the right hand sides of (36) and (37), we obtain

1 − ‖I − Gg‖∞ ≤ √
gi. (38)

Combining (34) and (38) proves the theorem. 2

Let δ and εi for i = 1, . . . , n be defined as in (26) and (27), respectively. Based on
Theorem 6, we design the proposed method to supply error bounds ηi which satisfies
|λi − λ̃i| ≤ ηi such that

ηi =

{

εi (if it is proven that min
1≤j≤n

|λj − λ̃i| = |λi − λ̃i|)
δ (otherwise)

. (39)

Therefore it is guaranteed that the proposed method can give the error bounds such
that ηi ≤ δ for all i. To check whether min1≤j≤n |λj − λ̃i| = |λi − λ̃i| holds, we can
use Lemmas 2 and 3.

3.2 A Theorem on Verifying All Eigenvectors

In this section, we present Theorem 7 on verifying x̃(i) for all i in (17).

Theorem 7 Let λi and λ̃i be defined as in Theorem 4. Assume |λi− λ̃i| ≤ ηi for each
i. Let ρi for each i be defined similar to ρi in (10). Let β be defined as in Theorem 4.
Let r(i) and g(i) be defined as in (28) and (29), respectively. Let ξ̂i be defined as

ξ̂i :=
β‖r(i)‖2

ρi

. (40)

If ρi > 0 and ξ̂i <
√

gi hold, then there exists an eigenvector x̂(i) corresponding to λi

such that

‖x̂(i) − x̃(i)‖2 ≤ ξi, ξi := βξ̂i. (41)

Proof As mentioned in Section 1, the generalized eigenvalue problem (17) is equivalent
to the standard eigenvalue problem

L−1AL−T LT x(i) = λiL
T x(i) (42)

where LLT = B. Let ξ∗i be defined as

ξ∗i :=
‖L−1AL−T LT x̃(i) − λ̃iL

T x̃(i)‖2

ρi

. (43)

From (31), (40) and (43) it holds that

ξ∗i ≤ ξ̂i. (44)
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Therefore if ξ̂i <
√

gi holds, then ξ∗i ≤ ξ̂ <
√

gi holds. Utilizing this and (44),

and applying Theorem 3 to (42), if ρi > 0 and ξ̂i <
√

gi hold, then there exists an

eigenvector LT x̂(i) corresponding to λi such that

‖LT x̂(i) − LT x̃(i)‖2 ≤ ξ̂i. (45)

From (20), (23), (41) and (45) it follows that

‖x̂(i) − x̃(i)‖2 = ‖L−T LT (x̂(i) − x̃(i))‖2

≤ ‖L−T ‖2‖LT (x̂(i) − x̃(i))‖2

≤ ‖L−T ‖2ξ̂i =
√

‖B−T ‖2ξ̂i

≤ ξi, (46)

which proves Theorem 7. 2

3.3 Concrete Step

Based on Sections 3.1 and 3.2, we present concrete steps of the proposed method in
Algorithm 1.

Algorithm 1 Let β be an upper bound of
√

‖B−1‖2. Let δ and εi be defined as in
(26) and (27), respectively. This algorithm computes error bounds η := (η1, . . . , ηn)T

and ξ := (ξ1, . . . , ξn)T for

|λi − λ̃i| ≤ ηi and ‖x(i) − x̃(i)‖2 ≤ ξi

on the assumption that D̃ and X̃ have already been obtained.

Step 1: Compute β (see Remark 2).

Step 2: Compute δ and ε := (ε1, . . . , εn)T .

Step 3: Determine η using δ, ε, Lemmas 2 and 3, and (39).

Step 4: Compute ξ.

By changing rounding modes (e.g. [12, 13]) we can compute η and ξ involving
rounding errors. Note that positive definiteness of B is also verified in the process of
computing δ at Step 2. Moreover by modifying this algorithm, verifications of a few
specified eigenvectors are also possible if Step 3 is completed.

3.4 Techniques on Accelerating the Verification

In this section, we explain the techniques to accelerate Algorithm 1. Let s := (1, . . . , 1)T ∈
R

n. Let u ∈ R and u ∈ R be defined as unit roundoff and underflow unit (especially,
u = 2−53 and u = 2−1074 in IEEE 754 double precision), respectively. Moreover let
γn be defined as

γn :=
nu

1 − nu
. (47)

Throughout this paper, fl(·) denotes the result of floating point computations, where
all operations inside parentheses are executed by ordinary floating point arithmetic
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fulfilling rounding mode instruction, especially fl2(·) in rounding-to-nearest, fl△(·) in
rounding-upward and fl▽(·) in rounding-downward.

At Step 2 in Algorithm 1, we can use Techniques 1, 2, and 3. At Step 4, we can
use Technique 4.

Technique 1
To compute δ, we need to compute rigorous enclosures of Rg and I − Gg, to get a
rigorous enclosure of BX̃. Therefore in the proposed method, Z := fl△(BX̃) and
Z := fl▽(BX̃) are computed in the process of calculating the enclosure of Rg and
reused for calculating the enclosure of I −Gg. By these reuses, computational cost for
computing δ can be reduced.

Technique 2
Utilizing an a priori error estimation (e.g. [5, 8, 14]), it holds that

‖I − Gg‖∞ ≤ ‖fl2(I − X̃T Zc)‖∞ + ‖|X̃T ||Zr|s‖∞
+γn(‖|X̃T ||Zc|s‖∞ + 1) + nu (48)

where

Zc := fl△(Z +
1

2
(Z − Z)) (49)

Zr := fl△(Zc − Z). (50)

Note that (48) holds also in the presence of underflow. From (48) we need to execute
matrix multiplication only once in rounding-to-nearest for calculating the rigorous
upper bound of ‖I − Gg‖∞, if Z and Z have already been obtained. Thus the com-
putational cost for ‖fl2(I − X̃T Zc)‖∞ is 2n3 flops. The computational cost for the
other parts in (48) is O(n2) flops.

Technique 3
Let r(i) and gi for i = 1, . . . , n be defined as in (28) and (29), respectively. To ob-
tain εi, we need to compute r(i) and gi. Here, r(i) and gi are identical to the i-th
column of Rg and the (i, i) element of Gg, respectively. Therefore if Rg, Z and Z
have already been obtained in the process of calculating δ, we can reuse them for cal-
culating εi. By these reuses, the computational cost of εi for all i becomes O(n2) flops.

Technique 4
Let τi and µi be defined as τi := β‖r(i)‖2 and µi :=

√
gi, respectively. To verify x̃(i),

we need to compute τi and µi. Therefore if τi and µi have already been obtained in
the process of enclosing all eigenvalues, we can reuse them for verifying x̃(i). By these
reuses, the computational cost for verifying x̃(i) becomes O(n) flops.

3.5 A Method to obtain β

Let β be defined as in Theorem 4. In this section, we propose a method to compute
β, which is applied in Section 4.

Let γn and s be defined as in Section 3.4. Let ei be defined as in Lemma 1. For
preliminaries we present Theorems 8 and 9.

Theorem 8 (Oishi and Rump [13]) Let a nonsingular triangular n × n matrix L
be given. Suppose the columns XLei of an approximate inverse XL are computed by
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substitution, in any order, of n linear systems L(XLei) = ei. Then including possible
underflow,

|XLL − I | ≤ γn|XL||L| + u

1 − nu
(ns + diag(|L|))sT .

Theorem 9 (e.g. Higham [5]) If floating point Cholesky factorization applied to a
symmetric positive definite matrix B ∈ R

n×n runs to completion, then the computed
Cholesky factor L̃ satisfies

L̃L̃T = B + ∆B

|∆B| ≤ γn|L̃||L̃T | + u

1 − (n − 1)u
((n − 1)s + diag(|L|))sT (51)

also in the presence of underflow.

Remark 4 The second term in the right hand side of (51) is devised by the authors.
By adding this term Theorem 9 holds also in the presence of underflow.

Utilizing Theorems 8 and 9, we present Theorem 10.

Theorem 10 Let B and L̃ be defined as in Theorem 9. Let XL be an approximate
inverse of L̃ computed similarly to Theorem 8. Let ζp, αp and αC for p ∈ {1,∞} be
defined as

ζp := γn‖|XL||L̃|s‖p +
nu

1 − nu
‖ns + diag(|L̃|)‖p,

αp :=
‖XL‖p

1 − ζp

,

αC := γn‖|L̃||L̃T |s‖∞ +
nu

1 − (n − 1)u
‖(n − 1)s + diag(|L̃|)‖∞.

If α1α∞αC < 1, it holds that

‖B−1‖2 ≤ α1α∞

1 − α1α∞αC

.

Proof Let P and Q be real n×n matrices with P being nonsingular. It is well known
(e.g. [4, 13]) that

‖P−1‖p̂ ≤ ‖Q‖p̂

1 − ‖QP − I‖p̂

, 1 ≤ p̂ ≤ ∞ (52)

if ‖QP − I‖p̂ < 1. Utilizing the symmetry of B−1, substituting P = B and Q =
L̃−T L̃−1 into (52), and putting p̂ = ∞, we have

‖B−1‖2 ≤ ‖B−1‖∞ ≤ ‖L̃−T L̃−1‖∞
1 − ‖L̃−T L̃−1B − I‖∞

. (53)

Thus if ‖L̃−T L̃−1‖∞ ≤ α1α∞ and ‖L̃−T L̃−1B − I‖∞ ≤ α1α∞αC , we obtain Theo-
rem 10. Therefore we will prove them.

Substituting P = L̃ and Q = XL into (52) yields

‖L̃−1‖p̂ ≤ ‖XL‖p̂

1 − ‖XLL̃ − I‖p̂

. (54)



36 Miyajima et al, Fast Verification for All Eigenpairs

Let ζp̂ and αp̂ be defined similarly to ζp and αp, respectively. From Theorem 8, we
have

‖XLL̃ − I‖p̂ ≤ ζp̂. (55)

Substituting (55) into (54) yields

‖L̃−1‖p̂ ≤ αp̂. (56)

Therefore it holds that

‖L̃−T L̃−1‖∞ ≤ ‖L̃−T ‖∞‖L̃−1‖∞ = ‖L̃−1‖1‖L̃−1‖∞ ≤ α1α∞. (57)

On the other hand, from Theorem 9 and (56), it follows that

‖L̃−T L̃−1B − I‖∞ = ‖L̃−T L̃−1(B − L̃L̃T )‖∞
≤ ‖L̃−1‖1‖L̃−1‖∞‖B − L̃L̃T ‖∞
≤ α1α∞αC . (58)

Thus (53), (57) and (58) prove the theorem. 2

In the next section, we will compute β based on Theorem 10 involving rounding errors.
Note that if L̃ and XL have already been obtained in the process of computing all
approximate eigenpairs, then computing β requires only O(n2) flops.

4 Numerical Examples

In this section, we report some numerical results to show the property of Algorithm 1
and performance of our implementation. We use a computer with a Pentium IV
3.4GHz CPU and MATLAB 7.0 with ATLAS and IEEE 754 double precision for all
computations.

We use the MATLAB function eig to obtain all approximate eigenpairs. As men-
tioned in Section 1, this function adopts the Cholesky-QR method. Accordingly L̃ and
XL in Theorem 10 can also be obtained in the process of computing all approximate
eigenpairs. By reusing them, Step 1 in Algorithm 1 requires only O(n2) flops. Addi-
tionally we use Techniques 1, 2, 3, and 4 described in Section 3.4. Then in Step 2, the
computational parts which require O(n3) flops are matrix multiplications fl△(AX̃),
fl▽(AX̃), fl△(BX̃), fl▽(BX̃) and fl2(X̃T Zc). The computational cost of the other
parts in Step 2 is O(n2) flops. Moreover both Steps 3 and 4 require O(n) flops. From
these, the total computational cost of Algorithm 1 becomes 10n3 flops.

Let ηi and ξi be defined as in Algorithm 1. Let η
(M)
i be the error bound of λ̃i

obtained by the method in [6]. Moreover we define η̄i, ξ̄i and η̄
(M)
i in terms of relative

error bound as

η̄i := fl△

(

ηi

fl▽(|λ̃i| − ηi)

)

, ξ̄i := fl△

(

ξi

fl▽(‖x̃(i)‖2 − ξi)

)

and η̄
(M)
i := fl△

(

η
(M)
i

fl▽(|λ̃i| − η
(M)
i )

)

,

respectively. If η̄i, ξ̄i and η̄
(M)
i are nonnegative, it holds that

|λi − λ̃i|
|λi|

≤ η̄i,
‖x̂(i) − x̃(i)‖2

‖x̂(i)‖2
≤ ξ̄i, and

|λi − λ̃i|
|λi|

≤ η̄
(M)
i ,
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where x̂(i) is defined as in Theorem 7. Let nM be the number of nonnegative error
bounds in η̄

(M)
1 , . . . , η̄

(M)
n . For nonnegative real numbers q1, . . . , qn, mean q denotes

mean q := fl2

(

n
∑

i=1

qi

/

n

)

to see the mean values of the relative error bounds.

Let ta, tv and tM be the computing time (sec) for calculating all approximate
eigenpairs, Algorithm 1 and the method in [6], respectively. Note that tM is the
computing time for enclosing eigenvalues only and tv is that for enclosing eigenpairs.
Moreover define κ(Q) := ‖Q‖2‖Q−1‖2 for a nonsingular matrix Q.

4.1 Example 1

In this example, we observe how the sizes of error bounds change when κ(B) increases.
Consider the case

A :=























5 −4 1
−4 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 5























and B(i, j) :=
232792560

i + j − 1

where A, B ∈ R
n×n. This example was discussed in [2]. Note that the numerator

of B(i, j) is chosen so that the matrix B has integer entries for n ≤ 10. For various

n Tables 1 and 2 display κ(B), max1≤i≤n η̄i, min1≤i≤n η̄i, mean η̄, max1≤i≤n η̄
(M)
i ,

min1≤i≤n η̄
(M)
i , mean η̄(M) and nM , and max1≤i≤n ξ̄i, min1≤i≤n ξ̄i and mean ξ̄, respec-

tively. In Tables 1, 6 and 9, the notation “–” means that some of the error bounds
became negative so that neither max η̄

(M)
i nor mean η̄(M) are available. In this case

min η̄
(M)
i denotes the minimum value among available relative error bounds.

Table 1: κ(B), nM and obtained error bounds for eigenvalues in Example 1
n κ(B) max η̄i min η̄i mean η̄ max η̄

(M)
i

min η̄
(M)
i

mean η̄(M) nM

5 4.8e+05 1.99e-09 4.58e-12 4.22e-10 6.73e-01 1.83e-11 1.35e-01 5
6 1.5e+07 6.25e-08 2.70e-11 1.11e-08 – 4.71e-10 – 4
7 4.8e+08 1.39e-06 3.53e-10 2.12e-07 – 1.31e-08 – 3
8 1.5e+10 4.72e-05 3.08e-09 6.35e-06 – 4.41e-07 – 3
9 4.9e+11 1.33e-03 4.39e-08 1.58e-04 – 8.03e-06 – 2

10 1.6e+13 3.46e-02 3.18e-07 3.73e-03 – 3.06e-04 – 2

From Table 1 we can confirm that Algorithm 1 supplies smaller error bounds for
approximate eigenvalues than those by the method in [6] in this example. Moreover it
can be seen that in Algorithm 1, verifications of all eigenvalues succeeded in all cases
of this example although in the method in [6], verifications of some eigenvalues failed
in some cases. Additionally Tables 1 and 2 show that error bounds increase as κ(B)
increases.
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Table 2: Obtained error bounds for eigenvectors in Example 1
n max ξ̄i min ξ̄i mean ξ̄
5 3.17e-12 2.07e-13 1.29e-12
6 5.61e-10 6.50e-12 1.90e-10
7 7.29e-08 4.98e-10 2.21e-08
8 1.47e-05 2.46e-08 4.03e-06
9 2.30e-03 1.95e-06 5.32e-04

10 3.46e-01 8.24e-05 7.99e-02

4.2 Example 2

In this example, we observe the sizes of error bounds and computing times for large n
when κ(A) and κ(B) are small. Consider the case that A and B are generated by

A=randn(n);

A=(A+A’)/2;

B=randn(n);

B=n*eye(n)+(B+B’)/2; % eye(n): the n-by-n identity matrix

on MATLAB. Here the function randn generates a random matrix whose elements are
uniformly distributed in [−1, 1]. Algorithm 1 verified that B is positive definite. For
various n Tables 3 and 4 display the similar quantities as Tables 1 and 2 except for
κ(B) and nM , respectively. Table 5 displays ta, tv and tM for various n.

Table 3: Obtained error bounds for eigenvalues in Example 2

n max η̄i min η̄i mean η̄ max η̄
(M)
i min η̄

(M)
i mean η̄(M)

100 1.09e-12 1.62e-14 4.28e-14 1.47e-10 6.24e-13 4.84e-12
250 3.46e-12 3.61e-14 8.62e-14 1.52e-09 3.54e-12 2.79e-11
500 8.69e-12 7.24e-14 1.64e-13 9.43e-09 1.38e-11 1.25e-10

1000 3.12e-11 1.39e-13 3.41e-13 3.96e-11 5.29e-13 4.09e-12
2000 9.71e-11 2.74e-13 6.68e-13 4.56e-07 2.15e-10 2.24e-09
2500 2.44e-10 3.43e-13 8.51e-13 1.47e-06 3.35e-10 3.65e-09

Table 4: Obtained error bounds for eigenvectors in Example 2
n max ξ̄i min ξ̄i mean ξ̄

100 1.18e-12 3.01e-14 1.85e-13
250 4.25e-12 8.98e-14 5.44e-13
500 2.47e-11 1.80e-13 1.40e-12

1000 3.96e-11 5.29e-13 4.09e-12
2000 6.13e-10 1.19e-12 1.14e-11
2500 1.46e-09 1.14e-12 1.59e-11

From Table 3 we can confirm that Algorithm 1 supplies smaller error bounds for
approximate eigenvalues than those by the method in [6] also in this example. It can
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Table 5: Computing times (sec) in Example 2
n ta tv tM

100 0.03 0.03 0.06
250 0.19 0.17 0.45
500 1.36 1.06 3.14

1000 10.1 6.61 23.0
2000 77.4 47.2 179
2500 146 90.2 353

be seen from Table 4 that Algorithm 1 supplies sufficiently small error bounds for
approximate eigenvectors in this example. Moreover we can confirm from Table 5 that
tv are smaller than tM even though tM is the computing time for enclosing eigenvalues
only. Accordingly Algorithm 1 was from twice to four times faster than the method in
[6] in this example. This identifies the fact that computational costs of Algorithm 1
and the method in [6] are 10n3 flops and 44n3 flops, respectively. We can also confirm
that tv are smaller than ta for large n. Namely Algorithm 1 was faster than the
computation of all approximate eigenpairs in almost all of the cases in this example.

One may be interested in enclosing a few specified eigenpairs. For instance, consider
the case of n = 1000 and verifying (λ̃j , x̃

(j)) for j ∈ {1, 2, 3, 998, 999, 1000} in this
example. In this case, we can apply an INTLAB [18] function VerifyEig. When we
applied VerifyEig to this case, the obtained error bounds of (λ̃j , x̃

(j)) for each j were
approximately ten times as small as that by Algorithm 1. Note that VerifyEig does
not necessarily compute the inclusions of λj and x(j) when eigenvalues are clustered
near λj . The computing time for VerifyEig was approximately 35 sec for all j.
Note that VerifyEig is designed to include one eigenpair, and can be significantly
accelerated if more than one eigenvalue is to be included. As shown in Table 5,
Algorithm 1 requires 6.61 sec to verify all approximate eigenpairs. From these it can
be seen that Algorithm 1 is faster than VerifyEig although VerifyEig supplies smaller
error bounds than those by Algorithm 1 in this case.

4.3 Example 3

In this example, we observe the sizes of error bounds and computing times when κ(B)
is moderately large. Consider the case that A and B are generated by

A=randn(n);

A=(A+A’)/2;

B=gallery(’randsvd’,n,-1e6);

on MATLAB. We use the Higham’s test matrix randsvd [5]. Then B is mostly sym-
metric positive definite with κ(B) ≈ 1e+6. Algorithm 1 verified that B is positive
definite rigorously. Table 6 displays nM/n and the similar quantities to Table 3. Ta-
bles 7 and 8 display the similar quantities to Tables 4 and 5, respectively.

From Tables 6 and 7 we can confirm the similar tendency to Tables 1 and 2 with
respect to the error bounds, respectively. Moreover it can be seen that error bounds
became larger comparing to that in Example 2. The tendencies about the computing
time were similar to Table 5.
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Table 6: Obtained error bounds for eigenvalues and nM/n in Example 3
n max η̄i min η̄i mean η̄ max η̄

(M)
i

min η̄
(M)
i

mean η̄(M) nM /n
100 5.93e-09 3.74e-11 4.83e-10 – 8.59e-09 – 0.98
250 4.37e-08 1.43e-10 1.49e-09 – 5.42e-08 – 0.87
500 3.80e-08 3.50e-10 3.71e-09 – 3.07e-07 – 0.78

1000 5.69e-07 8.62e-10 1.03e-08 – 1.70e-06 – 0.69
2000 3.32e-07 2.28e-09 2.56e-08 – 9.03e-06 – 0.60
2500 1.85e-06 3.13e-09 3.69e-08 – 1.57e-05 – 0.57

Table 7: Obtained error bounds for eigenvectors in Example 3
n max ξ̄i min ξ̄i mean ξ̄

100 5.86e-05 5.69e-07 1.07e-05
250 1.48e-03 5.11e-06 1.45e-04
500 1.09e-02 3.42e-05 1.04e-03

1000 1.03e-01 2.54e-04 7.45e-03
2000 3.04e-00 1.26e-03 5.74e-02
2500 4.06e-00 2.57e-03 1.20e-01

In the case of n = 1000, we applied VerifyEig to (λ̃j , x̃
(j)) for j ∈ {1, 2, 3, 998, 999, 1000}.

Then the verification of (λ̃1, x̃
(1)) succeeded and the verification of the other eigenpairs

failed. The error bound for (λ̃1, x̃
(1)) was approximately ten times as small as that by

Algorithm 1. The computing time for VerifyEig was approximately 60 sec for all j.
As shown in Table 8, Algorithm 1 requires 6.63 sec to verify all approximate eigen-
pairs. From these it can be seen that Algorithm 1 is robuster than VerifyEig although
VerifyEig supplies smaller error bound for (λ̃1, x̃

(1)) than that by Algorithm 1 in this
case.

4.4 Example 4

In this example, we observe how the sizes of error bounds change when κ(A) increases.
Consider the case that 1000 × 1000 matrices A and B are generated by the following
MATLAB code:

cond10 = log10(cond); % cond: anticipated condition number

s = sign(randn(1,1000));

D = diag(s .* logspace(0,cond10,1000));

X = randorth(1000);

A = X*D*X’;

A = (A+A’)/2;

B=randn(1000);

B=n*eye(1000)+(B+B’)/2;

We use the INTLAB function randorth for generating a random (approximately)
orthogonal matrix. Then A is symmetric with κ(A) ≈ cond. Algorithm 1 verified that
B is positive definite. For various cond Tables 9 and 10 display the similar quantities
to Tables 6 and 7, respectively.

From Table 9, we can confirm the similar tendency to Table 1 with respect to
the relation between η̄i and η̄(M). Moreover Tables 9 and 10 show that error bounds
increase as κ(A) increases.
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Table 8: Computing times (sec) in Example 3
n ta tv tM

100 0.03 0.03 0.06
250 0.25 0.17 0.49
500 1.13 1.06 3.25

1000 8.11 6.63 22.5
2000 62.4 46.1 177
2500 118 88.7 346

Table 9: Obtained error bounds for eigenvalues and nM/n in Example 4
cond max η̄i min η̄i mean η̄ max η̄

(M)
i

min η̄
(M)
i

mean η̄(M) nM /n
1e+02 1.69e-12 1.33e-13 4.22e-13 3.05e-09 3.01e-11 6.52e-10 1.00
1e+04 1.16e-10 1.32e-13 1.22e-11 1.80e-07 1.76e-11 1.94e-08 1.00
1e+06 9.28e-09 1.34e-13 6.60e-10 1.31e-05 1.34e-11 9.58e-07 1.00
1e+08 8.37e-07 1.33e-13 4.29e-08 1.06e-03 1.06e-11 5.74e-05 1.00
1e+10 7.46e-05 1.31e-13 3.11e-06 1.01e-01 9.43e-12 4.25e-03 1.00
1e+12 6.75e-03 1.34e-13 2.31e-04 – 7.94e-12 – 0.93

In the case of cond = 1e+12, we applied VerifyEig to (λ̃j , x̃
(j)) for j ∈ {1, 2, 3, 998, 999, 1000}.

The obtained error bounds of (λ̃j , x̃
(j)) for each j were approximately 1010 times as

small as that by Algorithm 1. From this it can be seen that VerifyEig is very useful
for verifying a few specified eigenpairs in the case that κ(A) is large and small error
bounds are required.

4.5 Example 5

In this example, we observe the property of Algorithm 1 and the method in [6] when
some eigenvalues are near from zero and closely clustered. Consider the case that A
and B are defined as

A =









6 3a −6 3a
3a 2a2 −3a a2

−6 −3a 6 −3a
3a a2 −3a 2a2









, B =









156 22a 54 −13a
22a 4a2 13a −3a2

54 13a 156 −22a
−13a −3a2 −22a 4a2









where a is a parameter [7]. This example relates vibration analysis. We consider the
case that a = 2. In this case, κ(B) ≈ 2.9e+2. Algorithm 1 verified that B is positive
definite. Moreover we obtained λ̃1 = −1.958e-16, λ̃2 =7.608e-17, λ̃3 =0.8572 and
λ̃4 =10.001 by eig. Thus λ̃1 and λ̃2 are near from zero and closely clustered.

Table 11 displays ηi, ξi and η
(M)
i for i = 1, . . . , 4. In Table 11 the notation “–”

means that the corresponding error bound became negative so that verification for
λ̃i failed in the sense of relative error bound. Moreover the notation “∗” means that
ρ̄i ≤ 0, where ρ̄i is defined as in Theorem 7, so that verification for x̃(i) failed in the
sense of absolute error bound.

From Table 11 we can confirm that both of Algorithm 1 and the method in [6]
failed in the verifications of λ̃1 and λ̃2 in the sense of relative error bound. The reason
is that λ̃1 and λ̃2 are too near from zero compared with λ̃4. Moreover it can be seen
that Algorithm 1 also failed in the verifications of x̃(1) and x̃(2) in the sense of absolute
error bound. The reason is that λ̃1 and λ̃2 are closely clustered.
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Table 10: Obtained error bounds for eigenvectors in Example 4
cond max ξ̄i min ξ̄i mean ξ̄

1e+02 3.02e-11 1.76e-13 4.59e-12
1e+04 8.24e-10 1.65e-13 5.90e-11
1e+06 3.63e-08 1.14e-13 2.11e-09
1e+08 2.32e-06 6.96e-14 9.66e-08
1e+10 1.70e-04 2.44e-14 5.98e-06
1e+12 6.75e-03 1.34e-13 2.31e-04

Table 11: Numerical Results in Example 5

i η̄i η̄
(M)
i ξ̄i

1 – – ∗

2 – – ∗

3 2.49e-14 1.73e-13 3.46e-14
4 3.34e-14 8.53e-15 5.08e-14

We applied VerifyEig to (λ̃i, x̃
(i)) for all i. Then VerifyEig also failed in the ver-

ification of (λ̃1, x̃
(1)) and (λ̃2, x̃

(2)). Alternatively VerifyEig succeeded in the verifica-
tion of (λ̃3, x̃

(3)) and (λ̃4, x̃
(4)). The obtained error bounds for (λ̃3, x̃

(3)) and (λ̃4, x̃
(4))

were approximately equal to those by Algorithm 1. From these we can confirm that
Algorithm 1 supplied the comparable results with VerifyEig in this example.

5 Application to Quadratic Eigenvalue Problem

As an application of the proposed method, in this section, we sketch an efficient method
of enclosing all eigenpairs in the quadratic eigenvalue problem

(λ2
i A + λiB + C)x(i) = 0

A, B, C ∈ R
n×n, λi ∈ R, x(i) ∈ R

n, i = 1, . . . , 2n (59)

where A is symmetric negative definite, B is symmetric and C is symmetric positive
definite. Then (59) is equivalent to the following generalized eigenvalue problem

Áx́(i) = λiB́x́(i)

Á, B́ ∈ R
2n×2n, λi ∈ R, x́(i) ∈ R

2n, i = 1, . . . , 2n (60)

where

Á :=

(

B C
C 0

)

, x́(i) :=

(

λix
(i)

x(i)

)

, B́ :=

(

−A 0
0 C

)

.

Á is symmetric and B́ is symmetric positive definite. Therefore all eigenpairs in (59)
can be enclosed by applying the proposed method to (60). With respect to approximate
eigenpairs (λ̃i, x̃

(i)) for all i, it can be expected that ÁX̃ ≈ B́X̃D̃ and I2n ≈ X̃T B́X̃
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where Im denotes the m × m identity matrix and

X̃ :=

(

X̃1D̃1 X̃2D̃2

X̃1 X̃2

)

, D̃ :=

(

D̃1 0

0 D̃2

)

X̃1 := (x̃(1), . . . , x̃(n)), X̃2 := (x̃(n+1), . . . , x̃(2n))

D̃1 := diag(λ̃1, . . . , λ̃n), D̃2 := diag(λ̃n+1, . . . , λ̃2n).

Accordingly as regards to the parts in the proposed method whose computational costs
are O(n3) flops, we obtain

ÁX̃ − B́X̃D̃ =

(

E1 E2

0 0

)

I2n − X̃T B́X̃ =

(

In − F11 −F12

−F21 In − F22

)

Ej := AX̃jD̃
2
j + BX̃jD̃j + CX̃j

Fjk := −X̃jD̃jAX̃kD̃k + X̃jCX̃k.

We can reuse the results of matrix multiplications AX̃j and CX̃j for j ∈ {1, 2}.

6 Conclusion

In this paper, we proposed a fast method of enclosing all eigenpairs for the generalized
eigenvalue problem (1) where A is symmetric and B is symmetric positive definite.
Some numerical results were reported to show the performance of the proposed method.

As an application of the proposed method, we also sketched an efficient method of
enclosing all eigenpairs in the quadratic eigenvalue problem (59) where A is symmetric
negative definite, B is symmetric and C is symmetric positive definite.

By modifying the proposed method slightly, enclosing all eigenpairs in (1) where
A is Hermitian and B is Hermitian positive definite is possible.
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