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Abstract For an mˆn matrix A, the mathematical property that the rank of
A is equal to r for 0 ă r ă minpm,nq is an ill-posed problem. In this note we
show that, regardless of this circumstance, it is possible to solve the strongly
related problem of computing a nearby matrix with at least rank deficiency k
in a mathematically rigorous way and using only floating-point arithmetic.

Given an integer k and a real or complex matrix A, square or rectangular,
we first present a verification algorithm to compute a narrow interval matrix
∆ with the property that there exists a matrix within A ´ ∆ with at least
rank deficiency k.

Subsequently, we extend this algorithm for computing an inclusion for a
specific perturbation E with that property but also a minimal distance with re-
spect to any unitarily invariant norm. For this purpose, we generalize Wedin’s
sinpθq theorem by removing its orthogonality assumption. The corresponding
result is the singular vector space counterpart to Davis and Kahan’s general-
ized sinpθq theorem for eigenspaces.

The presented verification methods use only standard floating-point opera-
tions and are completely rigorous including all possible rounding errors and/or
data dependencies.
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1 Introduction and notation

Verification methods use standard floating-point arithmetic and estimate pos-
sible rounding errors rigorously so that computed results, i.e., error bounds,
are true with mathematical rigor. As an advantage, verification methods are
fast; as a disadvantage, their application is basically restricted to well-posed
problems. For an overview of verification methods cf. [32] and [in Japanese]
[28]. An easy-to-read introduction [in German] is [34].

The restriction to well-posed problems can be explained as follows. First,
as a well-posed problem, consider the verification of regularity of a matrix.
Let, for example, A P Rnˆn be given and denote by I the identity matrix of
suitable size. If }I ´ RA}8 ă 1 for some R P Rnˆn, then no eigenvalue of A
can be zero and A must be regular. An obvious choice for R is an approximate
inverse of A.

It is important to observe that, mathematically, R may be an arbitrary
matrix of appropriate size. Any requirement like “being sufficiently close to
A´1” would have to be verified to maintain mathematical rigor. Of course the
verification is bound to fail for some randomly chosen R, but the assertion
}I ´RA}8 ă 1 ñ detpAq ‰ 0 is correct for every R.

The verification of }I´RA}8 ă 1 in floating-point poses the problem that
in most practical situations rounding errors will inevitably occur when evaluat-
ing this expression. On the other hand, when using a floating-point arithmetic
following the IEEE-754 floating-point standard [11,12], the maximum relative
error of every floating-point operation is bounded by the relative rounding
error unit [7]. Thus, all rounding errors can be rigorously estimated, and the
property }I ´ RA}8 ă 1 can be verified with mathematical rigor. Another
possibility is the use of directed rounding for computing actual lower and up-
per bounds for the term on the left-hand side. The latter approach typically
yields better results and it is implemented within INTLAB [31,32]. Usually,
the entries of I ´ RA are not representable as a floating-point matrix. And
even if this would be the case, the same can be rarely said for all intermediate
results. As a consequence, if successful, a verification method typically not
only proves the regularity solely of the given matrix A but verifies regularity
of all matrices in an ε-neighborhood of A.

Second, consider the problem to prove singularity of a matrix, which is
mathematically the opposite of regularity. If a computation is not entirely
exact, a certificate that A is singular cannot be mathematically sound because
every ε-neighborhood of a singular matrix contains a regular one. Therefore
the problem of deciding singularity of a matrix is ill-posed in the sense of
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Hadamard [6] and outside the scope of verification methods. Similarly, the
problem to verify that a given matrix has a certain rank deficiency is ill-posed.

The approach as described above may be applied to an interval matrix
A, in that case verifying that every real matrix A within A is regular. As has
been shown by Poljak and Rohn [30] that problem is NP-hard; it is completely
outside the scope of numerical methods.

Verification method produce mathematically rigorous results. That means
that provided the computer arithmetic works to its specifications and the
implementation is correct, the result of a verification method is true - like a
mathematical theorem. The same is true, for example, for computer algebra
methods. In verification methods, the benefit of being fast is traded against
the limitation of scope to well-posed problems.

There are other methods to increase the reliability of numerical results.
For example, in [40,13], input data is stochastically perturbed to receive some
information on the sensitivity of the problem. From that conclusions are drawn
on the accuracy of the computed results. Also regarding rounding error analysis
for standard numerical algorithms, it is well known that error bounds are
worst case and hardly achieved in practice. A novel approach to a probabilistic
rounding error analysis is given in [8]. All those methods are valuable, however,
they do not provide mathematically rigorous error bounds.

In the following we shortly write “verified bounds” for mathematical rig-
orous bounds obtained by a verification method. Similarly, we use the term
“inclusion for A” referring to an interval quantity that contains A. The lower
and upper bounds of this interval are again obtained by a verification method.

It may come as a surprise that we approach the ill-posed problem of rank
deficiency by verification methods based on standard floating-point arithmetic.
However, we do not attempt to actually prove rank deficiency of a given matrix
which, for the reasons discussed above, is outside of the scope of verification
methods. Instead we discuss methods to compute tight inclusions for a nearby
rank deficient matrix in the following sense: Given a matrix A and an integer k,
we present verification methods to compute rigorous bounds for a perturbation
of A such that the perturbed matrix has at least rank deficiency k.

By this different approach we circumvent the ill-posedness of the underlying
problem. The concept of verifying that a nearby problem has a certain property
is well known; for instance, in [42,17,35,20] such techniques are described for
systems of nonlinear equations and in [16] for saddle points.

Finally, we aim to compute an inclusion for a specific perturbation with
minimal distance to A. To that end, we will see that a lower bound on a gap
between singular values is necessary. Based on the first approach, we present
a method for computing an inclusion for a perturbation E with minimal dis-
tance with respect to any unitarily invariant norm. The theoretical basis is
a generalization of Wedin’s sinpθq theorem [43] by removing its orthogonality
assumption. Our result is the singular vector subspace counterpart to Davis
and Kahan’s generalized sinpθq theorem for eigenvector subspaces [2].
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All of our results can be implemented solely using standard floating-point
operations in rounding to nearest with suitable error estimates. Another con-
venient way is to use interval operations which will be used in the following.

Algorithms are explored by code written in INTLAB [31], the Matlab/Oc-
tave toolbox for Reliable Computing. The short code snippets given in the
following section are basically self-explanatory. To understand them, not much
knowledge of interval arithmetic is necessary. Basically, it suffices to know that
for given A,B and an operation ˝, where at least one of A,B is an interval
quantity, the result C of the induced interval operation A˝B satisfies a˝b P C
for all a P A and all b P B. For more details, see [26,18,32,28].

Interval quantities are in bold-face, and an interval matrix A is said to
have full rank if all A P A have that property. For a matrix A, its Hermitian
is denoted by A˚, and its Moore-Penrose pseudoinverse by A`.

2 A nearby matrix of at least rank deficiency k

Let an m ˆ n matrix A be given, and assume m ě n. Furthermore, let k be
an integer with 1 ď k ď n. We aim to find a perturbation E of A such that
A´ E has at least rank deficiency k.

The natural approach uses the singular value decomposition

A “ UΣV ˚ “
n
ÿ

i“1

σipAq ¨ pUeiqpV eiq
˚

with σ1pAq ě ¨ ¨ ¨ ě σnpAq denoting the singular values of A in the usual
order, and ei denoting the ith column of the identity matrix of appropriate
size. The following well-known result is referred to as Eckart-Young-Mirsky
theorem [21]. According to [39] it was first published by E. Schmidt [37].

Theorem 2.1 For some natural number s ď n, consider the approximation
problem

min
BPCmˆn

t}A´B} : rankpBq ď su. (2.1)

Regardless of the choice of the unitarily invariant matrix norm } ¨ },

pB “
s
ÿ

i“1

σipAq ¨ pUeiqpV eiq
˚ (2.2)

is a solution to problem (2.1).

Theorem 2.1 identifies

E “
n
ÿ

i“n´k`1

σipAq ¨ pUeiqpV eiq
˚ (2.3)

as a possible choice of a minimum unitarily invariant norm perturbation of
A giving at least rank deficiency k with }E}2 “ σn´k`1. Unitarily invariant
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norms of particular interest for us are the spectral norm } ¨ }2 and the Frobe-
nius norm } ¨ }F. It is noteworthy that the choice given in (2.3) is the unique
minimum regarding the Frobenius norm. On the other hand, if σn´k`1 ą 0
and k ă n, it is easy to construct various perturbations of E with the same
minimal spectral norm ‖E‖2 and rankpA´ Eq ď n´ k.

2.1 Verification of the 2-norm distance to rank deficiency k

Standard perturbation results for singular values as in [29,5] can be used to
obtain verified error bounds for the spectral norm of E in (2.3); refined bounds
are given, for example, by [9, Theorem 4.5], [24, Theorem 3]. The following
bound by Lange [19] is particularly suitable for our verification purpose for
several reasons.

It is applicable for non-orthogonal approximations of the singular vectors
and thereby avoids the computation of verified inclusions for actual orthogonal
approximations. Moreover, the approach is comparably efficient since each
component of the residuals R and S in the following theorem can be computed
by a single dot product instead of triple products of matrices. If a higher
accuracy is needed there are several methods to compute verified bounds for
dot products accurately and efficiently, for instance, [27,4,14,3,23].

Theorem 2.2 Let matrices A P Cmˆn, H P Ckˆk be given with m ě n ě k.
Denote the singular values of H by θ1 ě θ2 ě ¨ ¨ ¨ ě θk. For some Y P

Cmˆk, X P Cnˆk define

R :“ AX ´ Y H and S :“ A˚Y ´XH˚. (2.4)

Then there is a subset of k singular values σi1 , . . . , σik of A such that

max
1ďjďk

|σij ´ θj | ď
maxt}R}2, }S}2u

mintσminpXq, σminpY qu
. (2.5)

Natural choices for X,Y,H are suggested by an approximate singular value
decomposition A « ŨΣ̃Ṽ ˚: H is the diagonal matrix of the k smallest sin-
gular value approximations in the diagonal part of Σ̃, and X,Y are chosen
accordingly.

The norms of the residuals R,S can be expected to be small, whereas X,Y
are almost orthogonal with singular values close to 1. As a consequence, the
upper bound in (2.5) can be expected to be small. Both the spectral norm from
above and the smallest singular value from below can be bounded by standard
verification methods as in [33]. For the former, }R}2 ď

a

}R}8}R}1 is faster
to compute and may be sufficient. Moreover, the key quantities in (2.4) can be
computed to high accuracy using compensated algorithms [15,25,38], double-
double arithmetic [1] or other methods based on error-free transformations
[36].

As a result we obtain narrow bounds for k distinct but not necessarily mu-
tually different singular values of A close to the diagonal elements of B. These
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need not to be the set of k smallest singular values of A, but the largest of the
singular values bounded via (2.5) is always an upper bound for σn´k`1 “ }E}2.
Moreover, the inclusions for k distinct singular values enable us to compute
verified bounds for other unitarily invariant norms such as the Frobenius norm.

The 2-norm bound on E can be used as a radius around A, such that the
corresponding interval matrix contains the solution B̂ in (2.2). This approach
can be sensible if A is nearby a matrix with rank deficiency k, i.e., }E} “
}A´B̂} is very small. On the other hand, for larger distances to rank deficiency
k, the inclusions based on norm bounds are too wide to be of practical use. In
the following subsections we discuss suitable alternatives.

2.2 Verification of a perturbation for at least rank deficiency k

Rather than verifying only the distance to a nearest matrix of rank deficiency
k in some measure, we are now interested in verified bounds for an actual
perturbation producing a specified rank deficiency.

As before let a matrix A P Cmˆn with m ě n and an integer k with
1 ď k ď n be given. One of the simplest though rarely sensible way to approx-
imate A by a matrix with at least rank deficiency k is to choose k columns
of A and set all corresponding elements to zero. Typically, one would choose
the columns of A that have relatively small distance-to-zero measures. Bet-
ter results may be obtained, for instance, by applying an approximate LU -
decomposition with partial pivoting, resetting the k rows of U with smallest
distance-to-zero measures, and computing the rank deficient approximation as
the product of the approximate L and the reduced approximate U .

The two previous approaches can be realized efficiently even for very large
and possibly sparse matrices. Nevertheless, in the context of a unitarily invari-
ant norm measurement as in Theorem 2.1, the computed results will typically
be far from optimal. For a better approximation we follow the natural approach
and exploit the singular value decomposition of A.

Let A « ŨΣ̃Ṽ ˚ be an economy-size approximate singular value decompo-
sition, where Ũ P Cmˆn, Ṽ P Cnˆn with Ũ˚Ũ « I « Ṽ ˚Ṽ and Σ̃ P Rnˆn is a
diagonal matrix with non-negative entries. Denote by Σ̃k the matrix derived
from Σ̃ by setting k smallest diagonal elements to zero, then B “ ŨΣ̃kṼ

˚ has
at least rank deficiency k.

How close the distance between A and our approximate B comes to the
optimal distance }E} depends on the quality of the approximate singular value
decomposition. If a stable algorithm is used for the computation of Ũ , Σ̃, Ṽ ,
then }A ´ B} Ç }A ´ B̂} “ }E}. An inclusion ∆0 for an actual perturba-
tion realizing rank deficiency k can be computed using the following INTLAB
code.12

1 The extra parameter zero in the call of svd indicates to compute the economy-size
singular value decomposition.

2 Note that the typecast of S(I,I) to interval forces all operations in the last line to be
to be interval operations, so that Delta0 is an inclusion for the desired quantity.
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[U,S,V] = svd(A,0);

I = 1:n-k;

Delta0 = A - U(:,I)* intval(S(I,I))*V(:,I)';

A major issue of this approach is that B contains the significant parts of
A by which the intermediate results in ŨΣ̃kṼ

˚ are relatively large. Hence by
evaluating ŨΣ̃kṼ

˚ with all rounding errors taken into account, we introduce
intervals with comparably large diameter. Moreover, the overall accuracy de-
pends on the accuracy of all three approximates Ũ , Σ̃, Ṽ . In the following we
introduce a method circumventing these issues.

The concept originates from the following statement. If pA´∆qX “ 0 for
a matrix X with rank k and arbitrary ∆ P Cmˆn, then A ´ ∆ has at least
rank deficiency k.

In this regard, instead of looking for a solution to the approximation prob-
lem (2.1), we fix X and consider the alternative problem:

min
BPCmˆn

t}A´B} : BX “ 0u. (2.6)

The following result is probably known; here we state it together with a short
proof. Again } ¨ } may be any unitarily invariant matrix norm.

Lemma 2.1 Let A P Cmˆn and X P Cnˆ` with m ě n ě ` be given. Then,
regardless of the choice of the unitarily invariant matrix norm,

B̂x :“ ApI ´XX`q (2.7)

is a solution to problem (2.6).

Proof Let Q “ rQ1 Q2s be a unitary matrix where the columns of Q1 span
the range of X, so that there exists a matrix Z satisfying Q1 “ XZ. Let B be
a solution of (2.6). Then BQ1 “ BXZ “ 0 and [21, Lemma 3] yield

}A´B} “ }pA´BqQ} “ }rAQ1 pA´BqQ2s} ě }AQ1}.

On the other hand,

}A´ B̂x} “ }AXX
`} “ }AQ1Q

˚
1 } “ }AQ1},

so that B̂x satisfies the previous inequality with equality and is therefore op-
timal. [\

By Lemma 2.1 a favorable choice for a perturbation of A is ∆ :“ A´ B̂x “

AXX`. The perturbation ∆ can be computed as the minimum Frobenius
norm solution to the underdetermined linear system X˚∆˚ “ pAXq˚, the
solution of which is

∆ “
`

pX˚q`pAXq˚
˘˚
“
`

pX`q˚X˚A˚
˘˚
“ AXX`

as desired. Given A P Cmˆn and X P Cnˆk with m ě n ě k, the INTLAB call
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Delta = verifylss(X',(intval(A)*X)')'

computes a verified inclusion for ∆. If the INTLAB call x = verifylss(A,b)

successfully returns an interval vector x, this verifies a full rank of A and the
returned interval vector contains the minimum 2-norm solution of Ax “ b. For
our code example this implies full rank of X, i.e., rankpXq “ k, and that the
returned interval matrix contains the minimum Frobenius norm solution to
the respective system.

Regarding our specific purpose, that can be simplified by computing error
bounds for ∆ directly.

Lemma 2.2 Let A P Cmˆn and X P Cnˆk with m ě n ě k be given. Abbrevi-
ate ∆ :“ AXX` as well as G :“ I´X˚X, and let } ¨} be a unitarily invariant
norm. If }G}2 ď α ă 1, then

∆ “ AXX˚ ` F1 “ AXpI `GqX˚ ` F2 with }Fν} ď
αν

?
1´ α

}AX} (2.8)

for ν P t1, 2u. The matrix A´∆ has at least rank deficiency k.

Proof The norm estimates are derived by exploiting the compatibility of uni-
tarily invariant norms with the spectral norm, cf. [2]. An immediate conse-
quence of this compatibility is the following inequality:

@C P Cpˆq, D P Cqˆr : }CD} ď }C} ¨ }D}2. (2.9)

The assumption }G}2 ă 1 implies that X has full rank such that

X` ´X˚ “ pI ´X˚XqpX˚Xq´1X˚ “ GX` “ GX˚ `G2X`

and therefore

∆ “ AXX˚ ` F1 “ AXpI `GqX˚ ` F2 with Fν :“ AXGνX`.

Then, using (2.9), we derive }Fν} “ }AXGνX`} ď }AX} ¨ }Gν}2 ¨ }X
`}2.

Finally, [33, Lemma 2.2] gives }X`}2 ď
1?
1´α

and finishes the proof. [\

Note that Lemma 2.2 is true for any unitarily invariant norm; generic
choices are the spectral or the Frobenius norm.

In the context of our initial problem (2.1), a natural choice for the columns
of X are the right singular vectors of A corresponding to the k smallest singular
values. In practice, we have only approximations of these singular vectors
(i.e., the tailing k columns of Ṽ ), but we can still expect that X˚X « I. Our
choice of X is numerically orthogonal, so that α is of the order of the relative
rounding error unit. It is computationally more efficient to use }I ´X˚X}2 ď
}I ´X˚X}8 “: α without sacrificing much accuracy.

For element-wise bounds on the entries of ∆, we can exploit that |pFνqij | ď

}Fν}2. It is often sufficient to use }AX}2 ď
a

}AX}1}AX}8 rather than a tight
estimate of the spectral norm based on singular value decomposition. On the
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other hand, for any matrix T of suitable dimension, we easily derive from the
proof of Lemma 2.1 that

}TFν} ď
αν

?
1´ α

}TAX}. (2.10)

In particular

|pFνqij | ď }e
T
i Fν}2 ď

αν
?

1´ α
}eTi AX}2 (2.11)

for all index pairs i, j. The final estimate is computationally cheap and always
at least as good as the previous bound.

In any case, a computed inclusion for ∆ can be expected to be narrow.
Given X, executable INTLAB code is as follows.

G = eye(k) - X'* intval(X);
alpha = norm(G,inf);

if alpha <1

AX = A*intval(X);

f1 = alpha/sqrt(1-alpha)* vecnorm(AX ,2,2);

Delta1 = AX*X' + midrad(0,mag(f1));

Delta2 = AX*(X'+G*X') + midrad(0,mag(alpha*f1));

else

Delta1 = intval(NaN(m,n));

Delta2 = Delta1;

end

Here any expression involving interval quantities is computed with error bounds.
Therefore G is an interval matrix, and alpha is an inclusion for the 8-norm of
all (real or complex) matrices within G, in particular of I ´X˚X.

The ith entry of the vector f1 is an inclusion for the right-most quantity
in (2.11) for ν “ 1, and mag(f1) is a vector of upper bounds of the maximum
absolute values of f1. Furthermore, midrad(0,mag(f)) serves as a constructor
for an interval vector that contains all real vectors v satisfying ´magpf1q ď
v ď magpf1q with entry-wise comparison. That interval vector is added to
the matrix AX*X' in the definition of Delta1 by using MATLAB’s implicit
expansion of arrays into compatible sizes.3 The computation of an inclusion
for ∆ based on F2 is accordingly.

Failure of the algorithm is only possible if alpha<1 is not satisfied. In prac-
tice that means that the approximately computed matrix X of right singular
vectors of A does not satisfy }I ´X˚X} ă 1, which seems extremely unlikely.

3 An inclusion for an optimal perturbation

The initial question of proving that a given matrix has at least rank deficiency
k is ill-posed and therefore outside the scope of verification methods. By chang-

3 In previous releases of Matlab midrad(0,mag(f)) would be replaced by
repmat(midrad(0,mag(f)),1,size(A,2)).
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ing this question into asking for an inclusion of a nearby matrix with at least
rank deficiency k, we constructed a well-posed problem that is strongly related
to the initial problem. Methods for the computation of a tight inclusion for a
matrix with the desired properties are given in the previous section.

However, we may ask not just for the inclusion for a nearby matrix but for
a tight inclusion for an optimal solution to the minimization problem (2.1), or,
more precisely, for an inclusion for the specific solution given in (2.2). Unlike
the approaches in the previous section, such inclusions would always contain
the matrix A if A has already rank deficiency k.

In order to compute a tight inclusion for this specific perturbation E defined
in (2.3), it is necessary to somehow relate the approximate singular vectors
with the actual singular vectors of A. However, the computation of verified
bounds for the singular vectors of a matrix becomes ill-posed for multiple
singular values.

As an example, consider the 4ˆ 4 Hadamard matrix4 with a simultaneous
ε-perturbation in the p1, 1q- and p4, 4q-entry, i.e.,

Hε :“

¨

˚

˚

˝

1` ε 1 1 1
1 ´1 1 ´1
1 1 ´1 ´1
1 ´1 ´1 1` ε

˛

‹

‹

‚

.

For ε P R, the symbolic toolbox of Matlab computes the set of eigenvalues of
Λ of Hε to

Λ “
 

´2,
´
?

16` ε2 ` ε

2
,

?
16` ε2 ` ε

2
, 2` ε

(

.

Since the absolute values of the eigenvalues are the singular values of Hε, it
follows

σ1pHεą0q “ 2` ε and σ1pHεă0q “

?
16` ε2 ` |ε|

2
.

For small ε ‰ 0 the singular values of Hε are mutually different, hence the
minimal norm perturbation E for k “ 3 is uniquely determined by (2.3).
Moreover, for most Ky-Fan-norms and the Frobenius norm, the solution to
(2.1) is unique such that E is the only choice. Using symbolic linear algebra,
the perturbations compute to

2Eεą0 “

¨

˚

˚

˝

0 ´2 ´2 0
´2 2 ´2 2
´2 ´2 2 2

0 2 2 0

˛

‹

‹

‚

`Opεq

4 The entries of a Hadamard matrix H of order n are in t´1, 1u such that 1
n
HTH is the

identity matrix. It is known that the order n must be a multiple of 4 for n ě 4, and a famous
conjecture states that there exists a Hadamard matrix for all multiples of 4.
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and

2Eεă0 “

¨

˚

˚

˝

´3 ´1 ´1 ´1
´1 1 ´3 1
´1 ´3 1 1
´1 1 1 ´3

˛

‹

‹

‚

`Opεq,

respectively. Hence an arbitrarily small simultaneous change of H11 and H44

causes a drastic change of the optimal perturbation E. Of course, the 2-norm
of both perturbations differ by only Opεq. And the same statement is true for
any unitarily invariant norm. Although rigorous bounds for }E} are computed
easily, obtaining tight inclusions for the actual perturbation E is much more
challenging since the problem is ill-posed.

Clearly, the given example lies outside of the scope of verification meth-
ods relying on standard (approximate) floating-point operations. At a second
glance, it becomes clear that the example above is very specific. The ma-
trix Hε for ε “ 0 has not just some random clusters of multiple singular
values, but the specific pair tσn´kpH0q, σn´k`1pH0qu is clustered. Because
these two singular values are equal, the corresponding singular vectors are not
unique. Hence there is an ambiguity in the singular vector space belonging
to tσn´k`1pH0q, . . . , σnpH0qu, which leads to the discontinuous change of the
optimal perturbation when moving from Hεą0 to Hεă0.

In the remainder of this section we will discuss what can be done in the
absence of this ambiguity, i.e., if σn´kpAq and σn´k`1pAq are separated. More
precisely, we saw in (2.6) and Lemma 2.1 that for a given X and a given
unitarily invariant norm, ∆ :“ AXX` is a perturbation such that B :“ A´∆
is a minimal norm solution of the alternative problem BX “ 0. Based on that
we compute an inclusion for F3 such that E :“ ∆ ` F3 is a minimum norm
perturbation of A with at least rank deficiency k. We start with the underlying
mathematical tool for connecting the given approximations with the actual
singular vectors.

In order to do that we need a separation theorem between the singular
vector subspaces spanned by the first n ´ k and the remaining k singular
vectors. The earliest and most well-known result for this purpose is Wedin’s
sinpθq theorem for singular value decomposition. It is inspired by and also
implying Davis and Kahan’s celebrated sinpθq theorem [2, Theorem 5.1]. In
practice, however, we have to take care of the fact that “approximate” bases
are not orthogonal. Wedin did not give a counterpart to Davis and Kahan’s
generalized version of their theorem [2, Theorem 6.1].

The following Lemma 3.1 fills this gap by extending the Davis/Kahan and
Wedin sinpθq theorem to approximate left and right singular vectors.

Lemma 3.1 Let A P Cmˆn, H P Cqˆq, X P Cnˆq, Y P Cmˆq with m ě n
be given. Define the residuals R :“ AX ´ Y H, S :“ A˚Y ´ XH˚ and let
A “ UΣV ˚ be an economy-size singular value decomposition of A with U P

Cmˆn, Σ P Rnˆn, V P Cnˆn and non-increasing order of singular values (with
possible ambiguities in the choice of singular vectors). Furthermore, for some
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s P t1, . . . , nu, denote by Us the matrix consisting of the first s columns of U
and let Vs be accordingly. If there is a δ such that σspAq ě σ1pHq ` δ, then

δ ¨maxt}V ˚s X}, }U
˚
s Y }u ď maxt}R}, }S}u (3.1)

is satisfied for any unitarily invariant norm } ¨ }. In particular, if rankpXq “ `
and Px :“ XX` denotes the matrix for the orthogonal projection onto the
column space of X, then

δ}PxVs} ď
maxt}R}, }S}u

σ`pXq
. (3.2)

Proof First we extend (2.9) by a lower bound for the unitarily invariant norm
} ¨ } of the product of two matrices C P Cpˆq and D P Cqˆr. If σqpDq ‰ 0 (and
thereby r ě q), then (2.9) yields

}C} “ }CDD`} ď }CD} ¨ }D`}2 “ }CD} ¨ σ
´1
q pDq,

so that }C}¨σqpDq ď }CD}. The latter inequality is also evident for σqpDq “ 0.
By combining this inequality with (2.9), we derive

@C P Cpˆq, D P Cqˆr : }C} ¨ σqpDq ď }CD} ď }C} ¨ σ1pDq. (3.3)

Alternatively, this can be shown using the proof of [10, Theorem 3.3.16] for the
respective singular value inequalities together with the fact that any unitarily
invariant matrix norm is a symmetric gauge function of the singular values of
the respective matrix [41].

For δ ď 0 the inequalities (3.1) and (3.2) are trivially true. Henceforth
assume δ ą 0. Denote by Σs,s “ U˚s AVs P Rsˆs the diagonal matrix consisting
of the s largest singular values of A. Then A “ UΣV ˚ implies U˚s A “ Σs,sV

˚
s

and AVs “ UsΣs,s. By (3.3) and the triangle inequality, we have

}R} “ σ1pU
˚
s q ¨}R} ě }U

˚
s R} “ }Σs,sV

˚
s X´U

˚
s Y H} ě }Σs,sV

˚
s X}´}U

˚
s Y H}.

If }V ˚s X} ě }U
˚
s Y }, then (3.3) yields

}R} ě σspAq ¨ }V
˚
s X} ´ }U

˚
s Y } ¨ σ1pHq ě σspAq ¨ }V

˚
s X} ´ }V

˚
s X} ¨ σ1pHq,

such that, by the assumption σspAq ě σ1pHq ` δ,

}R} ě δ}V ˚s X} ě δ}U˚s Y }.

Similarly, for the case }V ˚s X} ă }U
˚
s Y } one can show that

}S} ě }V ˚s S} ě }Σs,sU
˚
s Y } ´ }V

˚
s XH

˚} ě δ}U˚s Y } ě δ}V ˚s X}.

Combining theses inequalities proves (3.1). Finally, starting with (3.1),

}PxVs} “ }pPxVsq
˚} “ }V ˚s XX

`} ď }V ˚s X} ¨ σ1pX
`q “ }V ˚s X} ¨ σ

´1
` pXq

yields (3.2) and completes the proof. [\
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Following Theorem 2.1 we identified in (2.3) the matrix

E “
n
ÿ

i“n´k`1

σipAq ¨ pUeiqpV eiq
˚

as a possible choice of a minimum norm perturbation of A giving at least rank
deficiency k with }E}2 “ σn´k`1. The inequality in (3.2) is then the key to
compute narrow error bounds for that matrix E. Note that theoretically the
number q of columns of X may be larger than the desired rank deficiency k,
but in practice always q “ ` “ k.

Theorem 3.1 With the notation for the matrices A,H,X, Y,R and S as in
Lemma 3.1, abbreviate ∆ :“ AXX`. Assume X has rank k for some k P
t1, . . . , n ´ 1u and that there is a δ with σn´kpAq ě σ1pHq ` δ. Let further
denote E a minimum norm perturbation of A according to (2.3). Then

E “ ∆` F3 with δ}F3} ď
maxt}R}2, }S}2u

σkpXq
¨ }A} (3.4)

is satisfied for any unitarily invariant norm } ¨ }.

Proof Define s :“ n ´ k and denote by A “ UΣV ˚ an economy-size singular
value decomposition of A with non-increasing order of singular values. Let V “
rVs, Vss denote the partitioning of V into the singular vectors corresponding to
the s largest singular values and their orthogonal complement corresponding
to the n´ s “ k smallest singular values, respectively. Using VsV

˚
s ` VsV

˚
s “

V V ˚ “ I, we derive

VsV
˚
s “ Px ´ PxVsV

˚
s ` pI ´ PxqVsV

˚
s

and, in particular,

E “ UsΣs,sV
˚
s “ AVsV

˚
s “ APx ´ApPxVsV

˚
s ´ pI ´ PxqVsV

˚
s q

looooooooooooooooooomooooooooooooooooooon

“F3

.

By orthogonality of the column and row spaces of PxVsV
˚
s and pI ´PxqVsV

˚
s ,

respectively, we have

}PxVsV
˚
s ´ pI ´ PxqVsV

˚
s }2 “ maxt}PxVsV

˚
s }2, }pI ´ PxqVsV

˚
s }2u.

Moreover, rankpXq “ k “ rankpVsq and [43, Eq. (4.2)] yield

}pI ´ PxqVsV
˚
s } “ }PxpI ´ VsV

˚
s q} “ }PxVsV

˚
s } “ }PxVs}.

Finally, using (2.9) and (3.2), the estimate in (3.4) follows. [\
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To compute verified bounds for the optimal perturbation E, we may now
combine Lemma 2.2 to compute an inclusion for ∆ with the bound on F3 “

E ´ ∆ in Theorem 3.1. As in (2.8) the occurrence of σkpXq in (3.4) can be
replaced by

?
1´ α.

If we are just interested in element-wise bounds for the entries of E, we
can modify the estimate (3.4) similar as in (2.11). To be precise,

δ|pF3qij | ď
maxt}R}2, }S}2u

σkpXq
¨ }eTi A}2 (3.5)

holds valid for all possible index pairs i, j. Rigorous inclusions for these bounds
are typically easier and more efficient to compute. Additionally, they are at
least as tight as the straightforward bounds using the spectral norm of A.

Another possible improvement arises from the specific form of H in the
residuals R and S. In practice X, Y and H are extracted from an approxi-
mate singular value decomposition of A. Hence H is a diagonal matrix and
Lemma 3.1 can be applied to each column of X and Y individually:

pσspAq ´ e
˚
i Heiqmaxt}V ˚s Xei}2, }U

˚
s Y ei}2u ď maxt}Rei}2, }Sei}2u

for all i P t1, . . . , ku. In particular, if σspAq ą e˚i Hei for all indices i, then

}V ˚s X}2 ď }V
˚
s X}F ď

g

f

f

e

k
ÿ

i“1

maxt}Rei}22, }Sei}
2
2u

pσspAq ´ e
˚
i Heiq

2
.

Depending on the distribution of the diagonal entries of H, the right-hand
side may yield a better bound than maxt}R}2, }S}2u{pσspAq ´ σ1pHqq. By
combining this inequality with (3.5) using the argument for Theorem 3.1, we
derive

|pF3qij | ď

g

f

f

e

k
ÿ

q“1

maxt}Req}22, }Seq}
2
2u

pσspAq ´ e˚qHeqq
2
¨ σ´1

k pXq ¨ }e
T
i A}2, (3.6)

which avoids the computation of tight spectral norm bounds and typically still
leads to tighter inclusions.

The crucial part in the application of Theorem 3.1 as well as the modified
estimate (3.6) is to compute a lower bound for σspAq. The authors do not know
of a method to realize this without computing lower bounds for all s largest
singular values σ1pAq, . . . , σspAq. Once again, we can apply Theorem 2.2 for
computing these bounds. Possible efficiency and accuracy improvements to
this approach can be taken from [22]. The authors of [22] were concerned with
verified bounds for eigenvalues of symmetric matrices, but the same ideas can
be applied to our problem.
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4 Numerical results

For fixed dimensions m “ 1000 and n “ 300 we construct floating-point ma-
trices of numerical rank deficiency r and comput verified inclusions ∆ν of a
perturbation producing a matrix with at least rank deficiency k. We compare
the straightforward approach based on an inclusion ∆0 Q A´ ŨΣ̃kṼ

˚ with the
two inclusions ∆1 and ∆2 determined by F1 and F2 in Lemma 2.2, respectively.

In Table 4.1 we consider the maximum imprecision of the computed inclu-
sion ∆ν relative to the magnitude of ∆ν itself. For this purpose, we set the
radii of the inclusions in relation to the maximum absolute value of the entries
in the corresponding row and column of ∆ν . To be precise, for an interval
inclusion ∆ we measure the inaccuracy via

%p∆q “ max
ij

 

rad∆ij{mintmax
`
|∆i`|,max

`
|∆`j |u

(

.

The presented results are the median of 100 samples. In column 6 and 7 of Ta-
ble 4.1 we present the median of the ratios %0{%1 and %1{%2 (not the quotients
of the respective medians). The bounds for Fν are not computed by applying
Lemma (2.2) directly, but instead we exploit the transformation (2.10) for the
element-wise bounds given thereafter.

Table 4.1: Accuracy of the inclusions relative to ∆.

k r %0 %1 %2 %0{%1 %1{%2
1 0 2.25e-07 5.33e-09 5.33e-09 32.5 1.00
2 0 2.26e-09 1.13e-10 1.13e-10 18.9 1.00
2 1 6.52e-08 3.03e-09 3.03e-09 19.6 1.00
3 0 3.38e-10 2.17e-11 2.17e-11 14.6 1.00
3 1 1.17e-09 7.28e-11 7.28e-11 15.6 1.00
3 2 6.64e-08 3.71e-09 3.71e-09 15.0 1.00
4 0 1.12e-10 1.16e-11 1.15e-11 9.04 1.00
4 1 2.11e-10 2.54e-11 2.53e-11 8.89 1.00
4 2 6.95e-10 6.78e-11 6.77e-11 9.67 1.00
4 3 4.42e-08 4.32e-09 4.32e-09 9.96 1.00
5 0 5.31e-11 6.70e-12 6.65e-12 7.84 1.01
5 1 9.21e-11 1.22e-11 1.21e-11 7.83 1.00
5 2 1.51e-10 1.78e-11 1.77e-11 8.20 1.00
5 3 5.87e-10 8.04e-11 8.04e-11 7.93 1.00
5 4 3.48e-08 3.67e-09 3.67e-09 8.54 1.00

If the numerical rank deficiency r of A is greater than or equal to k, then
∆ν will be very small and measuring the imprecision relative to ∆ν makes
little sense. In Table 4.2 we therefore measure the accuracy relative to the
matrix A:

µp∆,Aq “ max
ij

 

rad∆ij{mintmax
`
|Ai`|,max

`
|A`j |u

(

.

The inclusions based on Lemma 2.2 are roughly by a magnitude bet-
ter than the bounds by the straightforward approach based on an inclusion
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Table 4.2: Accuracy of the inclusions relative to A.

k r µ0 µ1 µ2 µ0{µ1 µ1{µ2
1 1 1.42e-14 8.26e-16 8.26e-16 17.3 1.00
1 2 1.41e-14 8.39e-16 8.39e-16 16.9 1.00
1 3 1.41e-14 8.20e-16 8.20e-16 17.3 1.00
1 4 1.42e-14 8.50e-16 8.50e-16 16.6 1.00
2 2 1.41e-14 1.09e-15 1.09e-15 13.0 1.00
2 3 1.41e-14 1.09e-15 1.09e-15 13.0 1.00
2 4 1.42e-14 1.09e-15 1.09e-15 13.3 1.00
3 3 1.40e-14 1.29e-15 1.29e-15 10.9 1.00
3 4 1.42e-14 1.29e-15 1.29e-15 10.9 1.00
4 4 1.42e-14 2.35e-15 2.35e-15 6.06 1.00

∆0 Q A ´ ŨΣ̃kṼ
˚. On the other hand, the two estimates in Lemma 2.2 lead

to very similar bounds; only if k is strictly larger than the numerical rank
deficiency of A computational tests suggest that the second bound is slightly
superior. Although the additional computational effort for the estimate with
F2 is relatively small, the overall improvement is so insignificant that we sug-
gest to use the simpler estimate obtained by the inclusion for F1.

The estimate for the error term F2 is approximately of the order α2, which
in turn is close to the relative rounding error unit squared. Thus the accuracy
of the inclusion ∆2 based on F2 is practically equal to that of the approximate
part AXpI`GqX˚. Our numerical results suggest that similarly the accuracy
of the approximate part AXX˚ dictates the overall accuracy %1 when using
the estimate based on F1.

In Table 4.3 we present numerical results for minimal distance perturbation
inclusions based on Theorem 3.1 with the modified estimate (3.6). For the
same dimensions as before, m “ 1000 and n “ 300, we constructed matrices
with numerically fixed difference δ between the singular values σn´4 and σn´3.
The other singular values and the corresponding singular vectors are chosen
randomly. The inclusion for E defined in (2.3) is computed for k “ 4. As before
the presented results are the median of 100 samples.

Table 4.3: Accuracy of the inclusions for optimal perturbation E from (2.3).

δ{σ1 %3
1e-01 3.27e-10
1e-02 6.92e-10
1e-03 1.54e-09
1e-04 4.44e-09
1e-05 1.33e-08

δ{σ1 %3
1e-06 4.12e-08
1e-07 1.29e-07
1e-08 4.22e-07
1e-09 1.38e-06
1e-10 4.58e-06

δ{σ1 %3
1e-11 1.35e-05
1e-12 4.34e-05
1e-13 1.40e-04
1e-14 8.84e-04
1e-15 1.00

Our results demonstrate the correlation of the quality of the inclusion
and the distance between the crucial singular values. If the relative distance
σn´4´σn´3

σ1
is about 10´15 or less, our verification method can no longer sep-

arate the respective singular values. Thus, Theorem 3.1 is not applicable and
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the inclusion falls back to a coarse interval inclusion based on the estimate
|E| ď σn´3pAq.

This happens also with the 4ˆ4 Hadamard matrix example in the previous
subsection. Consider a perturbation of H11 into 1 ´ ε with ε “ 2´53. This is
the smallest perturbation in double precision floating-point arithmetic.

The spectrum of the perturbed matrix computes symbolically, up to order
Opε2q, to Λ “ t´2, ´2´ ε

4 , 2, 2´ 3ε
4 u. Thus, for small enough ε, the smallest

singular value is 2´ 3ε
4 , slightly less than 2. It has multiplicity one with (up to

the sign) unique singular vector v, and according to (2.3) the minimum Frobe-
nius norm perturbation for the nearest singular matrix is uniquely defined by
p2´ 3ε

4 qvv
T . Symbolically it computes to (up to 4 figures):

E “

¨

˚

˚

˝

1.5000 0.5000 0.5000 0.5000
0.5000 0.1667 0.1667 0.1667
0.5000 0.1667 0.1667 0.1667
0.5000 0.1667 0.1667 0.1667

˛

‹

‹

‚

.

On the other hand, the verified inclusion ∆ for k “ 1 by Lemma 2.2 using
MATLAB’s approximate singular value decomposition and INTLAB is:

∆ “

¨

˚

˚

˝

1´ ε 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

˛

‹

‹

‚

.

In that specific case no rounding error occurs, so that lower and upper bound
of the inclusion ∆ coincide. The perturbation ∆ produces obviously a rank
deficient matrix, its norm is almost equal to }E}2, but it is far away from the
optimal perturbation E.

Our computed inclusion can be expected to compute narrow error bounds
for two reasons. First, a computed approximation X is numerically orthogonal
so that α is close to the relative rounding error unit. Even if that would not
be the case, larger values of α up to about 10´8 do not influence the quality
of the approximation too much.

Second, if the gap between σn´k and σn´k`1 is small, the problem of finding
a basis for the k-dimensional subspace to the smallest k singular values of A
becomes ill-conditioned. Thus it becomes more and more difficult to compute
tight inclusions for an optimal } ¨ }-norm perturbation. Nevertheless the error
estimates (2.8) for the norm of Fν remain small. That is because neither of
the involved quantities is influenced by that fact.

5 Conclusion

Given a matrix and some integer k, the property that the rank deficiency is
at least k is an ill-posed problem. Also without specifying the degree of rank
deficiency the problem remains ill-posed. Beyond that, to compute a minimum
norm perturbation realizing that rank deficiency can be ill-posed as well.
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In this note we showed a simple method to compute narrow error bounds for
a perturbation containing a matrix with at least rank deficiency k. It is shown
that our method yields tighter inclusions than the straightforward approach
and that usually narrow error bounds can be expected.

Moreover, we introduced a method to compute inclusions for an optimal
perturbation with respect to some unitarily invariant norm. For this purpose
we generalized Wedin’s sinpθq theorem. The method fails if the respective sin-
gular vector spaces cannot be sufficiently separated from each other. Then
the problem is too ill-conditioned to compute tight inclusions for an opti-
mal perturbation via a verification method relying on standard floating-point
arithmetic.

By computing bounds for a perturbation with the desired property, the
principle problem of verification methods that ill-posed problems are outside
their scope is circumvented. Similar techniques for systems of nonlinear equa-
tions are known, and we hope that other problems will follow.

Related to rank deficiency are other problems. For example: is there a
method to compute verified error bounds for the k-th singular value of a matrix
without calculating bounds for all singular values? The same question arises
for eigenvalues of symmetric or Hermitian matrices.

Are there efficient methods for calculating bounds, in particular a lower
bound for the smallest singular value of a matrix? For symmetric positive def-
inite problems such methods are available [32], what about general symmetric
matrices? That was posed as Challenge 10.15 in [32]. More precisely, the ma-
trix should be large and sparse, and with condition number beyond 108 to
avoid using ATA as for binary64. If solved by an efficient algorithm, in par-
ticular for sparse matrices, that would be the key to the verified solution of
sparse linear systems with not necessarily symmetric positive definite matrix.
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Ver., 118(3):179–226, 2016.

35. Siegfried M. Rump and Stef Graillat. Verified error bounds for multiple roots of systems
of nonlinear equations. Numer. Algorithms, 54(3):359–377, 2010.

36. Siegfried M. Rump, Takeshi Ogita, and Shin'ichi Oishi. Accurate floating-point sum-
mation part I: Faithful rounding. SIAM J. Sci. Comput., 31(1):189–224, 2008.

37. Erhard Schmidt. Zur theorie der linearen und nichtlinearen integralgleichungen. Math.
Ann., 63(4):433–476, 1907.

38. Jonathan R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust
geometric predicates. Discrete Comput. Geom., 18(3):305–363, 1997.

39. Gilbert W. Stewart. Perturbation theory for the singular value decomposition. Technical
report, University of Maryland at College Park, USA, 1990.

40. Jean Vignes. A stochastic arithmetic for reliable scientific computation. MATHCS,
35(3):233–261, 1993.

41. John von Neumann. Some matrix-inequalities and metrization of matrix-space. Tomsk
Univ. Rev., 1:286–300, 1937.

42. Helmut Weber and Wilhelm Werner. On the accurate determination of nonisolated
solutions of nonlinear equations. Computing, 26(4):315–326, 1981.

43. Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition.
BIT Numer. Math., 12(1):99–111, 1972.


	Introduction and notation
	A nearby matrix of at least rank deficiency k
	An inclusion for an optimal perturbation
	Numerical results
	Conclusion

