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Abstract

If standard-precision computations do not lead to the desired accuracy, then it is reasonable to increase
precision until we reach this accuracy. What is the optimal way of increasing precision? One possibility
is to choose a constant q > 1, so that if the precision which requires the time t did not lead to a success,
we select the next precision that requires time q · t. It was shown that among such strategies, the optimal
(worst-case) overhead is attained when q = 2. In this paper, we show that this “time-doubling” strategy
is optimal among all possible strategies, not only among the ones in which we always increase time by a
constant q > 1.

Formulation of the problem. In multi-precision arithmetic, it is possible to pick a precision and make
all computations with this precision; see, e.g., [1, 2]. If we use validated computations, then after the
corresponding computations, we learn the accuracy of the results.

Usually, we want to compute the result of an algorithm with a given accuracy. We can start with a
certain precision. If this precision leads to the desired results accuracy, we are done; if not, we repeat the
computations with the increased precision, etc.

The question is: what is the best approach to increasing precision?

A natural approach to solving this problem. We usually have some idea of how the computation
time t depends on the precision: e.g., for addition, the computation time grows as the number d of digits;
for the standard multiplication, the time grows as d2, etc.

In view of this known dependence, we can easily transform the precision (number of digits) into time
and vice versa. Therefore, the problem of selecting the precision d can be reformulated as the problem of
selecting the corresponding computation time t.

In other words, what we need to describe is as follows: if computations with time t are not sufficient,
then we must select computations with larger precision which require a longer computation time t′(t) > t.
The question is: given t, what t′(t) > t should we choose.

Continuous approximation. In reality, we can only choose between integer number of digits 1, 2, 3,
. . .. However, the need for high precision arises only when normal accuracy, with 32, 64, or 128 bits, is not
sufficient. For the resulting huge number of bits, the difference between, say, 128 and 129 bit precision is not
so large, so we can safely ignore the discreteness and assume that d (and hence t) can take all real values.
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It is also reasonable to assume that close values of t should lead to close values of t′, i.e., that the function
t → t′ is continuous.

Towards formulating the problem in precise terms. Let us start with a precision corresponding to
time t0. If this precision is not sufficient, we select a precision corresponding to time t1

def= t′(t0) > t0. If the
precision corresponding to time t1 is not sufficient, we select a precision corresponding to time t2

def= t′(t1) >
t1, etc.

Similarly, since the function t′(t) is continuous, there should exist a value t−1 < t0 for which t′(t−1) = t0;
similarly, there should exist a value t−2 < t−1 for which t′(t−2) = t−1, etc.

As a result, a get a doubly infinite sequence of positive values

. . . < t−n < . . . < t−2 < t−1 < t0 < t1 < t2 < . . . < tn < . . . (1)

The meaning of this sequence is as follows: if we tried precision corresponding to some starting value ts and
did not succeed, then we try values ts+1, ts+2, . . . , until we succeed.

How can we compare which sequence is the best? If we start with a value ts and the first successful
value, after trying ts, ts+1, . . ., tv−1, is tv, this means that the smallest precision needed for our accuracy
corresponds to the time t which is somewhere between tv−1 and tv. In the ideal world, we could just spend
the time t and get the desired accuracy. Instead, we spend the time ts + ts+1 + . . . + tv−1 + tv. We will say
that there is an overhead C if the actually spent time never exceeds C · t. Thus, we arrive at the following
definition.

Definition. Let C > 0 be a real number. We say that a sequence (1) has an overhead C if for every two
integers s < v and for every real number t from the interval (tv−1, tv], we have

ts + ts+1 + . . . + tv−1 + tv ≤ C · t. (2)

What was known. It is known [3] that for the sequence ti = 2i · t0, we have C = 4, and that this is the
smallest overhead that can be achieved for sequences of the type ti = qi · t0.

To prove this result, let us simplify the condition (2). Since the inequality (2) is true for all t ∈ (tv−1, tv],
by tending to the limit t → tv−1, we conclude that

ts + ts+1 + . . . + tv−1 + tv ≤ C · tv−1. (3)

Vice versa, is (3) is true, then, since tv−1 < t, (2) is also true. Thus, the inequality (2) is equivalent to
inequality (3).

Similarly, since (3) is true for every s, by tending to the limit s → −∞, we conclude that

. . . + ts + ts+1 + . . . + tv−1 + tv ≤ C · tv−1. (4)

Vice versa, if (4) is true, then, by deleting some positive terms ts−1, . . ., we get a smaller left-hand side and
thus, the inequality (3). Thus, the original inequality (2) holds if and only if the inequality (4) holds for
every v.

For ti = t0 · qi, by dividing both sides of the inequality (4) by t0 · qv−1, we conclude that

q + 1 +
1
q

+
1
q2

+ . . . ≤ C,

i.e.,
q

1− 1
q

≤ C,
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or, simplifying,
q2

q − 1
≤ C.

Thus, the smallest value of C can be attained when the ratio
q2

q − 1
is the smallest among all the values

q > 1. Differentiating this expression with respect to q and equating the derivative to 0, we conclude that

q = 2. For q = 2, the ratio
q2

q − 1
is equal to 4, so we have an overhead C = 4.

This result is used in practice. The above result is actually used to optimize computations with multiple
precision; see, e.g., [5] and references therein.

What we plan to prove. In this paper, we prove that the overhead is the smallest possible not only
among sequences of the type t0 · qi, but also among all possible sequences.

Proposition. For every sequence, the overhead is greater than or equal to 4.

Comment. Thus, the “time-doubling” scheme is indeed optimal.

Proof. We will prove this result by reduction to a contradiction. Let us assume that there is a sequence
{ti} with an overhead C < 4. From (4), we can now conclude that tv−1+tv ≤ C ·tv−1, i.e., that tv ≤ δ1 ·tv−1,
where δ1 = C − 1.

Since this is true for every v, we conclude that tv−1 ≤ δ1 · tv−2, hence tv−2 ≥ 1
δ1
· tv−1. Similarly,

tv−3 ≥ 1
δ1
· tv−2 hence tv−3 ≥ 1

δ2
1

· tv−1 etc. Thus,

. . . + ts + . . . + tv−2 + tv−1 ≥ tv−1 ·
(

1 +
1
δ1

+
1
δ2
1

+ . . .

)
= tv−1 · 1

1− 1
δ1

= tv−1 · δ1

δ1 − 1
. (5)

Subtracting (5) from (4), we conclude that tv ≤ δ2 · tv−1, where δ2 = C − δ1

δ1 − 1
.

Let us show that δ2 < δ1. Indeed, the difference δ1 − δ2 is equal to

δ1 +
δ1

δ1 − 1
− C =

δ2
1

δ1 − 1
− C.

We have already mentioned that the smallest possible value of
δ2
1

δ1 − 1
is equal to 4 > C, so we indeed get

δ2 < δ1.

Similarly, from the fact that tv ≤ δ2 ·tv−1 for all v, we conclude that tv ≤ δ3 ·tv−1, where δ3 = C− δ2

δ2 − 1
<

δ2, etc.
Since tv > tv−1, we have δj > 1 for all j. The sequence δ1 > δ2 > δ3 > . . . is a decreasing sequence which

is bounded by 1 from below; thus, this sequence has a limit δ ≥ 1. From the definition δj+1 = C − δj

δj − 1
,

in the limit j → ∞, we conclude that δ = C − δ

δ − 1
, i.e., that C = δ +

δ

δ − 1
=

δ2

δ − 1
. However, we know

that the smallest possible value of
δ2

δ − 1
is 4, so

δ2

δ − 1
cannot be equal to C < 4. The contradiction proves

that a sequence cannot have an overhead C < 4. The proposition is proven.

Comment. This proof is mathematically similar to the proof of a different optimality result presented in [4].
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