Towards Optimal Use of Multi-Precision Arithmetic: A Remark*
Vladik Kreinovich! and Siegfried Rump?

'Department of Computer Science, University of Texas at El Paso
El Paso, TX 79968, USA, vladik@Qutep.edu

Institute for Reliable Computing, Hamburg University of Technology
Schwarzenbergstr. 95, D-21071 Hamburg, Germany,
and Waseda University, Faculty of Science and Engineering,
2-4-12 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan,
e-mail rump@tu-harburg.de

Abstract

If standard-precision computations do not lead to the desired accuracy, then it is reasonable to increase
precision until we reach this accuracy. What is the optimal way of increasing precision? One possibility
is to choose a constant ¢ > 1, so that if the precision which requires the time ¢ did not lead to a success,
we select the next precision that requires time g-t. It was shown that among such strategies, the optimal
(worst-case) overhead is attained when ¢ = 2. In this paper, we show that this “time-doubling” strategy
is optimal among all possible strategies, not only among the ones in which we always increase time by a
constant ¢ > 1.

Formulation of the problem. In multi-precision arithmetic, it is possible to pick a precision and make
all computations with this precision; see, e.g., [1, 2]. If we use validated computations, then after the
corresponding computations, we learn the accuracy of the results.

Usually, we want to compute the result of an algorithm with a given accuracy. We can start with a
certain precision. If this precision leads to the desired results accuracy, we are done; if not, we repeat the
computations with the increased precision, etc.

The question is: what is the best approach to increasing precision?

A natural approach to solving this problem. We usually have some idea of how the computation
time t depends on the precision: e.g., for addition, the computation time grows as the number d of digits;
for the standard multiplication, the time grows as d2, etc.

In view of this known dependence, we can easily transform the precision (number of digits) into time
and vice versa. Therefore, the problem of selecting the precision d can be reformulated as the problem of
selecting the corresponding computation time ¢t.

In other words, what we need to describe is as follows: if computations with time ¢ are not sufficient,
then we must select computations with larger precision which require a longer computation time t'(t) > t.
The question is: given t, what ¢'(¢) > t should we choose.

Continuous approximation. In reality, we can only choose between integer number of digits 1, 2, 3,
.... However, the need for high precision arises only when normal accuracy, with 32, 64, or 128 bits, is not
sufficient. For the resulting huge number of bits, the difference between, say, 128 and 129 bit precision is not
so large, so we can safely ignore the discreteness and assume that d (and hence t) can take all real values.

*published in Reliable Computing, 12:365-369, 2006

It is also reasonable to assume that close values of ¢ should lead to close values of /, i.e., that the function
t — t' is continuous.

Towards formulating the problem in precise terms. Let us start with a precision corresponding to

time tq. If this precision is not sufficient, we select a precision corresponding to time 3 def 4 (to) > to. If the

.. def
precision corresponding to time ¢; is not sufficient, we select a precision corresponding to time to =t (t1) >

t1, etc.

Similarly, since the function ¢'(t) is continuous, there should exist a value t_y < tg for which ¢'(t_1) = to;
similarly, there should exist a value t_5 < t_; for which ¢'(t_3) =t_1, etc.

As a result, a get a doubly infinite sequence of positive values

<ty < <t o<t <ty <t <ta<...<tp<... (1)

The meaning of this sequence is as follows: if we tried precision corresponding to some starting value ¢, and
did not succeed, then we try values ts41, tst2, ..., until we succeed.

How can we compare which sequence is the best? If we start with a value t; and the first successful
value, after trying ts,ts41, ..., ty—1, IS t,, this means that the smallest precision needed for our accuracy
corresponds to the time ¢ which is somewhere between t,_; and t,. In the ideal world, we could just spend
the time ¢ and get the desired accuracy. Instead, we spend the time t5 +ts41 + ... +t,—1 + t,. We will say
that there is an overhead C' if the actually spent time never exceeds C' - t. Thus, we arrive at the following
definition.

Definition. Let C > 0 be a real number. We say that a sequence (1) has an overhead C' if for every two
integers s < v and for every real number t from the interval (t,—1,t,], we have

ts+ts+1+-~-+tv—1+tvgc't- (2)

What was known. It is known [3] that for the sequence t; = 2¢ - tg, we have C' = 4, and that this is the
smallest overhead that can be achieved for sequences of the type t; = ¢’ - to.

To prove this result, let us simplify the condition (2). Since the inequality (2) is true for all t € (t,_1,t,],
by tending to the limit ¢ — ¢,,_1, we conclude that

t(s+ts+1+-~-+tv—1 +tv Sc'tv—l- (3)

Vice versa, is (3) is true, then, since t,_1 < t, (2) is also true. Thus, the inequality (2) is equivalent to
inequality (3).
Similarly, since (3) is true for every s, by tending to the limit s — —o0, we conclude that

vt tsFtsar oty ity < C -ty (4)

Vice versa, if (4) is true, then, by deleting some positive terms ts_1,..., we get a smaller left-hand side and
thus, the inequality (3). Thus, the original inequality (2) holds if and only if the inequality (4) holds for
every v.

For t; = to - ¢, by dividing both sides of the inequality (4) by to - ¢!

, we conclude that
1 1

g+l+-+5+...<C,
q 9

ie.,
4 _<c

or, simplifying,

<C.
q—1~
2

Thus, the smallest value of C can be attained when the ratio is the smallest among all the values

q > 1. Differentiating this expression with respect to ¢ and equating the derivative to 0, we conclude that

q = 2. For ¢ = 2, the ratio 1 is equal to 4, so we have an overhead C' = 4.

This result is used in practice. The above result is actually used to optimize computations with multiple
precision; see, e.g., [5] and references therein.

What we plan to prove. In this paper, we prove that the overhead is the smallest possible not only
among sequences of the type to - ¢*, but also among all possible sequences.

Proposition. For every sequence, the overhead is greater than or equal to 4.
Comment. Thus, the “time-doubling” scheme is indeed optimal.

Proof. We will prove this result by reduction to a contradiction. Let us assume that there is a sequence
{t;} with an overhead C' < 4. From (4), we can now conclude that t,_1 +t, < C-t,_1, i.e., that t, < 1 -t,_1,
where §; = C — 1.

1
Since this is true for every v, we conclude that t,_; < 6y - t,_2, hence t,_o > 5 ty—1. Similarly,
1
1 1
ty—3 > — - ty_2 hence t,_3 > = - t,_1 etc. Thus,
01 03
1 1 1 01
7 T e e R e R (B S T I T B A (5)
01 0% 1_ 1 0 —1
o1
. [
Subtracting (5) from (4), we conclude that ¢, < d3 - t,_1, where dp = C — 51
1 —

Let us show that do < d;. Indeed, the difference §; — Jo is equal to

2
&+&%1_ :&%1_0
52
We have already mentioned that the smallest possible value of X 1 1 is equal to 4 > C', so we indeed get
0o < 01.
Similarly, from the fact that ¢, < d5-t,_1 for all v, we conclude that t,, < d3-t,_1, where 03 = C'— 526i 1 <

ds, etc.
Since t, > t,—1, we have §; > 1 for all j. The sequence §; > do > d3 > ... is a decreasing sequence which

J

is bounded by 1 from below; thus, this sequence has a limit 6 > 1. From the definition §;4; = C' —

§; — 17
. o o 1) 5?2
in the limit 7 — oo, we conclude that 6 = C — ST ie., that C =§ + ST1-5-1 However, we know
2 2
that the smallest possible value of 51 is 4, so 51 cannot be equal to C' < 4. The contradiction proves

that a sequence cannot have an overhead C' < 4. The proposition is proven.

Comment. This proof is mathematically similar to the proof of a different optimality result presented in [4].

Acknowledgments. This work was supported in part by NASA under cooperative agreement NCC5-209,
by NSF grants EAR-0225670 and DMS0-0532645, Army Research Lab grant DATM-05-02-C-0046, Star
Award from the University of Texas System, and by the Texas Department of Transportation grant No. 0-
5453. The authors are greatly thankful to the organizers of the Dagstuhl Seminar on Reliable Implementation
of Real Number Algorithms: Theory and Practice, Dagstuhl, Germany, January 8-13, 2006, for the great
collaboration opportunity.

References

[1] L. Fousse, G. Hanrot, V. Lefevre, P. Pélissier, and P. Zimmermann. MPFR: A Multiple-Precision
Binary Floating-Point Library With Correct Rounding. Research Report RR-5753, INRIA, 2005.
http://hal.inria.fr/inria-00000818.

[2] N. Revol. MPFI, a multiple precision interval arithmetic library. http://perso.ens-1lyon.fr, 2001-04.
[3] S.M. Rump. Kleine Fehlerschranken bei Matrizproblemen. PhD thesis, Universitiat Karlsruhe, 1980.

[4] R.A. Trejo, J. Galloway, C. Sachar, V. Kreinovich, C. Baral, and L.C. Tuan. From Planning to Search-
ing for the Shortest Plan: An Optimal Transition. International Journal of Uncertainty, Fuzziness,
Knowledge-Based Systems (IJUFKS), 9(6):827-838, 2001.

[5] J. van der Hoeven. Computations with effective real numbers. Theoretical Computer Science (to appear).

