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.. _Ilr 1960 --]'-Bral.{'hag‘e'[ﬂ pre-p-esed“ a."'rrre-f-hed for-l;iriedr iﬁﬁeérﬂ equer'ti'(')‘ne- of t}re se'cond_ o

klnd which was truly ploneermg and guiding in numencal analys1s He Was the first
" who introduced multl -grids methods by’ descr1b1ng a ‘LWO—gI‘ld 1terat1on whrch contamsl‘ o

o ':-,.a,ll basm pr;nc1ples Qf modern multl grld schemes Today, ._multr grld methods are.;

' "".known to be the most efﬁcrent algonthms m a broad area of apphcatlons .:' i

A second chlef mgredlent of thls paper are the rlgorous a posterlorr error estlma—
" 'trons These error estimations permlt to give an automatic proof for the existence
and: uniqueness of the solution for linear integral equations .of the second kind, and
- to calculate very sharp and guaranteed bounds for the solution. Now, for algorithms
which prove ex1stence and uniqueness of solutions together with calculating guar-. “
anteed bounds, the term self-validating method, inclusion method, or verification
~ method is customary. We emphasize that these important ideas were published six.
years before the appearence of Moore’s book {22] Interval Analysis in 1966. Most
people say that thls book is the start of self—vahda.tmg methods. | '

. This paper presents a survey of some recent developments related to self-validating -
methods for large sparse nonlinear systems and global optlmlzatlon problems. In
Section 2 some basic results and notations of interval arithmetic are given. Es-
pecially, it is shown how guaranteed bounds for the range of functions may be
calculated with so-called inclusion functions. In Section 3 rigorous error bounds

for the solution of large sparse nonlinear systems are discussed, and in Section 4,



Ta branch and bound a,lgorlthm for global optlmlzatlon problems 15 descrlbed whlch'A

':-Ej'.,uses mclusmm functlons and mvol\fe& loca.l 0pt1nfuzat10n arlgomthms' ,g'_,-‘-e;_'_,f_l'f: . l-; o

. ’.‘_.‘_

| 2Rgubund for the range of a function

- -The notatlen @ :]: Aa of nunlbers afﬂlcted with an enror term goes (at least) back to‘_"_. S
R T T Gt
‘—--"[31] The ]nterval A d :i: Aq [a - Aa a: Aa} represents Serne numbers"-
Lde A For ‘such. ”1nprec1se numbers the four basu: operatmns are deﬁned in the ..

Well known Way, For example for B = b :l: Ab

A B—a b:l:(|a| Ab+Aa |b|) o . (2,1)

'Ihis deﬁnltlon onnts hlgher order terms IL leads o the fundamental result

R For multlphca,tlon and d1v1510n the relatwe crror of the resuIt equals the

- -sumh of the 1e1at1ve -errors -of the: operauds for addltlon and ‘subtraction..-
the absolute error of the result equals the sum of the absolute errors of

- the operands

-~'-;'Theref0re only addatlon -or subtraction are sub ject to. larger (relatwe) errors in the e

L srésult, and this happens. when ‘the rnagmtude of.the result is: much, lesg than the -

magnltude of the operands {cancellation}.

In the following, we are interested in rigorous estimations of the range of a function
including higher order terms. For this purpose, it is advantageous to use a left /right
bound representation of intervals rather than midpoint/radius like in (2.1). This
is because the midpoint of a product is not necessarily equal to the product of the
midpoints of two intervals. The midpoint a of an interval A = [a - Aq, a + Aq] is
denoted by mid(A), and its radius A« also by rad(A).

The most simple definition of the four basic interval operations o € {+,—,-,/}

between two intervals A = [g,d], B = [b, b] is

Ao B :={min{ab,ab, @b ab},max{ab ab ab @b} (2.2)

It is clear that with few case disiinctions a faster computational implementation
is possible. The basic and most important property of interval operations is the

1sotonicity. That is

Yaec A Vbe B: aob € AcB for o€ {+,—,-,/}- (2.3)
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Thxs property is, transntwe and, offers a, method for estlmatmg the 1a.nge of a funcmon B

Suppose a :funtjzlon f IRf" =% IR]‘ ea,n, be expressed as-an; anjshmetlca.l e)cp‘reSs':on_ e .
conﬂsbmg of the four baslc opera,tmns :—I—, = / Then replaelng every arlthmetleal.::' _:'.:

opera,tmn by thelr correspondmg mterval operatlons (caﬂ thls functlon F ) preserves":c-"'.;-".l{.‘:.:j'-

1sotomclty and the1efore

e ]

i whleh gwes n est;matlon of the range of f over--X;'C’ IR” F 1s called an 4neluszonﬁ"" - -'":‘

functzon ot interval. evaluataan Deﬁne the set of mterval vectors by ]I}R” = ]IIR X

X I[]R Then operatlons between real vectors m y € IR" can be hfted 1111;0 IIIR“"'- T

preserving the fundamental property of interval analysas ‘rhe lsoton1c1ty (2 3) The

same.js true for interval matrlces as well as for the couespondmg extensmn over Lhe

ﬁeld of camplex numbers For a detalled trea,tlse of the sub Ject see a,mong others,

[21 [24}

The Al pomt is tha,t thls process is rlgorbusly 1mplementabie arid executable on

- digital:computers. Suppose & ﬁnlte set of floating. pomt num.bers IF € ]R 1s. glven-[:.. i

~ Then with ¢,@ € IF, a. <@, the ﬂoatm,g point intetval

- [a a];u{;UGIR[a<x<a}

represents the’ set of all real numbers between g and a. The IEEE 754 ﬂoatmg -

. pomt dtandard’ {12] provrdes ﬂoatmg pomt operatlons With roundmg dO'WIlW&I‘dS; '
"and rounding upwards. Using these in the definition (2.2). mamtalns the isotonicity - -
(2.3), and therefore ylelds also the possibility of estimating the range of a function
by (2.4) and (2.5). For more details see standard text books on interval analysus |
among them (2], [24].

The observations made so far can be exténded to transcendental functions as well.

Especially, this is simple for monotone functions like the exponential function:

e? :=[e2,ef]  for all A € TR.

For intervals with floating point end points, proper rounding has to be used. For
other functions like sin, the extreme values are well known, and with the help of
some case distinctions it is possible to implement interval extensions for exp, log,
trig, inverse trig, hyperbolic, inverse hyperbolic, square rool and more. This is even
possible for complex intervals. The difficulty in this case is that extreme values are
not necessarily in a vertex of the input interval. Descriptions for interval evaluations

of real and complex irancendental functions can be found in [5], [17].



Summarlzmg, the approach deScmbed above computes estlmatmn‘s for the rauge of ,"i e

: a functmn However, due*to data dependenmes th;s IS m general an overestlmataon;" ;
e lof the true range ' e ' R

= :az

S Consmler f (rr) B 43: in. the mterval X [O 3] Then the a,pproach 'above y1e1ds’-}'__:_,::'“'.:_

’ .f—(X.).c'F(?X) = X_—zLX < [0 3] [0 3] c: [0 91 [0 12] [ 12 9]

o "-""Thls is a r1gorous b0und for the true range f(X) = [ -4, 0] but however a huge-"'-.' :1._"-'
L Werestlmatxou Thlﬂ ,1s due to unresolved dat»a depenclencles, beca.use the ‘interval ‘,.'.‘.;".:._f.‘:_:..-"_'".-".
"'-X occurs more than once in. F(x (X) = ¥2 - 4X The a.1rn of the paper 1s to denve".'_
techmques how to avmd or dmumsh such overestmlatlens or- how to squeeze useful_',f. :

information out of thetn.  $6 fir we can state the followmg theorer

. ':Theorem 2 1 Let a,functlon f IR” T iilg Be glven by meansnfan expresslon,,t:on—.fg._.‘. :'_':
- ?—smtmg of constants basm a.mthmetlc operatlons and sta.ndard fuﬂctwns hke squa,re' .j_‘ .
roof,” exp,’ log trlg, mverse 'trlg, hyperbohc and mverse hyperbohc functlons Be- :

) E placmg every operatlou by its correspondmg mterval operatlon deﬁnes an 1nc1u310n o
""-":’_Afunctlou F ]IIR“ — ]IIR”’ the. natura,l 1nterVal evaluatmn of f with the fOHOWIIlg-"M-”w
_ _,:property If for a.n mterva.l vector X e IIIR”’ the expressmu for F is execufable theén

) '_v ceX: " f(:,f;)-__ei F(X) o | - _"‘(_2.5)._“

The assumption that F is executable in the assertlou of Theorem 2.1 is necessary
because due to overestlmatlon it may occur that for exa,mple a denomlnator

interval contams Zero.

We want to give two examples for estimating the range of a function. The first, a
one-dimensional example is a straightforward application of Theorem 2.1, the second
example estimates the range of an 1implicitly given function. The latter will be used
in chapter 4. In [1] the following formula for the logarithmic Gamma function is
given:
InF(z)=(z—1)- Inz —z+ Ln2r + Toz — 3—6%33—34—%
(2.6)
for 0<zelR, 0<O <L

Suppose we wish to compute the range of I'(z) over X = [--0.505,—0.503], an
interval containing an extreme value of I'. Interval anaysis allows us to replace
z by X and © by [0,1]. Combining this with I'(¢) = T'(z + 1)/z, which means
I'(X) € T(X + 1)/X, yields an estimation for the range of I over X by simply



U ._replacmg all opera,tmns a.nd functlons by the correspondmg mterval operatlons andf o

o fﬂ.ﬂotwﬂ&. Th;s prcmesa G.a.p. be fully a.utoxmzed and neé:ds 110 fu_,rther knowledge bn
_;;I‘ hke a L:pschltz consta.lit, or others We obtam B ' : : SR

- )' {r(a:) [F%3 50, 0503]} Cilakes, -3 523]

: The true valie for the. range is [~3. 54467 —3. 54464] ‘The overestlmatlon is due to
: 'data depemienmes n the mterva.l v:ersron of (2 6) ' e NI

: .':5_:‘lmatr1x Where the ddta of the matrrx a,re afﬂrcted Wlth tolerances That 1s,‘fqr:'-5..'.:_-.:"—7-'

?_.'[A] ¢ IHR’”""” we 166k for e

( ) = {mm|)\| I EI A € [A] Wlth A AT and X is elgenvalue of A}

WA )\ Tare. appmmmatmns for an elgenvalue/elgenvector palr Of some Symme‘trl.c;‘; CERS

the exrstence of an. elgewalue /\ Of A Wlth

-‘.:matrlx A, then perturbatlon theory ‘of elgenvalues of symmetrlc matrrces [8] Y 1315;', o

Furthermore for symmetrlc K a,nd Xi (A) bemg the i- “th e1genvalue Of A'itis
gy <A+E) (A)| < ||E||2 R 29

Let )\,, 7 be apprommatmns for elgenvalue / elgenvector pa1rs of mld([A]) Fer E =
rad([A}]) holds A € [A] & |A— mid([A])| < £. Hence, for any symmetric A € [A] o
‘we have ||4 —mid([AD)|lz < ||E||s by Perron-Frobenius Theory and £ > 0. If the. -
intervals A; + ||AZ; — X[E,,H are disjoint, then by (2.8) each of them contains exactly

one eigenvalue of A. Then (2.9) implies that the union of
Xk A with A; = [|AZ — NFil]2 + ||rad([A])]]:

contains the eigenvalues of all A € {A4]. Computing the minimum modulus yields
bounds for ¢([A]). The method yields very sharp estimations for »{[A]) because
no data dependencies occur. It works, if all eigenvalues are distinct. If this is not
the case, and X is a matrix of approximate eigenvectors, then the set of eigenvalues
of [B] := X~1'.[A]- X contains the cigenvalues of all A € [A] and bounds can be
calculated by Gershgorin’s Theorem. This is Lobners’s method {19]. In fact, he
replaces X! by X7 and estimates the error X! — X7T.

In the next chapter we will need a sharp lower estimate for ¢({A4]) for large sparse
matrices. Such a method will be derived without using an approximation of some

eigenvector.



A

. The teghmquec used for the latter example reveals a basm pnnc:ple of the 1nc1usmn
._-{:_};methods we' are Iookmg for Most of the: qalcula,tmns aye pedormed in ﬂoatmg pomt.,_..._';,i s

- .malor parts of the ana,lyms are performed a. prlori on.a mathematlca.l basns and very ., .-
'feW parts are a,ctually performed m m”f,erval calculatmn's Thls is'very . much 111 the.-f:'.
s pmt of Wllkmson the ‘father of error analy31s He wriles in 1071 [33] .

' “In general it'is the best in algebralc computatlons to leave the usé of .
mterval arlthmetlc a8 iate as poss1b1e 50 that 1t effectwely becomes an a, L

posterlon W’eapon

. In general numerlcal a,lgouthms compute good apploxnma,uons to the SQlutmn of a.-'; L

given problem We close this chapter by giving a SImple numerlcal example where

. standard numerical algorithm produce poor approximations. ‘Consider

(210)

Then A as well .as B-t. A - B has an n-fold eigenvalue A = 1. The matrix B~*AB

has integer entries not greater than 2 in modulus. Then EISPACK algorithms
implemented in MATLAB {20} produce for n = 17 the following approximative

eigenvalues plotted in the complex plane, without giving any warning.
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o ::3 Bounds for the 'stxlutmn of large sparse ‘1‘101’1111’1-'--".:

: ear systems )

_ In this chapter we Wlll use the p0351b111ty to compute rlgorous eStlIIla.thIlS of the

.. .range of a. functlon to compute bounds for the: soiuuon of a nonhnear system Let_ .
f:DC }R” — R" , be Contmuously dlfferentlable For some % € D which-is

supposed to be an approx1mate solution of f(z) = 0, let R € IR™*" be given such that
R-f(Z+2)=&0for small'z. Define g: D' CIR* =R with D' ={z—-F|zeD}

and

glz)y=z—~ R-f(Z +2) - (3.1)
If for compact and convex § # X C I

g(X) € X, (3.2)

then Brouwer’s Fixed Point Theorem implies the existence of some € D' with
9(Z)=T=7T- R- f(Z+7) and therefore R f(Z + %) = 0.

If B can be shown to be nonsingular, then f(Z + Z) = 0. Note that we did not
need any assumptions on the quality of ¥ or B. Condition (3.2} is suitable for the

application of interval analysis if the range of ¢ can be estimated without too much




' OVerestlmatlon Replacmg every operatlon by 1ts correspondmg 1nterval operatron
LR (3 2) for: eX E }HR X D" ylslds a;n mtewal eva]ua,tron R ]I]Rn o IHR'"' wlth
' '-_".wEX#f(a:—lw:s)EF(m—]-X) Becanse, g » "

s " \- “__ L . e

, dram(X R F(.’E+X)) tham(X) -|— d:am(R F($+X))

s _except in tr1v1al cases (32) Cannot be verified usmg ‘this approach Therefore we.r-' '

ol use an’ expansmn of f w.r.b. @, that is, we. locale hneamze Suppose for g1Ven z € D. . -

"' X _E IHR“ X C D there rs some, S (95 X ) € HIR”"X“‘ w1th' T

VmGX (;r:-]—x) ¢ f(:c) + S(“* X} z . (3 37}.';:'53.*;:

Let J( ) IR”X” be the Ja.cobra,n of f Then it can be shown (cf [22] [24])
: _‘that (3 3) is sa.t‘isﬂed for .S' (:r: X ) = J (m + X') provrded X contams [) Then
(m) cos R f w) S(m X) AR 5 ;.,t,;..@
That means -‘( ' e —‘--‘\ R T LTI -\.,.g':g. L T P TP

.:Therefore Brouwer 8 leed Pomt Theorem can be apphed and T+ X' is verlﬁed to "

| contam a zero of I, if four problems are solved:

1) the computation of some S{Z, X) € IR™" with (3.3);
2) the computation of a suitable B € R™*";

3) the verification of the regularity of R;

4) the verification of —R- f(Z)+{/—R-5(%,X)} - X C X.

The first problem can be solved by means of automatic differentiation [9], where the
argument x is replaced by the interval vector 7 + X, and all operations are replaced

by their corresponding interval operations.

We want to stress that this process can be fully automized by means of automatic
differentiation in conjunction with an operator concept [27]. The ansatz (3.3) goes
back to the Krawczyk operator {18}, see also [23]. We should mention that (3.3) is
also possible for continuous but nondifferentiable functions. In this case, S(Z, X) is

replaced by a slope matrix. For details, see [29].
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: .'LNext WE, Wlll svlve problems 2 to 1. for the n- dlﬂlBHSlOHal case. We wa.nt to concen-_'._" L

_:_-traiae. om lafge and.:4 sparse non,lmea‘a‘ Systems A possxb,le (:home of R 13 m a.ppmx-.j':-'._.';.,"':"_l'_.';-.';
- _-i'.smate mverse of the mjdpomt of S (x X).: HoweVer, for la.rge a,nd spafse. systems

of: “nonhnear equatwns At appmxrrnate mVerse iwoitld; in geaera& become fuil Th153 Ri

" would result in a huge amount of memory and unaccepta.ble computing times., We ™

- Overcome thls problem by the: followmg theorem, .

: L Nevertheless We use the premse inverse of rmd(S (:p X ) as the precondltmner We. o
7 f‘_';',:do th1s by complitmg a 10wer bound of.the’ smaliest smgular value of mJ_d(S(o: X )) '

.f.a.nd thereby venfymg a POSJ[}BI‘IOI'I the reguiarlty of m1d(S z, X )) P

" Pheorem 3.1. Lo ‘cO'ﬁﬁiﬁﬁbﬁ‘slf b i ;'mﬁﬁé-'gfeeﬁ‘;‘z-é Dado<heR

. With

| {;c. ¢ mn A| H;{ i .< p‘} : and | % + AC D . (36) G
-“”Ef‘u-rth-ern‘nore et S(a: X) e]HR”"” Be gn}en 'a..n‘d as:s;;e-that T
Ho<reRis aT_i;{wéf'est'irﬁé.i;é;n the smallest singular valuo oy of mid(S(Z, X))
and - ' ' '

Hf('s‘c’)ll+!Irad(S(ﬁs;Y))ll-pSfip, . . | . ‘(3.8)
then there exists some T € X with f(Z + %) = 0.

Remark. |j-|| denotes the 2-norm.

Proof. The matrix & :=mid(S(Z, X)) " is well-defined because
Oruin (mid(S(';ic’,X))) > 7 > 0. Thus (3.7) yields

VaeX: z—R-f(T+2)e—-R-f&)Y+{I~-R-5&,X)} =z (3.9)
Let M ¢ S(%, X) be fixed but arbitrary. Then |M — R7| < rad{S(%, X)), and
~R-f@+{I-R- M} z=R - [-f@+{R" - M} ]

Introducing norms and observing ||R}| < 77! yields

R @+ {T—R-M}-a| <770 (@] + lirad(SE X)) - [12]1]



Thls is true for every M e S(m X) and every z,€ X Therefore (3 8) and (3 9) 1mp1y_' L

,, R f(a;--!— m) e X

ol Hence lrouwer & leed P&)mt Theorem 1mphes the exmtem:e of a, ﬁxed ,pomt 2 € X ‘_:

| “With 5 R flz47) =7 The regularlty of Ry proves f(:t*—{—:c) () and i:he thédrem.

. Our vemﬁcatmu process 13 two~fold ﬁrst the 1ower bound T ha,s to be computed;'i;-.,:_

e if:'yiand Veflﬁed and second C()ndlt](ll‘i {3 Sj has to Be Verlﬁed for & surt‘able X

: exa.mple an LU or LDLT decompomhon Then L _;_:'. LT

- ,'A Venﬁed lower bound ‘on. the smallest S1ngu1ar value of a matrlx Whlch 1mphes a c

“verified condition estimator cari be caleilated a,ccordmg t6 130]. Again’ very Tineh’ m"
. the spmt of Wilkinson, almost only floating point ar1thmetlc is used i in conjunctlon

’ '_WJLh a prlorl and a posterlorl error estlrnates

e IEH:ILet P QR A be an (a,pprommate) ﬂoatmg pomt decomposmon of a matrlx A for T

N N , P

m(mmwm(m w@) . o (310)

logether with an upper bound for 1A -~ PQRl[ it sufﬁces to derlve a-'method for -

estlmatmg the smallest smgula,r value of a nonsmgular trlangula.l tatrix L (see [30])

Denote the elgenvalues of a symmetric matrix A by /\i(A) s 2 A (A) and its
smgular values by o1(A) > .- > an( ). If L is nonsingular, then the matrix LLT -
is symmetric positive definite (s p.d.) and XN(LLT) = oi(L)2 for 1 <7 < n. Then
LIT —)I,0 < A€ Ris s.p.d. if and only if on(L)? = )\n(LLT) > A But LLT — \I
is s.p.d. iff a (nonsingular) Cholesky factor G with GGT = LLT — Al exists. An
approximation for A,(LLT) can be obtained by inverse power iteration and forward
and backward substitution with L and L7.

To prove that LLT — AI is s.p.d. might be performed by an interval version of
Cholesky’s decomposition. If it succeeds, i.e. all diagonal elements stay positive,
then LLT — AI is proved to be s.p.d. However, due to overestimation and data de-
pendencies, this process may not work even for small and simple examples. Consider
A= LLT — A\I with

[ Y
—_ =

and A=0.

p—
—
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o "_'-;__:..;;pepresent&ble 011 a. d.lgttal comRuter Th,en Jnte'rva,l Qh,olesky decomposatlon (gvery.f_ﬁ,: -

-"'operatlon 18- replaced by its corresp0nd1ng 111terval opera,tlon) for dlmenswn n pro-

B '.-_dla,meter

5 d‘uCES a facﬁor {G] 6 IIIR’”‘” wlth a ﬁnal dragmmlre}e}nent [G],m of the fo}lowmg.ﬂ_
| =. | 1o 15 20 | 25 30 | 35
| diam([Gla,) [ 610712 7. 10—10 X 10—8 8-107° [ 2-107 |2,107" | failed |
cond(LLT} 15 102 3'3 mﬁ 59 102 35 102 .‘12_,.193 7 1133 51510
l' ’-The reason: fOI the fa}lure of thls approach is. overestlma,tlon and da.ta depen,denmeg ‘ o

not the condltlon O.f the problem

Agaln very much in the spirit of Wilkinson, we calculate an approx1mate Choleslq _
‘ fdecompomtma GGT of LLT . )\I and estlmate the error Then perturbatlon theory‘._ TR

e [8] ylelds

{)\{GGT)—-V (LLT —,\1)1 < “GGT (LLT“»AI)][

and : .
o*n(L) w)\ (LLT) > ,\—y

Thls proves the followmg theoremm [30]
Theorem 3.2. Lei L € IR”X“, A€ R and G € IR”™™ be given and define
v = ||GGT — (LLT — AD)]}.

If A > v, then (3.11)

oul(L) = (A= )2, (3.11)

In Theorem 3.1, we choose the preconditioning matrix to be the inverse of
mid(S(F, X )) itself. The nonsingularity of this matrix is shown a posteriori us-
ing (3.10) and (3.11). In the final inclusion formula (3.8) only the radius of S(z, X)

occurs, not S{%, X) itself. This yields good bounds in a norm-wise sense.

We illustrate the application of Theorem 3.2 by a simple example. Consider Emden’s

equation [26]

—AU=U% on Q:=(0,I"")yx(0,]), U=0 on 9. (3.12)

11



" as an’ appfomma.te solutlon of (3 13} With a- Sm‘ta,ble “alde for.

h _.'Usmg centlal dﬂIerences to apprommate AU and m 7 1nner pomts along the axes = |

h"f;i‘es.p,,a we obtam adl.scretized probiem.

S A g =0 it ?:;:41'e.'gi{ﬁ?iﬁ-?ﬁff.:,'{:-_: - Sy

in m - n variables which has a sparse structure. We use

f(wl,xg) .,_)\ T ( .tlf)2‘$§(1—‘$2)2, S

as-a's a,rtmg value e

."f;.rl"."for a s:mpllﬁed Newton, 1tera,t10n, Let u denote an a.pprommate solution of the

dlscret1zed problemn (3.13) obtainied in such way, and . let % denote a true ‘solutio.

Then we venfy .

Hu = ul] <e IIHH ;. . y a L ;__‘__'_',.."‘-;_. :‘__‘f;__; .':-1'. . ;(3':1_4.')'_. )
Where 3 15 g1ven in | the followmg table. Alf computatlons are performed in double:' .
px;emslon equlvalent to. 17, de;:lmal places Furi;hermgre we, use, the @bbrewat]ons oL

N dlmensmn of the dlscrltlzed nonhnea,r system (3. 13),
m - inner grid points in first direction; '
"ninner grid points in second direction (that is the bandwidth);
iter number of inverse power iterations to approximate o, ;
wm (3, L),
cond condition number of mid(S(X));

e maximum relative error of inclusion according to (3.14).

The following pictures show solutions for I = 1 and I = 2.5.
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Graph 3.1. Solution of Emden’s equation (3.12) for { = 1 and 1=25

o4 Npompoonfiter | | cond. [oooet
14101 39691 63| 63| 3.1 29.3[:1.3-10°7) 62107 |
cobaeieg foagr | aer| 3] 293 52:00° | 241071

8001 | 127 63| 3 | 29.3| 3.3.10% | 1.9.1071%
LT ] oa23es7 ams | d27 [ 3 {72008 [ 1310 T L 10
2.0 | 3969| 63| 63 2 | 71.6] 1.7-10% | 9.6 1071

16129 | 127] 127 2 | 71.5] 6.8-108 | 3.8.1071

goor| 127| 63! 2 | 71.5] 2.0.108 | 1.1.10710

32385 | 255 | 127] 2 | 715 8.0.10° | 4.5.10710

25 | 3960| 63| 63| 2 |111.9] 1.8.10° | 9.8.10-8

16129 | 127 | 1271 2 |111.8] 7.3-10° | 4.4.10~7

8001 | 127] 63| 2 |111.8] 2.0.10° | 1.0- 107

32385 | 255 | 127{ 2 |111.7] 7.9-10° | 4.6.1077

Table 3.1. Verified inclusion for discretized Emden equation

The computational effort for the entire verification process is approximately equal
to the time for the floating point decomposition of A. For larger values of ! the
condition numbers of the nonlinear system goes beyond the critical value of about

10, Above this value, higher computational precision is necessary. This can be

seen as follows.

A good approximate solution % of (3.13) satisfies ||f(@)|| = ¢ - |||, where € is the
relative rounding error unit, in our case € = 107!". Let X be defined as in (3.6) and
S(%, X) the Jacobian of (3.13).Then rad{S(Z,X)) = 2 - ks - by - p - |[&| and (3.8)

writes

e |[ul[ + 2 by hy-p-flul]-p<7-p.

13
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Table 3 1 glves 2 h h ||u]| = 10 -2, and for ||,u” 3 10@ and (3 14) ertes

.s/p+m p<1- (3 16)

.'Solvmg (3 16) for p051t1ve p y1e1ds T < 6-107° or cond(mzd(S(w X))) < 1010 Th1s is -
the inherent maximum condition number for Emden’s equation which can be treated
by our fixed point ansatz in double precision. Table 3.1 ShOWS that lnChlSIOI].S up to

_ this cond1t1on number are achleved

. -.p' _.‘-. .,~' -

".:I':'-.:'FOI‘ la.rger values of I the problem becomes 1ilacond1moned and sometlmes thls 1sf-;

- difficult to detect. Denote successive 1terates of some mmphﬁed or Qua51—Newton

iteration by u* . Then a frequently used stopping criterion is || f(@)|| < ¢-&-||@*|} for
some small constant ¢. For the dlscret1zed Emden equation with m = 127, n = 31,
- Wthh meatis N 3937 unknowns we obta.med for l = 3 1 the followmg results

k' : ||f(~k)|| / HNkH S
2 es 07,

3 961077

4 3.1.10712

Table 3.2. Simplified Newton-iteration for [ = 3.1, N = 3937, n = 31.

These figures seem to indicate convergence behaviour and many stopping criterions
would detect convergence for k=4. However, our verification process did not succeed,

which looks strange at the first sight. Going one iteration further yields

B IF@RN /1R
5 1.2.10*

An inclusion method prevented us from accepting u* as an approximation.

4 A branch and bound method for global opti-

mization problems

In this section, we consider a branch and bound algorithm for the global optimization

problem
Min{f(z) | € X}, X = {c € R" |2 <& < 7} (4.1)

which is based on the tools of interval arithmetic. Here, f : X — IR, the set of

feasible points X is a box or interval vector with z < T | and < is to be understood

14



, cornponentw1se We denote the global mnnmum (1f it exists) by f* and the set:
" of: g}obal mmlmum pomts ’oy X Our algoni,hm calculates apprommatlons of o

:_a,nd X~ and Veraﬁed bounds for f and X% that'i 1s these bounds are- proved to be" '

correct, including all’ roundmg errors and higher order terms.

Branch and bound methods for solving global optimization problems (cf. for example
[10], [11], [25], [28]) differ in the way they (i) partition the set of feasible solutions X

_ info subregions, (11) calculate bounds for the range of f on those subregions, and (iii)

> dis¢ard subzegmns for avoldlng exhaustlve search? We arse in our. method mdusmn o

.:'Mfunctlens for- boundlng ‘the range of f on subregwns “For discardmg subreglons we

" incorporate local optimization algorithms in a way that very early an approximation -
Z of a global minimum point (or at least of a local minimum point) is calculated.
The knowledge of such an approximation has important influence upon the efficiency:

' subregmns Yol X contaln no global mlnlmum points and can be discarded if a lower

: bound of fon Yis greater than f ( ) for some % ¢ X. Hence, the early knowledge of

| .~ an approxlma.tlon TE X with f (sc) f"‘ yrelds to an efﬁc1ent dlscardmg techmque :

Two main difficulties appear when local optlmlza‘mon algonthms are 1ncorporated
First, local optimization algorithms require a startmg point in an attraction re-
gion to converge to a global minimum point or at least to a stationary point of f.
In many cases these atiraction regions are small. Moreover, rounding errors and
approximation errors (for example finite difference approximations) may produce
wrong results. In order to demonstrate these facts and motivate the calculation of
guaranteed bounds, we look at the following small application that is described in
the book of Becker and Wittmer 1983 [3].

L

c’w S . CL RL= 4000 0.

o —O ©

Figure 4.1

There, the problem is to minimize the costs of a voltage stabilizer (see Figure 4.1)
such that the ripple factor r = 3450/ B, Cy C; L < 1072, The costs of the components
of the voltage stabilizer are determined from list prices, where the costs of the

capacities

¢
p

(0.25 4+ 2.5-107")— DM

15



are approximated by linear interpolation, and the costs for the inductivity

(1.0 +5.0 - 10 }-ﬁ) DM

are approximated by quadratical interpolation (F: Farad, H: Henry, DM: German
Mark). Summing up the costs by using the equations 3450/ Ry C;CoL = 1072, R =
10°Q2, and dropping the constant term (this term has no influence on the optimal
solutlon) y1elds the ob _]ectwe functlon '

(595

f(C’l,Cg) =9 5 10‘”4(01 + 02) CfC’%'

which has to be minimized subject to the technical constraints Cy > 0, €5 > 0. This
is a strictly convex problem which has exactly one stationary point being the unique
global minimum. Notice that the objective function is a simple rational function

involving no standard functions. It is easy to verify the guaranteed bounds
13.639184346 < .CT, Cy < 13.639184374,

0.00852449021 < f* < 0.00852449024

for the global minimum C;, C; (measured in pF") and the global minimum value f*

with an appropriate inclusion method.

For solving this problems we used the MATLAB routine fminy which is a BFGS-
quasi-Newton method. All the runs {cf. Figure 4.2) were executed in double preci-
sion on a IBM RS/6000 by using MATLAB Version 4.1.1, Oct. 1993

starting point calculated approximation of the optimal solution
o C Ct C3 fr
0.01 0.01 4.6088 - 10® 4.6088 - 10° 2.3044 - 10°
0.1 0.5 184.4824 37.3765 0.0555

10 10 13.6622 13.6622 0.0085

8 1 * * *

20 20 * * *

Figure 4.2

*: MATLAB gives the warning: “Matrix is close to singular or badly scaled. Results
may be inaccurate. RCOND=1.288638e-300.”

Obviously, the routine fminu calculates approximations of the optimal solution which
are completely wrong in the sense of forward and backward error analysis without
giving any warning, and, {or some starting points, fminu gives warnings that a well-
conditioned problem is ill-conditioned. Thus, this BF'GS-quasi-Newton method, one

16



of the best algerithms for twice continuously differentiable functions, has problems
for very simple applications with practical (not especially constructed) models and

input data.

The BFGS-quasi-Newton method E04JAF in NAG’s library is better, but in prin-
ciple we have the same behaviour; for example the starting point 'y = C; = 25u ¥
produces a “core dumped”. Moreover, we see that the attraction region is very
small. In our method, we use inclusion functions (interval arithmetic evaluations)
to produce good starting points for local optimization algorithms. To do this, we in-
corporate subdivision scheme to be described in the following, and use the heuristic
that in many cases subregions with the smaller lower bound contain smaller function

values.

The second difficulty is when to call a local optimization algorithm in a global opti-
mization method. Ideally, the local optimization algorithm should be called, if then
an approximation of a global minimum point is calculated. We attempt to handle
this problem by our branch and bound scheme and a special rule for calling a local
optimization algorithm. In the following, we will describe an simplified version of our
method in the one-dimensional case. For the more complicated multi-dimensional
case, the reader is referred to {13]. The method consists of two algorithms: algorithm
BRANCH AND BOUND manages the partitioning of the feasible domain X, and
calls procedure SUBDIVISION which is responsable for selecting starting points, for
calling the local optimization algorithm, for splitting the problem into subproblems,

and for discarding subregions.”

For the remainder of this section, we assume that an inclusion function F of [ is
given, and F*, F denote a lower and an upper bound of the global minimum value
[*, respectively. Moreover, let ny,ng € IN\ {0}.

Algorithm BRANCH AND BOUND starts with the original problem which is stored
on list 5, and where the bounds of the global minimum value are set to —oo, co (cf.
(4.2),(4.3) ). On list A, which is empty at the beginning, approximations of the
global minimum points and the global minimum value will be stored (cf. (4.21)).
The algorithm continues by removing all subproblems from list S, and by applying
procedure SUBDIVISION to each subproblem (cf. (4.4) to (4.8)). Then in (4.9) the
lower bound F~ is updated. Obviously, this bound is equal to the minimum of all
lower bounds of the subproblems which are not discarded and stored on our pool
of subproblems list §. The algorithm terminates after n;; iteration steps, or if in

(4.10) the lower and the upper bound are sufficiently close.
In procedure SUBDIVISION the given box Y is bisected (cf. (4.16)), and with the

inclusion function F' lower bounds of the range of f on Y are calculated. Therefore,

17



we get two subproblems. Now, a main idea is to proceed with the subproblem which
has the smaller lower bound (cf. (4.17)). This is motivated by the heuristic argument
that in many cases a subproblem with a smaller lower bound also contains feasible
points with smaller function values. This way of bisecting is continued until the
width of box ¥ (w(Y) := Y —Y) is equal w*, and in this case the local optimization
algorithm is called provided that for the starting point mid(Y') the corresponding
function value is smaller then ¥ (cf. (4.20), (4.21)). Using the above heuristic
argument, it follows that this way of bisecting yields improved starting points for
the local optimization algorithm. Subproblems with greater lower bounds are stored
on a working list W (cf. (4.19)) provided their width are greater w*, and are stored
on list L ( and therefore given back to the pool of subproblems list S } provided that
their width is equal to w* (cf. (4.23)). Obviously, subproblems with a lower bound
greater than F cannot contain a global minimum point, and thus are discarded in
steps (4.14),(4.19),(4.23).

algorithm BRANCH AND BOUND (X, S, A, F*, F") begin

YW .= X, F*:== —00, F := o0, F(YMW) := [—o0, o0]; (4.2)
initialize lists S := {(Y®, F(Y(W))}, A= §; (4.3)
fori=1,---,n; do begin (4.4)
§ =5, §:=0; (4.5)
for all pairs (Y, F(Y)) € S do begin (4.6)
call SUBDIVISION (Y, F(Y), L, F, A); ' (4.7)
append list L at the end of list S (4.8)
end;
E* = Max{E", Min{F(Y) | (Y, F(Y)) € S5}}; (4.9)
if © — F* < ethen STOP | (4.10)
end;
end;
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procedure SUBDIVISION (Y, F(Y), L, F, A); begin

initialize lists W := {(V, F(Y))}, L := 0, and set w* := w(Y)/2"¢; (4.11)
while W # § do begin (4.12)
remove the last pair (¥, F(Y)) from list W; (4.13)
if F(Y)<TF then (4.14)
while w(Y) > w* do begin (4.15)

bisect Y such that ¥ = YW U Y® and calculate F(YV), F(Y®) (4.16)
(we assume F(Y()) < F(Y?), otherwise exchange the indices);
Y =YW F(Y):= F(YM), (4.17)
if w(Y®)) > w" then (4.18)
if F(Y®)<TF then enter (Y®, F(Y®)) at the end of list W; (4.19)
else begin
if L=0and f(mid(Y)) <F then (4.20)
call a local optimizition algorithm with (4.21)
starting point mid(Y’) that calculates approximations
%, f(%), and append the pair (F, (%)) at the
end of list A;
F = Min{F(3),F }; (4.22)
F(YW)) < F then append (Y, F(Y))) at the end list L (j = 1,2);
(4.23) '
end;
end;
end;
end;

Next, we state a theorem concerning some properties of the above method:

Theorem 4.1: Let f: X — IR, and assume further that

(a) F is an inclusion function of f;
(b) nis,na € IN\{0};
(c) the local optimization algorithm terminates after a finite number of steps.

Then the following results hold:
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(i)  Algoritkm BRANCH AND BOUND terminates after a finite numbers of
steps;

(i) Fr<f <F;

(i) list A contains an approximation ¥ such that F* < f(#) < F;

(v) X* CULY | (Y,F(Y)) € S}

This result shows that guaranteed bounds for the global minimum value and the
global minimum points are calculated, and moreover, (iii) shows that a calculated
approximation 7 is contained in the level set { z | f{(z)— f* < F — F*}. For a proof
of Theorem 4.1 and for some convergence results which describe the behaviour for
¢ — oo see {13]. Especially, it can be shown that for increasing n;,ng the bounds
converge to f*, X* provided that some mild assumptions are fulfilled.

So far, this branch and bound method uses no derivatives, and it is suitable for
problems which are not differentiable, or where derivatives are not available. Espe-
cially, the bounds calculated for X™ may be very rough. Inclusion functions of the
first and second derivatives can be used to accelerate this branch and bound scheme,
and to calculate very sharp bounds for f* and X™*. For details of how to incorpo-
rate derivatives into this branch and bound scheme, we refer the reader to [13]. In
the following we give numerical examples of our method for some multi-dimensional
problems. Numerical experiments of about 50 problems are described in [14] and
[15]. These problems include the well-known test sets of Dixon and Szegd [7] and
Hansen [10]. In the first report the results are calculated without using derivatives,
whereas in the second report inclusion functions of the first and second derivatives

are used.

The method has been implemented by using the C+4++ library PROFIL [16].The

corresponding inclusion functions are natural interval evaluations.

We use the following abbreviations:

N, denotes the number of global minima;

ny, denotes the number of calls of the local optimization algorithm;

I denotes the maximal length of the List S, and indicates the storage
requirement;

n.t, nif are the total number of real and inclusion function calls, of f,
respectively;

iy, Nin  are the total number of inclusion gradient and hessian calls, respectively;

tery is the total execution time. The unit for tgpy is the time needed to
perform 1000 calls of the Shekel Function No. 5 at (4,4,4,4). On a

SparcServer 330 one unit is (.2s.
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Example 1: Griewank’s function [32]

n

Jofz) = Z m?/d—g Cos%+l

=1
600 < z; < 600, d = 4000,
F =0, z*=(0,...,0)

For dimension n=10 this function has several thousand local minima, and has the
global minimum point z* = 0 with global minimum value z* = 0. In Térn and

Zilinskas {32], page 195, test results of two methods are given:

Method nar Nry STU
Griewank (1981) - | 6600} -
Snyman, Fatti (1987) | 1 23399 | 90

Both methods give no guarantee, and Griewank’s method has calculated only a local
minimum.

Without using derivatives our method has calculated an approximation of the unique
global minimum point z* = 0 with magnitude of about 107*¢. The following table
gives for some different n;, ny lower bound upper bounds for f* and the computa-

tional costs.

ni | ng | I F na || e | s | neg | nig | tsTu
8 0 {1.31006 10714 1 1111135341 | 2.667
10 0 [1.80300-10"13¢ 1 11417421 |4.600
2112 0 [3.25184.10713 1 111400 (501 |5.133

The bounds for z* are very rough. By using natural inclusion functions of the first

and second derivative of f, we get the following bounds for f* and z*:

f* C [0,4.551914400963142¢ - 1075,
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[ —1.752875876867703 - 107'°,  9.10327788226753 - 10~16
[ ~—2.49108923735287 - 10715, 1.273368348184274 - 10715
[ —3.724949921605188 - 10715, 8.832483289507194 - 1016
[ —3.68400804229635 - 1075, 1.634425727320358 - 10~1°
[ —1.364848010712496 - 10723, 1.282129949457193 - 1023
[ ~2.9778502051909 - 1072, 2.646977960169689 - 10-23
[
[
[
[

(

* C
—5.156808186946726 - 10715, 1.868301654538232 . 10~13
—5.743642108837937 - 1071%, 1.762776141781241 - 1015
~6.995533733778533 - 10715,  9.622619705035564 - 1016
\ —-1.77843831698901 - 10723, 1.613002194478404 - 10~ J
with

ni {na | nar || e | s | nep | i | ngg | nun | tsTo
> 2110 1 1 11141612611 1 T 1925
>2115 1 111116313211 1 7 | 8.25

In the first column n;; > 2 means that these results hold for all those nj.

For dimension n = 50 Griewank’s function has millions of local minima, and we get

the following results without using derivatives

=

ni g || £ r nyanp { | g | nig| tsto
1{10] O [1.14087 10712 1 11117644 §1101 §110.333
21104 0 |1.14087 -10712 1 1111764512101 |140.333
11154 0 |2.25375.10711 1 1§11 74311601} 48.067

Using inclusion functions of the derivatives we get
f* <€ [0,3.164135620181696 - 1074],

[—1.804243928668264 - 107'°,8.589598111826399 - 107'¢]
r C : )
[—1.513044566938841 - 10711, 3.251126042831056 - 10~'%]

and

Ny [ na | nar || e f s I nes | nip | nig {nan | tsro
>2115 1 1 1767160271 1 7 1643.05
> 2120 1 1 111516121021 1 7 | 726.15

Example 2: This example is given in Moore, Hansen and Leclerc {21]

22



The authors write that in the field of chemistry, a very common problem is to
reconstruct a curve that is given by a n points {z;,%;), ¢ = 1,...,n. Normally,
the curve is a sum of peaks, and the chemist desires to resolve the shape and the
position of the individual peaks. They considered a curve which was the sum of two

Gaussian peaks with:

@ = 4+ (i+1)/10, i=1,2,...,81,

—(HL)? —(H2y?
Yi = ar1-€ " 17 taz-e 2 3
a; = 130.89 , a = B52.6,
uy = 6.73 , uy = 9.342
5 = 1.2 , 82 = 0.97.

The aim is to recover the six parameters ay, a2, u1, Uz, 81, 32 of the curve function

2

_{f..—.f‘i)z
-~
p(m,al,az,ul,uz,sl,sz):: E aj-e 7
i=1
by minimizing the function
81
—(Eizty2 —(Zizt2y2 2
flay, az, vy, ug, 81,82) = E aye ~ A 4 aqe v 2 — yi) ,

i=1

where range of the six parameters was defined as follows:

lai] = {130, 135], [ao] =[50, 55], [w] =6, 8], [us]= {8, 10},
[‘91] = [1! 2]7 [82] = [05: 1]

The method described in [21] uses interval derivatives in an extensive way. They

obtained the following guaranteed bounds for the global minimum point

ay = {130.889999624668920, 130.890000237423440]
asy = [52.5999994426222910, 52.6000003353821410]
uy = [6.72999999580056230, 6.73000000523584680]
uz = [9.34199999170696670, 9.34200000792551850]
s1 = [1.19999999502502950, 1.20000000672384770]
82 = [0.96999998507893725, 0.97000001469388031]

and for the global minimum value

[£*, F7] = [6.3015390640982946 - 107%, 9.9696829305332294 . 1071,

For the guaranteed bounds of f* given in {21] supposedly there is a misprint and

the lower bound possibly should be negative.
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The number of guaranteed decimal digits for the global minimum point varies be-
tween 7 and 9 and the time needed on a SUN SparcStation is reported as 169240s.

Our method without using derivatives gives the following results:

——

s | g ff 2 F nar | ne | L] nep | iy | tsTu
11 0 12.72132.107%° | 1 1 81256 H3 | 124

1 0 [2.72132.107%0} 1 1 |44 1264 | 469 | 57.8
1121 0 892363-10717| 1 1 144 1208 | 469 { 52.8

The number of correct decimal digits of the approximation, calculated for n; =
ng = 1, varies between 12 and 15:

dy; = 130.8900000000426
ap = 52.59999999998969
1; = 6.730000000000008
Uy = 9.342000000000636
sy = 1.199999999999803
S = 0.9700000000003587

For other values of n;; and ny the approximations are similar. In the case ny = ny =

1, the time needed on a SUN SparcStation 1 is about 3 seconds.

If we apply our method by using inclusion functions of the derivatives, we get for
f*,z" the bounds

f*  C  [0,3.678114804829197¢ - 107

[130.8899999999997, 130.8900000000002] \
[52.59999999999987, 52.60000000000012]
[6.729999999999998, 6.730000000000003]
[9.341999999999995, 9.342000000000006]
[1.199999999999996, 1.200000000000004]
\ [0.9699999999999923, 0.9700000000000075] /

with the computational costs

g | ngllna | ne | Is [ s | nip g {ni | tsto

>14101 1 1 (153 1487 {19129 1 | 14 | 1688.00
>7 |2 1 1 [164 270 [ 19129 1 | 14 {1681.65
>513 1 1 (142 :296 1191351 1 | 14 | 1681.90
>4 | 4 1 1 11561 1295119147( 1 | 14 | 1687.35
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Therefore, we need about 300s to calculate the above inclusions.

Example 3: In system analysis, a commonly occuring problem is fo minimize
the maximal real part of the eigenvalues of a matrix in order to get a maximally
stable system. The systems discussed here consist of a matrix M(z) € R™*™ with
parameters = € IR®. If A\i(z) are the eigenvalues of M(z) and f(z) := max R(Xi(x)),

then the aim is

min f(=).
We consider the matrix
di{xq,z2) ksinzy ksin x, k cos 24 k cos xo
ksin 2.’!)1 dg(ﬂ?l,a’:z) kﬂ:l kﬂ:z kwl.ﬂ’:g
M(z) = ksin2zy  k(zy -+ 22)  da(z1,22) bzl kx2 ,
kcos2xy k{z1 —z2) k(x4 22)*  dofz1,29) ksinziz,
kcos 2z, kz z) kdz? ksin(zy + 22} ds(zy, 72)
with
_ o 2 r1+x
dilor,ea) = 175 - 27t end?) DT
2 2
dofzy,m9) = 20— a _;_ = (z2 + 5) cos g (23 +27),
ds(z1,22) = 20 —6cos2may,
.'1'4 _i__ 2;4
dy(z1,22) = 18— _158—2 + 3 cos 6wz 2o,
ds(z1,z2) = 20— 6cos2mza,
E = 107°

ry,z9 € [-5,5].
As it can be seen in the plot of —f(z) (we turned it upside down to let the global

minimum be visible as global maximum), the function f(z) contains lots of local

minima and maxima.
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Figure 4.3: Plot of f(z) := max R(X;(z)}).

The unique global minimum is
fr=159, 2z =(-3.99997,—3.99997)

Applying our method, we obtain the results

=]

g | na | L7 F v || no | L} e | nie | tsro

21 2| 15.8686 { 17.1890 | — 2144 | 815|114 { 144.3
4 || 15.8974 | 15.9000 1 1 11133 33| 2156
31 41 15.8999 1 15.9000 1 1) 17134) 49 285

For almost all test problems known to us (cf.[14], [15]}, our branch and bound
method works very efficiently. Ounly in three cases we were not so lucky. One
of them was Mandel’shtam’s problem (cf. [6]), where we had success only up to

dimension 4. This was because we found no appropriate inclusion function.

The efficiency depends very much on choosing an appropriate inclusion function. In
many cases natural interval evaluations are sufficient. But we think that it is very

important to find other types of inclusion functions for special problems.

Acknowledgement: The authors wish to thank Prof. Dr. H. Brakhage for initiating

the research on self-validating methods.
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