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| ngorous Solution of Linear Programmmg

Problems with Uncertam Data

By C. Jansson and S.M. Rump! ™~
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Abstract. This note gives a synobsis of new methads for solving linear systems and linear pro-

* gramming problems with uncertain data. All input data can vary between given lower and upper
" bounds. The methods calculate very sharp and guaranteed error bounds for the solution set of

those problems and permit a rigorous sensitivity analysis. For problems with exact input data in
genersl the calculated bounds differ only in the last bit in the mantissa, i.e. they are of maximum
accuracy, o ' '

Keywords: linear programmmg. programmmg in condmons of uncenamty. sensmwty, interval -
and finite amhmeﬁc. systems of equations.
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¢ Introduction

There are three major sources of errors present when solving a problem on a com-
puter. First, in practical applications the input data are afflicted with tolerances,
Secondly, during execution of an algorithm rounding errors occur. Finally, even if
some input data are known exactly conversmn errors during the input process
may ocour,

~ "Modem applications of Inerval Mathemaucs to be presented in the following
allow to estimate and to control those errors for many problems, The tools of
Interval Mathematics are described in ‘several text books ({ALE74], [ALES3),
[BAUS7), [KUL76], [KUL83], [MQO79], [NEU90)).

In ﬂoatmg-pomt computations real values are replaced on the computer by

approximative floating-point numbers and the real operations by corresponding
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- real compact interval-

[aj =la8)i={aeRIagqg @l " (0.1

whe . -
Te 257, The values g Tesp. @ are called lower resp, upper bound, Qn the

com; z . ,
the SE?I:; ﬁiali?nm l:loaung-pomt numbers whereas [a] = [g, 7] still represents
interval arthmetis “*‘?1 1112 btatween a_'anda » The specific details of ,ﬂoating-poinf :
rad(la]) 12 0.5, _-W_l be dlscusged n section 3. The radius of [a] is defined by

al)i=05+( <@ and the midpoint by mid([a]) : = 0.5 . (g +3). By ]I]Ry ‘

we denote the set of all re. i i '
detmd by , real cqm?aqt. Imtervals. The interval opemtions on IR are

[@l*[o):=la¥blaelaybefp) L 02

with [g], [ ) on |
o nar)[(a(])pgn]ﬂeioliﬂin \:flilere *e [+_, n {} on the right hand side of (0.2) is a real
o : 7o n. In the case -of division 0 & [p] is assumed. In the following th
D o ‘e operation (re:al or interval) will be clear out of its context, - £
interval operations can easily be calculated by using the identities

(a]+[b]=[a+b,7+5) -
(61161 = (g5, 3~ R

-~ [al-[b)=Min{ab, o5, 75, 75), Max{gb, gb, é‘b, ab)} >
[a)/[b] =1g, aj[/é,1/p - -

m - ‘ Ta ’ '
demtedcbsq;;f real n-damens1.01_1al vectors x resp. real mx n matrices A is
e ([aij) X arii%tilsf::é An interval vector [x] = (%] resp. an interval matrix

_ P- & matrix the coefficients of whic i By
il . ( of 'which are intervals, B
- de::t ::lx;l:t: the set of m'terval vectors [x] with #.components and by I.I]R ”’"y
enote ime:: atl)f m xn mten:al matrices {A], The interval operations are
_ : matrices and mtervall vectors analogously to the rea] vector

and matrix operations; -
Ir1LAL= () lay]), Ir] € IR, [A] € TR 70
(AT+B] = (lay)+(By]), [4), [B] € IR ©.4)
. k | T
(4])-[B) := (Ex. [a2]-lbyD), [A] € HIR ™, [B] & HIR"")

Setting n = =1 this ition i :
. g n=lorm=1 this definition includes the operations for interval vec-

R 3. i3 mi "
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"The operations (0.3), (0.4) can be realized on a computer in a straightforward
manner if _diredted roundings are available, If the processor in use satisfies [EEE
754 {IEBESS), the necessary rounding modes are available. With the arithmetic of
Kulisch (KUL76, KUL83] vector and matrix operations can be executed with ma-

~ ximum accurdcy (compare section 3).

The key property of Interval Mathematics is ihe isotonicity

(a], (b€ IR q (@) belbl= g *belal* o] ©.5)

which'é;cténds to the oﬁera;ions betwgeh,iniervél matrices and interval vectors
and all other ‘calculations. These calculations deliver (also on a computer)

" guaranteed bounds. For example, calculating in (0.4) the product [A]* [B] of

interval matrices the computed resujt [C] = [C,C’] gives a lower and a upper

" bound &, T with -

Ae[Al BelB]=» 4-Be((].

Remember that [A] comprises of all real matrices A€ IR™ with A< A <4,
In practice systems of linear equations frequently occur the coefficients of which
are not known exactly but are -afflicted with tolerances. In this case one is
interested in the set of all solutions for real linear systems with system matrix and
right hand side within the tolerances, Using the notation of Interval Mathematics
this means for some [A] € IIR* and {b] € IR " we are iriterested in guaranteed,
bounds for the solution set - K

XqALB) = (xR 1 Ax=b, A E‘[A},bé[b]}. L (0.6)

" In the;fouowihg We use fonﬁally the hotatiop.

(Al =1b] 0.7
for a system of linear equations with interval input data; to “solve” this system
means {0 calculate an interval vector [x] with X([A), [b]c [x]. ' _

_Replacing in Gaussian Elimination the real operations by the corresponding
interval operations (0.2) an interval vector [x] which contains the solution set
X([A), [B]) is calculated, This is true because of the fundamental principle of

. isotonicity, Hence the interval version of Gaussian Elimination is 2 method for
solving the system (0.7). Unfortunately dependencies of the input data during the
calculation may yield to severe overestimations or to division by. an interval
containing zero. Using this approach this may happen even for examples of small
size, The reason for this is: when the same interval occurs in a calculation several
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times the result tends to overestimate the true (narrowest) result. A-simple
example is the calculation of '

Therefore special algorithms (compare section 2) have to be devcloped to
avoid the phenomenon of overestimation, ' .

In section 1 we will describe a method for computing guaranteed error
bounds for the solution set of a linear programming problem with uncertain data

covering the basisinstable case. This method can be viewed as a graph-search-

method on & graph where the nodes are the optimal basic-index-sets: The

computed guaranteed error bounds are bounds for the solution sets of linear

systems which correspond to the optimal basic-index-sets. ‘

In section 2 methods for solving linear systems with uncertain data are
described. It will be shown that the computed bounds are in general very sharp. In
fact the sharpness of the bounds itself will be estimated, With these methods a
complete sensitivity analysis together with guaranteed error bounds for the
solution of linear systems and linear programming problems is given, It should be
stressed that all input data can vary between lower and upper bounds.

In section 3 computational details and hints for an implementation on digital

computers will be given, In section 4 numerical examples are demonstrated.

1 Solving Linear Programming Problems with Uncertain Data

We consider the linear programming probiem in standard form

 Max{eixlxe X), X = (xeR? | Ax=b, x20) L1y

where A = (a1, ..., 2y) is a real mx n matrix with column vectors ai, ..., dp€
R™, b e IR™, ¢ & IR" and m < n. Associated with (1.1) is the corresponding dual
linear programming problem -

. Minfbtylye ¥}, ¥ = {y e R™ | Aty 2 c}. ay

The input data of (1.1) and (1.2) are given by the ipel P = (4, b, c)e Rma+m+n,
The set of indices B = {8y, ..., Bul G {1, ... n} is called a basic-index-set if
the corresponding X m submatrix A =(ag,, ..., 4g,, ) is non-singular, .
N={71 s Vawmb = {15 ..., 1) / B is called the set of nanbasic indices and
Ay = (izn s eves @y, ). For a given basic-index-set B the well-known simplex
tableau T(B)'is defined by '

* problems we describe the input data by the tripel
whére [AlisanmX & interval matrix,

P), ... to indicate the dependency on P € 7l |

ing. i i ol
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R 'd;; | | (1.3)
T(B):= JCB' S _ . ‘

. : ) - = Al —cp, 2= bIy(B) Sy = A3
where xg: = Ag'b, ¥(B8):= (Ag)lep,dn ¢ Aly(B)—cy

i iof lyto A = (As, An)
and ¢ = (cg. cN)' 18 partioned anal(_.)gouﬁ _ N
AN A basic-index-set B is called opfimal ifxg20anddy20. Vop e
‘ sets, It is well-known that x(B) = (x5, *n)h ch é) f; B,
' B) i i f(1.2) if De
' is an opti of (1.1) and y(B} is an optimal 'vertex of _
W o s me:lxvzhfe z) . = Max{cx | xe X} exists aqd sat1s§es Zopt
ot e it P '\ Be i ti £ all optimal vertices of
= bty(B) = cx(B), X opt 1= (x(B) 1 BE Vops) Is the set of op ma
(1.1)and ¥, :='{y(B)-l Be Vopr} s the set of all opumal' vertice: . .the wrof
' The irfgresting output data are therefore the optimal 11alue_ zop;;
amal basic-index-sets Vopi and the sets of optimal vertices X opt an_dro 0,;; i
w ’I"d perform é"rigorous sensitivity and error analysis of linear prog |

denotes the set

of all optimal basic-index-

' (1.4)
(P = (1A}, {81, [eD) |

[b] is an interval vector with m componenss

and [c] is an interval vector with # components. By the tripel [P] a set of linear

[ = Rmr+mEn ig
o i : ith real input data P={Ab,0E s
gramming problems Pe [P] with re: 1t , .
| 1;iven. Tn the following we WIIte Zoy {P), Vopt (P).’X opt (P), Y opt (P 1(B, P), x(

: i as with P € [P] -
The interesting output data of the linear programming problgmg ws.th 7]

are the sets
2epp ([P 1= lzop (PP € [P | o9
Vops (PD) 1= (Vo (P) | P € TP ) (1.6)
‘fop;(u*i) = (x(8, )| P €[PL B ¢ Van(P)) %)

5GP ‘ i (L8)
£, (PD = (B, P)| P €1P) B Vop(P] S
. rested ir . ] for the
: We are interested in reliable and very sharﬂ[lJ 1‘;JWe1§i;rlld aﬁg;::: ttz)oz:ﬁ:sul;a):e e
' . . § W ‘
at data, In this section we descnbe a metho WS G e
| ?r?t?f:;l-[z], interval vectors [x114..- [qc’_},'L.yl] Jeens ] aln;i .a set of fndgx sels
{BY, ..., B5} such that the following conditions.are fulﬁl :




92 C.Jansson and S. M. Rump

I zop(Ph ]

2 Vop(Phe2

3 XopPhg fo]U U{I‘]

4 Yo (P YNV ... U]
The method either computes the above inclusions and guarantees that for all

real problems P e [P] there exists an optimal solution or, a warning is given that
no inclusions could be calculited. In the first case the computed interval vectors

give guaranteed bounds for the variation of the output data for P in [P]. Therefore

. a complete sensitivity and error analysis is given for a linear programming
problem where all input data can vary between lower and upper bounds. In
section 2 we will show that the computed bounds are in general very sharp.

The presented method can’ be viewed as a graph~search-method (cf. [PAP82])
~ applied to the graph

Gopt ([P = (Vop ([PD, Lo (LP]) (1.9}

wil;hithe node set Vor([P]) and the edge set -

Eon((P]) = {{B, B}

~ exists a P e [P] with B, B’ & Vopu(P)

We call Gop({P]) the representation graph of [P]. Two nodes B!, B2 are
. called to be neighboured if (B, B2}¢ Eou(IP]). For Be Vop([P]) the set N(B)
denotes the set of all nodes 8° in Vpi({P]) which are neighboured to B.
In the first step of the method a starting node B in Vop([P]) is computed.
This.can be done for example using the classical simplex algorithm. Following all
- nodes in N(Bgy) are computed. Subsequently all nodes in N(B ') with B'e
N(Bgan) are calculated and so forth,
To calculate the sets N(B) with B = {#, ..., Bule Vopt (1)) we need an
inclusion of all simplex tableaus T(B P) with Pe [P]. Solving the system of
 linear interval equauons

[Aglxz =[] . : o |
(As)yB)=[es] SR 11y
(Aslsy =lay} Yy €N = {11, 00s nwm} . :

interval vectors [xg], [y(B)], [s,] are obtained wnh )e N.
Now we define-

B, B’ differ in exactly one index and there } Q10) -

. - . 93
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112)
[dN] = [AN]’[y(B)] —[en): '( |
: (L13)
[x(B)l "'([-’CB]: XNY AN -0
' (1.14)
"[SN]:= [371]!--“[5}’,,..,,,])' ‘
™ (L15) .

(B = [cg]f[xaln[bruywn, |
e

{z(B)]|[dN]’) e f?ﬁl‘h] ,-fsﬁ"’«fm] Cooa1e
[T(B)l [-’CB] [SN,]‘ : N . . . . '.

(g fspan] -+ Bt

(1B i dalled he B. Obviously the simplex ta-
is called the interval tableau correspondmg to =
[b]l‘éfl.)l]s ?1(‘; P [T(B)] for Pe [P]. The set N(B) can be effectively calculated ac

cdrding to the following theorem.

Theorem l. 1: Let Bbea basw-mdex-sct and [T(B)] the corresponding interval ta-
bleau with X xg 20,d y20. Let N(B) be defined as the set of all index- sets

y

L17)

B’u(B\{ﬁ})u{y}.ﬁeB,ye_N‘ _
ll. saﬁsfymg one of the following conditions

- >0, B (L18)

Oe[dyl,sm,>0and-—%SMm{ P |s‘5,, } . ‘
gy e (B opent. @9
o d—-Z-ZMaK{ lS‘gf< , Y 7 ‘

T -

Then (B)2 NCB) If B& Von(PD- | |

It should be remarked that N(B) and N(B) are empty if [xB] >0 :;nd [d;;i:vtge
In this case we call [P] bas:sstable With theorem 1.1 we can descri
following method: :

(1) compute Byiart eVop;([P]). _
‘§1=0,Z:=0, B:= Buast
-goto {4); - o

(2) if§=90 then STOP; : )
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.
1

(3) choose Be ;5= 5\ ()

(4): a) 'c.:ompute the inte te .
: _ Tval vectors of the syst
vector§ can not be calculated then STOP (WARNI)I(QSC:)m

b). compute [ﬂB)];
if one of the following conditions :
@ o € [xgl with B € B = there éxis;s-a

. ‘)’ENWith[S‘gy]<0 :
(i) Oe ldyjwithy e B = there existsa  ©
B & B with [s5,]> 0 |
is not trug
. men'STOP (WARNING);
c) if {there exists a B € Bwith [kp] <0 orthere exists g
Y € N with [dy]<O)
. then goto (2), ~

d) _::Zomp;te N(B) using theorem LI
=LUBLS:=8§UiN :
o oy, VU {NBI\ Z);

Th : ithm d
corem 1.2.: I the algorithm described above $tops with step (2) then

1. The sets of optimal solutionc - ot
_ . utions of the standard fo ‘
o _ (1.1} and the d
(()pﬁ r)n :e r,;jonempty and bounded for every P e [P]. Moreover fhelff?linpi?blé -
LValues 2oy ([Pl = R with Zop(P) 1= Max({ Py | xe X(P)) oo

ti ' . , i
‘Unuous and the representation graph Gon([P]) is conneeted oo

2 ic-i
The computed set of basic-index-sets Z 1= [B} B}, the computed
y rees BEY, pute

interval vectors (B, ..., (x(B ‘ .
. {2(51)]U U[z(Bs)]' satisfy Exf 2‘:)1],3?15?1)], <o, [¥(B%)] and thc interval fz] =

Executing the algorithm
. gorithm above on a com
impliec ¢ t . puter the fir '
Plies in particular the existence of optimal solutions for ai‘lt Pp?{:if feorem 12

The warnings i i
&S In step (4) either point oyt the existence of singular or almost

singular matrices - i ‘ '
Ices Ap with Be Vot ([P1) or, that the sets of feasible solutions

X(P), Y(P) may be empt -
Pelp Y Pty resp. that the objective function is unbounded for some

s (1.11); if some interva]
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. Obviously B & Ve ([P]) if condition (4) c), is twrue. Heince B is not admitied

0Z . - : o
- The main effort in the algorithm is to compute inclusion vectors of (1.11) and

the interval tableaus [T(B)). With [T(B)] the set N(B) is computed according to

theorem 1.1, .
Obviously it is sufficient to-obtain inclusion vectors [xg], [dx] and inclusion

vectors of the columns of [Sy] with O« [d;] and the ows of [Sy] with 0€ [xg]. In
practical applications {d,] > 0 and [x;] > 0 for most indices y¢ N, Be B. The
computational costs can then be reduced significandly as in the revised simplex
method. ‘ ‘ L L

Thie sharpness of the computed bounds for the linear programming problem
.[P)depends only on the algorithm for calculating the bounds of the linear systems
(1.11). We proceed by describing this solution process. '

2 Solving Linear Systems with Uncertain Data

“According to the results presented in the last section solving linear programming
.problems the data of which are afflicted with tolerances requires the possibility to

. bound the solution set of a linear system with uncertain data. That means for

some [A]l€ IIR™ and [b] € IIR" we are interested in very sharp bounds [x]
with X([A], [6D [x]. In general the solution set X([A), [b]) consists of infinitely
many points x & IR", ' ' B o

" For simplicity we will use in addition the notation -

@1

ak8i=[a-8,a+0]with 520
. for intervdalé, interval vectors andri'rlltrer“._v‘alwir‘iatrices..
* Consider a simple qxample. Let .
bl

o T003] o0t
L B
The. foleran_ces. in the matrix [A] are between 0.07% and 0.41%, the

tolerances in [b] between 1.1% and 3.3%. - : :
Then the solution set X([A}, [b]) can be calculated explicitly by a number of

linear programming problems. For nonnegative x¢ IR?
. s

x20:xeX(& AL B ) @ ArsFandAx2g . - @3




C 9 . C. Jansson and 8. M. Rump

© (cf, [ROH84), [DEISG])' Checking all combinations of signs for the components

of x results in 2® linear programming problems all together exactly describing
- X([A], [B]). Moreover, the mtersectlon of X([A], [p]}-with every orthant is a

polyhedron consisting, in general, of exponentially many vertices. The resuIt for
- example (2.2) is deplcted in the following figure.

X([A), [b])-
Fig. 2.1. Solution complex for (2.2)

. The computational costs may be reduced a little bit for special cases. In
general this approach is not practicable even for problems of small size, -
According to the previous section it is not necessary to know. the precise

shape of X([A), [b]) but bounds for it, e.g. it would suffice to know some interval

vector [x]e HIR? with X{{A], {b)) < [x] where the distance between the
boundaries of X({A), {]) and [x] is small. Following we will describe & solution
to this problem and a corresponding algorithm will be given as well. The.
.computational costs are 2n° + 0(n2) operations (I operation = I addition + 1,
multiplication).’

The theoreuca.l foundation to be descnbed was given in [RUS0] and [RU83]
and a number of papers being referenced over there. There the general case of
systems of nonlinear equations with uncertain data was ‘treated, In the following
we Testrict our attention to Systems of linear equations. This allows a very simple
formulanon and short and elementary proofs

Theorem 2 l.:Let [Ale HR™, [b] & II]R" be glven and let for some R ¢ IRmn
e IR" and [x]e IIR"

R-Q@1-[A}- D+ U~ R-[A)- P s int (=) - e

| Then R and every matrix A€ [A] are non-smgular

. Remark All operations
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and for allAe [A], be [b] the

: satlsfymg ekt {{t]

Therefore
: o SR | (2.5)
X ([A]. [b]) el s [X] _ -

in (2 4) are mterval operatlons, I denotes the nX 7

the interior of [x].

tity matrix and int ([x]) denotes

}i‘if;lofyUsmg the central property of interval anthmen? the is
getby (2.4) for all A e [A] be [b]

otonicity (0.5) we

) (2.6}
R (b AX)+(I - RA} x;mt([x]) forallxe[x]. :
in (2.6) all operations are the real mamx and vector operanons The function
n
f (x): ]R” — IR? with

2.7)
f(.x) =R (b A?.)+{l RA] x= x+R (A (x+x)) 2.7

even
s contmuous and by (2 6 f maps [ }into 1tself In fact accordmg o (2 6) we |
1 .

have S | ; (zé)

f([xl)cint([xl) - R ‘ e
telx

Therefore Brouwer s leed Point Theorem u'nphes the existence of some 4]

with

| ' 29
T f(f)"f' )

X 0 :
henc;fsut(:e AA(;.: O)gor some y& IR, Then by 2.7 and (2.9) forevery A€ R
' (2.10)
f(£+ky) 2+2,y-RAy x+/1y |
be some)t with & + Ay =f@&+ iye a[x] which contra-

Als
aly true for y = 0 which means
SR T Alyis well-deﬁned and by

 Fory#0 there would
Hence Ay =

dicts (2.8) and implies y = =0.
ot singular: Assume Ry = 0 for some y& IR#, Then

(27)and(29)foreveryAeIR N
f(x+M'ly) 3+M—1y RAA'1y=£+M—1y
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For y# 0 implying A~ly # 0 there would be somé A e R with #+X4-1y= j(-ﬁv{-

by ¥} € d[x) which contradicts (2.8) and implies y = 0. Hence R is not singular,

Then by (2.9) follows

b-A(F+5) =0

and using & € [x] we have A1 - be & + [x]. These conclusions hold for all Ae
[A], be [b] finishing the proof. ) O
In practical applications R is an approximate inverse of A (which may be
replaced by an LU-decomposition) and % is an approximate solution of Ax = 5. It
should be stressed that there are nejther a priori assumptions on the guality of R
resp. X in terms of a maximum distance to the exact values A~} resp, A-lb nor
even the existence of A-1 for every A € [A] is assumed a priori. The only assump-
tion is'(2.4) which implies all assertions of theorem 2,1, ‘
In the literature frequently Il /~RA Il < 1 is assumed for some norm to
conclude the non-singularity of R and A. Qur assumption (2.4) requires for the
spectral radius p(l /~RA |) < 1, where the absolute value is to be taken
componentwise., This is shown in [RU83]. Over there examples are given where |l
I-RA Il > 106 for 1—, 2~, - and Frobenius-Norm whereas (2.4) is still satisfied.
Later on we will see that p(! I-RA i) > 1 is a necessary and sufficient condition to
find some [x] e IR® with (2.4). : T
" For the moment we postpone the problem to check (2.4) on the computer
{which is, as we will see, very simple to solve) and concentrate on analyzing
(2.4). Theorem-2.1 cari be regarded as a check on the validity of an error bound
[x] for the solution set X([A), [b]) w.r.t. an approximation®, The main problem is
then to find an appropriate [x]. One may try an iteration of the form

[xf+l:=R -([bj; [A]- £+ - R-[A}-[xE o (2.11)

' for some [x]% R, If [x)* * 1 int ({x]¥) then (2.6) is satisfied for [x] = [x]*'.- o

However, it turns out very quickly that in trivial examples [x]%+ 1< int ([x]¥) will
- never be satisfied. For example it is frequently a good test for an algorithm to
insert the exact solution, In our case omitting the uncertainties in the data that
means [A)=A e R, [p]=beR", £= A"1b and [x]0 := 0. Obviously we
have to ensure that the [x]% always maintains a finite diameter to allow [x]f+ g
int ([x]¥). Therefore in {RU80] the so-called g-inflation [x] ¢ & was introduced.
There are many possible definitions resp. practical incarnations of it. We use

[x]og:=[x)-[1-¢&1+€)+[~p,+u] forsomeO<e pieeR,uelR”
Y (2.12)

. and {deﬁne‘for given [A] € IR

* and hence the assertions of theorem 2.1 are val
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(pleR?, e R", R e R and_[.t]” e IR
the following iteration: -

[yli= [l o & E | 2
! o R-(b)-[A]- ©)+ ([~ R-TANDI. : (2.13)

a ric: it () implies (2.4) for [ =D
e int (Lﬁ) gr;?ng the iteration schema

it i ith
(213 allows a complete analysis of the conditions under which (2.13) stops Wl
[xik +1¢ int ([y]) for some k€ BN Without proof lwc state ;

Oﬁ'e immediately yerifies that [x]

Theorem 2.2.: Let{A] e IIIR"‘", [b] € IIR" be given and let X
[x]° e IIR%. Then the following is equivalent:’
I i | ith e e IR, pe
. o (2.13) with (2.12) for 0 < €, pwith & : . -
K lﬁ"“it; [x]") +1c int ({y]) hence implying the non-s;ngulanty of R and every
A [Aland " A-lbe ¥ + [x)Fv1forall Ac [A], be [B]

i) PR JAIN<L

e IR, Re IRw» a‘hd

IR° there is some ke

13 N -.' l ) 1 f
Re.;mafk‘ For [C]e IIR** the absolute value 1is defined to be the matrix 0

1 interval
absolute values of the components of [C] where the absolute value of an inte: |

[xje IR is defined by | [x] | 1= max {lxllxe [x]]..
Itis wél-i-kno.wn that the conventional residual iteration
' :x"*'_‘ v= xk + R (b= Axk)

: | ' i G f i Tue
foral terl Ax = ' R* converges for every starting val
inear system Ax = b, A€ IRM,be. : : "
i%fea&g%ff p}({I_RA) < 1. However in very many practical examp;:i :?:1 :rs;:tigce'
case was observed where p(I-RA) < 1 but pll I—I?A ezl Tha‘ti n; ans In preci
aking, an iiclusion of the solution will be obtained 1.4 e
'{‘feug?igxsf:nverg;s Using ﬂoaﬁhg-point arithmetic itis sometimes hard to de
iteral . Us : .
e e o %‘ftu?‘u)’ 00‘11_‘;;1'5: Z;)l;:gltt;sion % + [x] for the solution
The remainin g_question is the qualr

' i X interval
set X([A), [b]). The quality is determined by the d;stance offx + {x] to the 1nte
hull of the solution set : .

(X(QA] [b)]:= A {[w] € MIRY | XQAL D € Wl

) . - . . A ,
'I‘his distance can be estimated if some interval vector.contained in [X(1A]

' the
(b])] could be found. Such an’ interval vector canlaﬂso serve to bound
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sensitivity of the solutidn of some Ax = p |
[ (b ‘ | WX =pfor Ae [A], be [b] w. i
of 4 and & within [A], [b]..In [RUS0] the following theorenEl i]s‘:hrc;t\;fﬁenurbamns

Theorem 2.3.: Let [A) € IRw ‘ '
) X b -
givenwith - - (b]e IR and 7 R, R ¢ R™  [x]e TIR* be

[£):= R- (6]~ A 2), (8] = {/ - R-[4]) L] anc

[2]+[A} g int (x]) .
. Then [X({A], )] bjatis.ﬁes‘ - .
| WAL ) . +Al. . - 215
Remark: For interva) vectors [z],[A] e HIR»
. [2J¥[A] = [inf ([z]) + sup ([A]), sup .([2].) +inf ([A])]. | (2.16)

- Let us'demonstrate théore, ‘
: nonst m 2.3 by means of our first
compute the midpoints mid(fA]), mid([6]) of [4], [b]rtolrs ,example 2 e fs

. 0.73 0,76
mid([A]) = [—2.8 0.8 6]' mid ({b]) = [ 33] .

An, appro:;imat'e inverse R (three signi . a0 ap
: . ree significant fi i
proximate sclution ¥ of mjd (AD " x = mid([p]) corﬁgtrﬁz)s (tg e an'd o

_[0.312 0,276
R..[IO andze| 0838
016 0,265 ~0.410]"

N Lo -

e no?ltz :1}11;:1 E::-i :zy pr;og information is required on the quality of R or%, even
- O R or matrices A i i rifi

eorem 3 Acconting s s v € [A] is not requl.red but verified by

_[#0.01289 is.
2] 'Lo.ozm]a“d (Cli= 1= R-[A] = 11.49-10-3 +5388.10+
13.58-107 +1,29.10-5 [*
The si A
e siz:o??s of the componf:nts c_)f [z] and [C] are.typical, [z] is a correction of
ne step of the residual iteration whereas [C] is the residual of R writ

matrices A € [A]. We set

[xl:=[z]-[0.9, Lll;[io'm‘mg]

10.023804 |

- and verify

2.14)
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£0.012918
A “[;uxozwu]
43.058-10°5
£8.119-10°5

c irit([;c])'

;

with [A] = [

'fhc values of {A]-'are‘aisq 1ypic_ai as long as rad([A]) is not too big (e -3 évery

" matrix A g“l_r[A] must be non-singular). Thus the assumptions of theorem 2.1 are
. valid implying the non-singularity o

f R and of every matrix Ae IR™ with A =3
[Al. Moreover (2.15) gives ' .

:i:0.1-7015]

+0.17008 AL D2
[ }c[ (A1 LoD - c[mws

10.21281

We d_éﬁne the relative variation of the solution set X([A], [b]) by the vector ¢

with components :
oi = {'—"-‘—'-i*—‘ | Ax = b for A e [A], b € [b] and mid([A])- £ = mid([b})},

151

provided &;# 0. That means we are looking for relative variations w.r.t. the solu-
tion of the ,midpoint-system’ mid([A]) - x = mid([b]). ¢ is a vector giving the
sensitivity for every component of the solution set and can be estimated by

" theorems 2.1 and 2.3

mdQF(AD; o o rdeleia;
I T .

In our example we get

153% < 0y s 1.54%
5.25%<0,$529%.
‘That means there exists a linear sysfem Ax = b with Ae | [A], be [b] such that

e.g. the relative distance of the first component of A=*b to the first comporent of
% = (mid([A]))-1 mid([b]} is equal to a value between 1.53% and 1.54%. This

looks like
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[x]. But I-R - [A] is the residual of R = A-! for some A& [A) and [x] is an

inclission of the error of &, Both quantities are usually small and the product of
them is very small, the latter determining the distance between the interior [z] ¥
[A] and the exterior [z] + [A] of X([A), [b]) and therefore the quality and sharpness .
of the solution, © - - IR - S

—

3 Implgme_ntati(;n‘oln Digital Cérhpilter:s ) - C
Fora practical implementation of the methods described in sections 1 and 2 first
Fig. 2.2 Solution o . o : _ . . of all we need a floating-point interval arithmetic. The central property 1o be
. olution wm_P{cK of (2}) with lr.lcluslon ‘ | - preserved is the isotonicity (0.5). For this purpose we may use the IEEE 754
‘ o arithmetic standard [IEEE85] which is nowadays implemented in a number of
According to ¢ - ) . ’ digital computers, in personal computers frequently by means of a COprocessor or
(Al Amp]ifyiig thf{:esirzle gwe do not see a difference between [z} ¥ [Aland {z] + a software emulation. It provides so-called directed roynding modes which we
X(AL, {2]) the followi ¢ by a factor 100 we get for the left-most boundary of , . call V for the rounding downward and A for the rounding upward. In the V-mode
7 ’ he following graph, ‘ : : . e, . 4 :
_ : . the computed floating-point result is always less than or equal to the true real
' result of an operation, in the A-mode it is greater than or equal to the true real
result. ' I ' :
. Denote ti:n%_ set of floating-point numbers in a digital computer by F. Then i F
. I <esand F ¢ IR. Following [KULS0] a floating-point operation ¥ € {+,—,+/} in
the V-mode resp. A-mode is denoted by ¥ resp. 4. Therefore o

\fV :.FXFﬁF,wima,beF:dV'bS-ai‘b

. A:FXF-—>F withg,beFiaAbSaxb _

foré & (4, = -/}, Thus defining a floating-point interval [] by [a) := (@,7] 1=

{xe R1g<xs7} whereg, @ € F and floating-point interval operations * by

' - o L (a+ll=leVha Ak

‘ . © o al-[Bi=[eVhaAbl, - o PR

{a)-bl=[Minla Vb,g V5, aV0,a Vb, Max(a A b,aAB, 5 A a AF)
1)/ [b]={g, a0V 5, 145] . '

the key property of interval arithmetic, the isotonicity, is preserved. Vector and
matrix operations are defined similar to those in section O by replacing the

' interval operations for real intervals by the corresponding interval operations for
(4] and [2]F [A) L : floating-point intervals. - : o

Fig. 2.3, Dotail of tigure 2.2, scale 1: 100 : /

The left-most two vertical lines are the boundaries of [z]+

Wwhere the vertex between the: ; ' : ' ' '
‘For smaller diameters of?A[]waiggg[;]mﬂi{ (Iﬁ, (8D ‘ . ‘ » Hence evaluating (2.4) by replacing the interval operations by the correspon-
+ {x] becomes even smaller, This de ends " o) forence b?tween [z)¥ [A] and [z) . ' ding floating-point interval operations assures the validity of (2.4) and therefore
‘ _ pends only on the radius of [A] = {/-R - [fi]] . S implies that all assertions of theorem 2.1 are true. :
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In [KUL76, KULS1] an interval arithmetic is defined with the additional fea-
ture of a scalar product operation. Kulisch uses a precise scalar product in the
sense that for any scalar product of floating-point numbers resp. intervals the
immediate left and right floating-point neighbour of the real result resp. of the
lower and upper bound of the real result are calculated, This gives especially in
the calculation of the residuals [b]-[A] - % and I-R - [A] sharper results namely in
the case of data with small uncertainties. ‘

In the following we give an algorithm for the calculation of guaranteed
bounds of the solution set X([A], [b]) for linear systems Ax = b, As [A], be [b),

1. calculate an approximation of R = (mid{({A]))-! using some standard
" algorithm; ' '
2. %:=R-mid([b]);
" optionally apply a residual ‘iteration to improve ¥;
3. ] =R - ([(b}HA) £); [C]i=-R - [A];
XIw=2 k=0
4. repeat [yli=[x]-[0.9, L1+ [-u, +ul ki=k+ 1
- Bl=E+IC) D) ‘
until [x)g int([y]) or k > kmax
S [dgin) :
then  {all A € [A] are non-singular and X([A], [#])Xs £ + [x]}
else  {noinclusion computed};

Algon‘ihm 3.1.: Solving linear systems for uncertain data

The operations in steps 1) and 2) are ordinary floating-point operations. whe-
reas the operations in step 3) to 5) are floating-point interval operations. The g in
step 4) is the smallest positive floating-point number, A proper value for kmax is -
for example 5. Ii general only one or two iterations in (4) are necessary. . :

Algorithms similar to 3.1 for many numerical standard problems have been
implemented in a number of programming packages, both being commercially
and non-commercially available, There is the commercial package ACRITH by
IBM (cf. [IBM84], [IBMS86a], (IBM86b]) in 3 releases availabllquhder VM
operating system being supported by interval arithmetic described in [KULS81] in
hardware on 436land-9370 engines and software supported otherwise.
ARITHMOS by SIEMENS (cf, [SIE86)) is also hardware supported on many
small arid medium size computers and software supported otherwise, There are a

number: of non-commercial packages like Abacus, Calculus, Fortran-SC,
Hificomp, Pascal-SC, TPX (cf. [HUS88], [HUS89b], [RU8SY], {BLES7],
[MARRS9], [KUL87], [HUS89a)) and others. The first and second one is an
- interactive programming environment supporting all interval operations and

™~

“mg
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including maﬁy high-level problem solving routines for h';l'in_er_it:al problems with‘
uncertain data. It runs on PC’s and IBM /370 under VM operating system.

4 Numeérical Examples

In this section we discuss some numerical examples demonstrating our ea.rlie'r
analy;is. The examples are executed on a machine with basel 16 and machine umt
eps 1= 16-13= 0,22 ... 10716, We display in the following seven figures of the
l_"-, ] ’ LXE] . . e.
calculated values. All c;_alculatgd values are guaranteed ulx the abqve_gens .

“The following cqcfﬁcients

(77138 0000 010 0°0 0 1000
00 0 0 -16 -2 4 -17l0 0000 100
21314 0.0 0 0(000000 10
- 00-'0-0-2-1-3.,14..00'000_00-1
A=IT"0. 0 0 1 0 0 0fLoo000000
" lo1 o 0o 0 1 0 0/01000000
00 1 0 ©0 0 1.0/00 100000
oo 01 o 0 0 100010000

¢ = (645, 6.45, 6,45, 6.45, 591,591,591, 5.91, 4.8, 4.,83,4.83,4.83,0,0, N
O.’ 0)‘ . . =

b= (0, 0,0, 0, 3814, 2666, 4016, 1300y

are the'iilpillt- data of the standard form for a small blending problem ([CHV831, p.

10). The unique optimal vertices of (1.1}, (.1'2) are.

x.(Bl) = (3754.000, 2666.000, 920.0000, 543.0000, 60,00000, 0, 3096.000,
C 672.0000, 0, 0, 0, 85.00000, 0, 0, 0, 0¥

y(Bi)_=.(0.06000000, 0.06000000, 0.1500000, 7.1709{_)0. 5.880000,_ 7
‘ 6.120000, 4.830000) :

" and the optimal value Zopt= 73879.38.

All components of b, ¢ and the coefficients ay with i = 1, ..., 4, J = 1,....8
were replaced by_ : .
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b =G £ (Br1/ 200), ¢; = c; £ c;1/200),
ay = ay & Gay)/ 200).

Hence the dimﬁeﬁr of the intervals is 1% dpoia. :
4 o of the midpoint. This interval lin
programming problem [P] was solved by the method of section 1, The algorit}?rixr

B'=(1,2,3,4,5,7,8,12}
B2=1{1,2,3,4,6,7, 8, 14)
B3={1,3,4,6,7,8,12, 14}

a 13In T,able‘4.1 the corresponding inclusion vectors (x(B}] with Be Z {compare

bo‘unc)lz Eaé: ;:lisplagfd' Forzev_ery component of these interval vectors the outer
_ are theorem 2.1) and the inner bound

A A ‘bounds {compare theorem 2.3) of the

The results are displayed in the following“ way. The first component -of .

{x(B))] has outer bounds
719,765, 3788.234]
| a.n(i inner Eoundé |
[3720.551, 3787 149}

and this is displayed intable 4.1 as

378

[371&765,
20.8517 7,149

8.234J ’

- Note that the difference of outer and inner bounds is small corﬂ ared 1
g1atxmfater of thc_ 'solutmn set X([A], [5]) although the diameter of the ir?terval' ?ng:; '
ata is 1%, Herice the outer bounds alone describe the corresponding solution sets
I\\f;ry well, The bounds [y(B)] for the solution of the dual problem behave similar.
AOTCOVer zop (P& 72771.55,75310,79] for all P e [P]. The optimal valye va- .
r1es at most by 3.4% if the input data vary 1%. The calculated intervals perform a
Tgorous sensitivity analysis of a linear programming problem, Several further ap-

plications of the method described in section 1 X
[JANSS], [MAISS)). section 1 can berfound in {({JANSS],

. Rigorous Solution of Linear Programming Problems with Uncertain Data oW

Table 4.1, luner and outer bounds for l;he liriear programining problem

o - 1.
(2652,67 , 2679.33 ]
AR

{30

(64 ", 69
79.0071" 4.9929

85 P 1
-5,6083  .4.3916
51 '. ]

6.0831 -~ 69.5803 -

4 ' ]
5.92064  4.07936

;5. ., -
6.92991" "~ 3,0700

- Ix(ep)] [x(By) ] [x(By) ]
19,765 __ 8.234 8 1 K 1
70, a8 Ty | (3794,92,-3833.07 ) 13794.92 , 3833.07 ]
20.851" 7149 | - 9T o 9 0
370.559  834.774

1 - L l
415.334° 789.998
493,169  60.164 7.654 . 6.093
i, 18 7. |- (269 280 ]
526,002 27.332 " 78,979 4.767
" r 23,9173 . 55.4160 8.617  60.471
17 (8 i . (110
35,1909  44.1424

3.0805 6.9195
' 96

5.2013 . 76.7987

5 N

9,341 7 55.747

4.83516 . 5.16483
7" 0 0

38,3265 . 88.341 - - 69 1
"1 [2652.6_, 2679.33 )

0 (8 , ]
_ e 83,1013 43.565 . _
09,000 . 2.999 .| - 45,140 33,526 89.827 . 8.426
U3 1) {21 7, TP , 133 ]
11,529 0.471 "77.973° 00,694 61,153 T 7.101
8,0945  5.9054 66,0404 84.6263 - 0.65665 00_.25481

X 6 . |
17,230 ‘13337 1.34069 99,5707,

0 . B 0o , 0
o . I 0
O B . 0 - ] . ‘(0 V\‘

01120 .9888]

(56, ., 113
85114~ *.1488

5.92167  4.0784 5.15242 4,8476
7.67319 . 2.3268°
0 . 0 0

493.805  92.676
7 ]

0o | 0 {1 17
_ ‘ . 508,293 78.188
0. . 0 o 0,

0 I ' R

The determination of thc.iripht data is a very hard problefn for many practical
applications, The above algorithm may be used for example to get guaranteed in-
' formations how the precision of the input data should be to ensure that the
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optimal value varies between given bounds. This can be done in an interactive
manner by varying some or all input data,-

The above small-size example should only demonstrate_how’ the method

. works. In the following we will give some results for systems of linear equations.
We do so because the bounds for linear programming problems are the calculated
bounds of systems of linear equations (compare (1.11)).

In the following tests the coefficients of the » x # matrix A are uniformly

distributed in [~1,1]. We choose the right hand side b such that the components of
the exact solution are all equal to one. The corresponding interval matrix [A] and
the interval right hand side are defined by :

A=A 107 AL [B) = b2 1077 11,

In the following table we display the maximal inner bound

g;m;x{seew_ﬂmu:l,...,n}
/1.

and the maximal outer bound

6:=Max{-’a—d¢53i[i1’ili=1,...,n}.

141
of the solution set X({A], [b]).

Table 4.2, Inner aund outer bounds of the solution Set X([A]L 6] IRP

no. g’ ‘ T
10 | 5.529790 « 1075 5.529875 + 107"
50 | 1.197947 + 1073 1.198098 « 1073
1100 | 3.374497 - 1073 3.376395 - 1073
200 | 5.653805 - 1072 | - 5.681218 - 1072
300 1 2,729809 -+ 1072 2.734967 - 1072
500 | 5.139332 + 1072 5.159357 - 1072

This test demonstrates that g, & are very close, The outer bounds alone give
the exact number of significant figures of the solution set. For other uncertainties
in the input data the results look very similar.

(Iv] is the smallest interval vector containi

i i i T
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i er o P a-
A frequently used heuristic approach [0 error and sensitivity analysis 18 to Tu

ing i i s of the

a calculation several times with varying 111put1;al<iata.t Th:dr::;?:e&rl :; iilil;fo“ oo
i i i en to i of .

solution which agree in all calculations are e precie

idth i Bellmann [BEL61] writes: ,,Lon
width of the solution set. For example : . ilere
jons thi i _construction of mathematical models,
assumptions that go into the.cons ' : el

ey i'ntis that are always present, we must view with some suspicion at

many uncerta > ; !
any ypeu-ticular prediction. One way to contain confidence is. to test th

f . l .
[b]! "hele [‘ ‘}) [b] are

sides b € [b], being uniformly distributed within [A] resp.
defined as in the above example. The measure P

e _@@Ll':l,...,n}
v Mf“{md(@]ﬂAD; '

ng the n solutions for the n runs) descri-

i i t
bes the underestimation of this Monte.Carlo experiment w.r.i. the true solution se

X([A], [b]), compare table 4.3.

¥ R
Table 4.3, True span of the solution set compared to Monte Carlo span

i
0.3 1

0.2

0.1 1
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Obviously, with g;owing dimcﬁsion there is o
Oby ) ! . a severe underestimation of
:ol_uuon set X({A], [b]) using the Monte Carlo method. For exampie for 2 i 3[](;8
t;)ur the Monte Carlo estu.nation of the radius of the solution set is only 3% of the
thofi radius, _\f.lfebsltgree with the opinion of Bellmann. If, on the other hand. me-
§ are availa i i ;
ke e being faster and calculating guaranteed bounds, those may be
l'blvgorc applications and examples can be found in [RUSO), {RU83}. The de-
scribe tl}e.o::y and the_ algorithms can be used on the one hand to obtain a rigo-
Tous sensitivity analysis for problems with interval input data, On the other hand

they produce high accurate-solutions for problems with real input data. The algo- -

;ubms in AC'RITH are bas'ed on the method described in section 2. On a computer

31'ng the optl'mal arithmetic of Kulisch [KUL76], [KULSB1] with only about 16 si-
gn;ﬁcz§nt decimals for all intermediate resplts a 21 x 21 Hilbert matrix was accu-
rately inverted. The condition number of this matrix is about 1025,
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