ACRITH

High-Accuracy Arithmetic
An Advanced Tool for

Numerical Computation.

J. H. Bleher / A. E. Roeder / S. M. Rump
iBM Laboratories

Boeblingen, Germany

IR

e

ACRITH

Abstract

The High-Accuracy Arithmetic Subroutine Library (ACRITH)} is a program
product for engineering / scientific application. It consists of a sub-
routine library fer solving problems in numerical computation, such as
linear systems, polynomial zercs, eigenvalues, linear optimization etc.
All results obtained have algorithmically verified accuracy. An On-line
Training Component allows easy familiarization with the capabilities of
ACRITH.

Introduction

In the first part of the presentation we will outline the problems engi-
neers and scientists are dealing with. The soluticn to guite a number of
those problems is provided by ACRITH, the High-Accuracy Arithmetic Sub-
routine Library.

A detailed program description of the ACRITH package will be given in
the next part. We will talk about the new instructions which are the
base for ACRITH. Performance comparisons with conventional approaches
and numerical examples will follow.

The second half of the presentation deals with the discussion and the
classification of methoeds in numerical computation such as symbolic com-
putation, algebraic/infinite computation and interval arithmetic.

The mathematical background with the description of the computer arith-
metic published by Kulisch/Miranker [1l] and the principles of the new
methods [2] used in ACRITH along with examples will complete the presen-
tation.

With existing processors and conventional techniques, it is often diffi-
cult, or in some cases not even possible to solive problems in numerical

computation to the required degree of accuracy.

Inaccuracies during computation may occur due to: -

* loss of digits in small differences through cancellation
. rounding during computation
. conversion of input numbers to machine representation (e.g. from

decimal to hexadecimal}.

Engineers and scientists envy those users of computers who are sure that
in their programs no such problems can occur.

Another category of users are those who have recognized, that they have
numerical problems and try to overcome those. They have quite a hard job
te do with the analysis of their input values, with the selection of

specific algorithms that are designed for this special application. The

ACRITH

errer analysis requires a high mathematical skill and ends scmetimes in
costly reruns with altered input parameters or higher precision.

The last part of the user community is even not aware that its results
might be wrong. These users may have heard cnce in a while that in
floating-point computation inaccuracies can occur, but they believe that
those are very rare cases. Very often their prime objective is the per-
formance they can get and they don't care about the accuracy. They want
a fast result knowing that it might be wrong.

Problem

, AN
{ Physical
| Moce

Mathematical ap + dIV(pV) = 0

Madel

|

|

I

t
Mathematical Avx = D
Approximation

Computation

L] Erraor
L Analysis

Figure 1: Solution of real-world problems, conventicnal -~

Figure 1 shows the procedure used in the engineering/scientific environ-
ment when solving real-world problems.

The first task is the description of the problem. Although most engi-
neers and scientists immediately jump into the physical or mathematical
world the clear description of the problem with all the boundary condi-
tions is a key element for a successful continuation of the work.

The second step is the description of the physical model. The example in
Fig. 1 shows the profile of a wing which has to be investigated. Xnow-
ledge and experience Jeads from the physical level to the description of
the problem by mathematical equations. Unfortunately those equations
normally are not adequate for the computational phase. Their complexity
again reguires hard brain work to get equations that can be handled by

ACRITH

standard routines available on our computers. We call this part the
mathematical approximation.

With all those preparations we are now ready to feed the computer.

In our example the mathematical approximatien results in & linear
equation described by the equation A . x = b where A is a matrix, x the
vector of the unknowns and the vector b is called the right hand side.

With the results on the screen or with & printout of the results brain
work starts again. A difficult and often a time consuming task is a
detailed error analysis. If the result is not correct, different "loops"
for a correction are possible. Along the inner lecop the computation is
executed again with a change in the precision of the floating-point com-
putation for example from short to long or even to extended precision.
Thus the number of digits used during computation is increased and there
is a higher probability for a better result. If, after a repeated error
analysis the result is not satisfactory, the professjonal has a differ-
ent algorithm ready to deal with this "ill-conditioned problem'. He is
changing his program using the new algorithm and runs the problem again.

Now, let's assume that this time he concludes his error analysis with
the strong feeling that he can trust his results. Otherwise the two out-
er loops would have asked him to think over his physical or mathematical
model and start all the work again.

Probliem

—3

F
Physical
Madel 3 .

éj .
MathMeomdae‘t{lcai ﬁ-}- diV(pV) = 0

1k
JL'
J

}

b

t

1

|

'

i

i

|

i

i

|

i

e e e et e e — — cw

Mathematical
Approximation

!

o

Compustation

T
1

(R

Figure 2: Solution of real-world problems, with ACRITH

M

ACRITH

Figure 2 shows where ACRITH can help the user to complete his task.
ACRITH directly influences the computational phase. For the given input
parameters the solution is determined with verified accuracy, in this
example the solution of the system of linear equations.

Therewith the numerical part of the error analysis is no longer neces-
sary.

In addition to that the knowledge of the capabilities of ACRITH influ-
ences the mathematical approximation. This is depicted by the dashed
lines in Fig. 2. Some approximation methods which deliver good results
have not been used in the past due to problems during numerical computa-
tien. Having in mind that ACRITH delivers results of verified accuracy
some approximation methods can be successfully used again.

ACRITH Description

The High-Accuracy Arithmetic Subroutine Library is an IBM-First. It
consists of routines for solving problems in numerical computation. All
results obtained have an algorithmically verification of the correctness
and the accuracy.

If the problem is extremely ill-conditioned, this means that for example
the matrix of a linear system is singular or very clese to singularity
the user is informed of this fact by an appropriate return code.

The capability of ACRITH of dealing even with extremelv ill-conditicned
problems is, for instance, demonstrated by inverting a& Hilbert 21 by 21
matrix. This is5 after multiplving with a proper factor, the largest
Hilbert matrix exactly sterable in /370 long format.

1]
Together with the ACRITH Subroutine Library a so-called Cn-line Training
Compeonent (OTC) is provided. The OTC has been designed tc give the user
a valuable tool for familiarization with the capabilities of ACRITH. In
addition to that it allows solving of numerical preblems interactively.

ACRITH runs on all System /370 processors under VM/SP. Tt is callable
from VS Fortran and Assembler programs. ACRITH arithmetic, which bases
on a sound theory by Kulisch and Miranker makes use of the High-Accuracy
Arithmetic Facility. This architecture RP(provides 20 new
instructions, with rounding. The microcode implementation con all 4361
processors results in a remarkable performance improvement of the arith-
metic and the subroutines when running on cne of those processors.

With the ACRITH package a software simulation written in Assembler for
the new instructions is provided enabling the subroutines to run on zll
Svstem /370 processors.

ACRITH

Subroutine Library

The ACRITH subroutine library offers a large variety of routines for
solving problems in numerical computatiocn. The highest level of the
routines are called the problem solving routines. They deal with:

- arithmetic expressions

- polynomial evaluation

- zeros of polyvnomials

- linear equations

- matrix inversion

- linear preogramming

- eigenvalues and eigenvectors.

The routines in the next lower level are the basic arithmetic routines:

- conversion (decimal <---> hexadecimal)

- vector cperations

- scalar product

- matrix multiplicatien

The lowest level routines provide access to the architected long accu-
mulator which will be described later in this presentation. These rou-
tines allow the following operations:

- add scalar product to accumulator T

- add/subtract accumulator

- store accumulator

- ¢clear accumulator

ACRITE

Environment

Application Programs Online
| FORTRAN,ASSEMBLER Tralning Component

CALL A HIGH ACCURACY ARITHMETIC
Subroutine Library

simulated Instructions

‘:;\\\\1/’/);’ ‘\/7 J 7 4:3 7

/370 Instruction Level new OP—Codss

82C0,....B2DF

; /370 Interpretation HIGH ACCURACY
ARTTIHMETIC

' FACILITY

Microcode

Processor Unit

Figure 3: ACRITH application environment

The ACRITH application environment is depicted in Figure 3. In the upper
left corner the application programs written in FORTRAN and/or Assembler
are shown. After compilatiod /370 instructions are executed to obtain
results.

To take advantage of the capabilities of ACRITH,parts of the old pro-
grams reépectivefy calls to cother libraries have tc be substituted by a
"CALL" to the ACRITH subroutines. The subrcutines execute on standard
/370 level and use in addition the 20 new instructions, either directly
on /370 machine level on all 4361 processors, or, via the ‘simulated
instructions on the standard /370 level.

Advanced users may directly use the 20 instructions to write their own

programs. This possibility is also shown in Figure 3 by the small hori-
zontal arrows.

At this point it sheould be mentioned that an application program using
ACRITH runs on all /370 processors. If the microcoded instructions of
the ACRITH Facility are available (4361 processor), the subroutines
automatically use them, without the necessity of recompilation or
relink, i.e. ACRITH programs always choose the fastest mode.

ACRITH

ACRITH Facility

The new and outstanding capabilities provided with the ACRITH package
base on the architectural definition of 20 instructions.

These instructions can be divided in two classes, namely the basic
arithmetic instructions and the accumulator instructions.

The basic arithmetic instructions consist of:

- add with rounding

- subtract with rounding
- multiply with rounding
- divide with rounding

- Joad with rounding

Four peossible roundings are available:

- rounding upwards (towards + infinity)

- rounding downwards (towards - infinity)

- rounding to nearest fleoating-point number
- rounding to zero

All instructions are defined and architected for System /370 short and
long floating-point format. The results obtained with these instructions
are all of maximum accuracy, which means that, within the given {loat-
ing-point format used, no flcating-point number lies between the com-
puted result and the resuit obtained with infinite precision. A key
point of the Kulisch/Miranker theory is the introduction of an addi-
tional instruction: the scalar product with maximum accuracy. This is
the step from the maximum accuracy single operation to maximum accuracy
composed operations.

The instructions defined in conjunction with the scalar product are
called accumulator instructions:

- add/subtract operand to/from accumulator

- multiply and accumulate (scalar product)

- round from accumulator

- add/subtract accumulater to/from accumulator *
- clear accumulator

~

ACRITH

The leng accumulator occupies a 168 byte storage area. The lavout of an
accumuliator in storage is depicted in Figure 4.

EXPONENT RANGE

1?6

63 0 -64

RANGE

>

<%

/370 OVERFLOW|t /370 FL.PT.RANGE—3> _

+ <—— 7 BYTES ACCU OVERFLOW
—— 4 BYTES STATUS INFORMATION

168 BYTES

/370 UNDERFLOW
RANGE

Figure 4: ACRITH accumulator layout

The accumulator consists of & four byte status area on the left, fol-
lowed by a 164 byte numeric area. When a floating-point number is added
to the accumulator, the fraction is positicned in the numeric area that
corresponds to the exponent. The fraction is added at that peint, and
any carries are propagated to the left as far as necessary.

The exponent range covered

to be accumulated.

Performance

in the accumulator is 16 *% 126 through 16 %%
{-128), which is twice the standard /370 exponent range. Together with
14 digits for accumulator coverflow no exponent overflow can cccur,
because the numeric area is large enough to allew any reascnable number
of scalar products of the largest representable floating-point numbers

*

Three levels of complexity are distinguished when comparing program exe-
cution times. The lowest level is the machine level with standard /370
instructions and the 20 new instructions defined in the High-Accuracy

Arithmetic Facilicty.

For comparison we execute a scalar product with a conventicnal assembler
loop, i.e. without any check or verification of accuracy. The same sca-
lar product then is executed with the new instruction "mulriply and
accumnlate', which delivers in any case results of maximum accuracy. If
the ACRITH instruction is implemented in microcode (4361 processor)
approximartely the same executicn Time is encocuntered. In
ware simulation of the ACRITH instruction a performance degradation of a
factor of 2 has to be paid for the advantage of maximum accuracy.

case of soft-

Next, performance comparison is done on the procedure level. When exe-
cuting ACRITH routines (e.g. linear system solver) in long

it

ACRITH

fleating-point format on a 4361 processor a similar run time is measured
as in case of conventional routines (without verified accuracy) in
extended precision. If the software simulation is used (on all other

/370 processors) the run time is approximately twice as long with
ACRITH.

Performance comparison con the application level is not just a figure or
a ratio. The comparison of ACRITH solutions versus conventional sol-
utions clearly shows the advantage of ACRITH in terms of saving human
and machine time. As already discussed in the introduction when going
through the "real-world problem',ACRITH removes a significant burden
from the user. The following steps are drastically reduced by the intro-
duction of ACRITH, or in some cases they are totally superfluous:

- input data analysis - time consuming error analvsis - change of algo-
rithm (mathematical approximation) - costly reruns,

Application Examples

The following list gives a brief overview of potential application areas
of ACRITH.

- construction - structural analysis - fluid mechanics - statistics -
circuit design - energy conversion - power distribution - nuclear fusion
- robotics - aviation - space navigation

Most of the applications have been menticned to us during our presenta-
tions or in discussions with engineers and scientists who deal with
numerical computation.

Examples

In order to demonstrate the capabilities of ACRITH we have selacted two
examples. The first problem deals with a set of linear equations. The
solution of the linear system.

!
o

37639840 X - 46099201 Y
29180479 X -~ 35738642 Y =

}
1
—

is obtained with ACRITH as
X = 46099201 and Y = 37639840.

This result is verified to be ccrrect as well as the matrix is automat-
ically verified to be non-singular.

With a conventional approach, using the 'Gaussian' elimination methed
one would have cbtained three different results depending on the preci-
sion:

ACRITH

single: no result (divide exception)
double: X = 41093618.5 Y = 33554432
extended: X = 46099201 Y = 37639840.

In case of single precision the divide exception alerts the user that

scmething is wrong with his preoblem. The results obtained with double

and extended precision differ already in the second digit. It is up to
the user, to verify by time consuming error analysis that the extended
result is correct.

ACRITH, however delivers the result including the verification step,
which means that the user can trust his result.

The second example deals with the evaluation of an arithmetic
expression.

& 8

83521x° + 578%" ¥v2 - 2v* + 2v® - ¥
The evaluation of this expression with ACRITH at

X = 2289912 and Y = 9478657
delivers the verified result of

- 1.79689877047297 E + 14

A conventional program would result in

single: - 2.33840262.... E + 50
double: ~ 5.4435178707... E + 39
extended: - 1.511157274. .. E + 23

'
H

All results differ from the exact result in orders of magnitude, since

the exponents of the results are different. The result in short preci-
. . 36 . .

sion 1s wrong by a factor of 10 whereas the result in extended preci-

sion is still wrong by a factor of 109, that is wrong by 100000000000 %.

Historical Background

In the historical background we want to give an overview on methods used
in the past to obtain accurate or exact results. The methods have been
derived after users realized the problems with roundcff errors and can-
cellation and the resulting errors in numerical computation.

The different approaches are:

. Symbolic computation

. Algebraic computation

. Naive interval arithmetic

ACRITH

The three methods were invented in the early sixties. The first two are
strongly connected and they are often together referred to as "Symbolic
and Algebraic Manipulation." The research and development in this area
is in steady progress.

The third methed, the naive interval arithmetic, was proposed as a glo-
bal sclution to numerical problems. It turned cut thet this is not the
case. The naive interval arithmetic has been finished after few vears
whereas the sophisticated interval mathematics has been settled as an
individual part of numerical analysis.

The standard floating-point algorithms do not deliver verified results
(as has been demonstrated by examples) or provide error bounds for the
results. The delivered results are often of high acecuracy, but sometimes
vastly wrong.

The new methods ACRITH is based on, deliver always results which are
verified to be correct, i.e. no wrong results are possible. Moreover,
the results of the lower level algorithms are always of maximum accura-
cy. The results of the higher level algcrithms are almost always of
maximum accuracy. The property of maximum accuracy means, that between
the computed result and the infinite precise result there is no other
fleating-point number.

Symbolic Computation

The principle of symbolic computation is, that symbols are manipulated
as in mathematical hand calculation. For example, the calculation of

(x+2) * (x-5)

is executed as human beings perform it on paper following the rules of
algebra. In a svmbolic computation (using list processing facilities to
store the svmbols adequately) the result would be

x¥x + 2%x - 3%x - 10
*

The second phase of a svmbolic computation is the simplification. This
task is rather invelved. In the past years significant improvements have
been made to perform simplification strategies resulting in a new math-~
ematical directicn called universal algebra. A final step is the
two-dimensional cutput to show an expression as in mathematical hand
calculation, in our example

x2-3x-10

If the whole calculation is performed symbolically without substituting
variables by actual values, the complexity of expressions tend to grow
very rapidly.

In our example the inverse of m*m is computed, where m is the 2x2 matrix

with entries a, b, ¢, d. The square m*m of the matrix m is fairly easy
to compute, the result is

11

ACRITH

% a® + be ab + bd ¥

— s wla
m~m = ¥ LR

2
* ac + cd bc + d0*

This could be done by hand calculation. The inversion of m*m is an
involved process and at least for matrices with 3 rows and more the
inverse can hardly be computed by hand. The computer does it automat-
ically without the error probability when computing by hand.

Symbolic computation has gained in interest by new packages for symbolic
integration. These algorithms are able to verify on a sound mathematical
background, whether a transcendental expression is integrable or not.
This and the other features of symbolic computation have become impor-
tant tocls for the mathematician.

However, it reguires a lot of computing time to handle symbolic
expressions. Because the expressions tend to grow rapidly in size sym-
bolic manipulation is hardly applicable for solid numerical problems. So
the next step is to handle expressions not symbolically but algebra-
ically, i.e. first inserting values for the variables and then computing
exactly, that means in infinite precision.

Algebraic Computation

The key feature of algebraic computation is, that each arithmetic opera-
tion is performed exactly, that is without error. The process of per-
forming the individual operations addition, subtraction, multiplicatien,
division etc. is the same as in hand calculation according to the rules
of algebra. Fer example, in case of multiplication one operand is multi-
piied by every digit c¢f the cother operand and the intermediate products
are added. The resulting product may consist of many digits which have
to be handled properly. For example, multiplying & 10-digit number by
itself results in a 20-digit number, multiplying this again by itself
results in a 40-digit number and so forth. Therefore algebraic computa-
Tion requires an adeguate memory organization for handling many digits
of a number.

In our example we performed 200! / 2 %% 300. This is quite a task. The
numerator, 200! {read 200 factorial, that is 17%2%3%4% ., . %199%200) is a
number with 375 decimal digits. The denominator 2%%500 is a number with
151 decimal digits. When dividing both, the greatest common divisor of
numerator and denominator is computed, that is of a 375-digit and a
1531-digit number. The result is a fraction with a 315-digit numerator
and a 92-digit denominator.

Algebraic computation deals not only with integers or rational numbers’
but alse with algebraic numbers, transcendental! numbers etc. For
instance, it is possible to store the square root of Z on the computer
without rounding error. This square root of 2 is the zero of the polyno-

ACRITH

mial x2-2 between 1 and 2, and in this description only integer numbers
are involved. It is possible to perform calculations with these algebra-
ic numbers without rounding errors and without cancellaticn errors.
Algebraic computation is in fact an infinite precision arithmetic. Whe-
never the memory of the machine suffices to store the result of an oper-
ation this result is mathematically correct without error, it is
"infinitely precise'. In a computation the number of digits of interme-
diate results tend to grow very rapidly. When multiplying a number by
itself the number of figures of the result doubles,

In our example we invert a 4 X 4 matrix where the entries are 2-digit
numbers, whereas the result consists of 13-digit rational numbers.

Example: Inversion of &4x4 matrix

* 89 -23 -31 47 =*
% =33 39 =7 =43 %
* 53 32 25 -61 =

= 83 -97 31 17 =
Solution in infinite arithmetic:

* 7983/1346420 -2468/336605 1802/201963 -11803/403%260 =
W -671/336605 -13446/336605 4513/201963 -30674/1009815 =
¥ -6696/336605 -38937/673210 7312/201963 ~73933/2019630 =

F -5449/1346420 ~44657/673210 3619/201963 -133221/4039260 %

Therefore algebraic computation is not suitable for numerical computa-
tions. Even verv small numerical computations performing only some thou-
sand operations are hardly executable in algebraic computation. Beside
the fact, that the memory of the computer would not suffice to store the
usually very long intermediate results, the computing time is much high-
er than that of a comparable floating-print algorithm (the latter, of
course, cannot provide exact results).

Naive Interval Arithmetic

The first principle of naive interval arithmetic is that numbers or var-
iables are stored as entities with a certain tolerance. This can be done
in an engineering notation

19

ACRITH

3.14139 + 0.000005,

or in a notation giving a minimem and & maximum value
[3.14159 , 3.14160]}

The latter notation expresses that the number p we have in mind is some-
where between 3.14159 and 3.14160, or mathematically

3.14159 < p < 3.14160.

These bounds for a certain number are called intervals. Given two inter-
vals, it is possible to perform computations with them regarding the
tolerances. Suppose we have to perform

[1.1,1.2]+ [0.2, 0.3]

Then the naive interval addition is a worst case analysis: What are the
bounds for the result when taking any (real) number out of the first
interval and adding any (real) number out of the second interval? The
smallest possible result is adding 1.1 and 0.2, the smallest values in
of either intervals. The largest possible result occurs when adding the
largest values of the two intervals, thus the resultr is

[1.3, 1.5]

It can be shown that all intermediate results are possible, that is for
any (real) number c between 1.3 and 1.5 two numbers out of the first and
second summand interval can be found the sum of which is c.

It is possible to perform this worst case analysis for the four basic
operations: addition, subtraction, multiplication and division. Howev-
er, the left and right bound of the result of an operation is not always
the operation of the left and right bounds as in the example above.
Consider ;

The left bound of the result ‘

is multiplying the leftr bound of the first with the right bound of sec-
ond interval, the right bound is multiplying the right bound of the
first again with the right bound of the second interval. So, in this
case, the left bound of the second interval was not inveolved in the com-
putation.

The worst case analyvsis of naive interval arithmetic leads to difficul-
ties when the same number occurs more than once in a computation.

Consider the following example:

14

E

ACRITH

a=1/3
b= 1/3
Compute the value of a - b

It is clear that the result of b - a is =zero. But what happens in naive
interval arithmetic? Suppose we perform the computation on a 5-digit
computer. Then the cleosest result for 1/3 is [0,33333, 0.33334] due to
the limited number of figures in the cemputer. It should be pointed cut
that on any computer, no matter how many digits it has, the principle of
the example would be the same. Therefore, we have on the 5-digit comput-
er

the value for a [0.33333, 0.33334].

and

the value for b [0.33333, 0.33334 j.

However, with these two interval results the connection to the original
computation 1/3 is totally lost. In fact, the values for a and b might
have come from different computations and have therefore to be treated
independently. And that is the key point: Dependencies in the computa-
tions cannot be recognized. Therefore, when subtracting a and b, we have
to consider the worst case. And that is, that the true value for the
variable a might be the left bound 0.33333 and the true value for b
might be the right bound 0.33334. This has to be done to remain on the
safe side, because the additiomal information that & and b come from the
same source (and are in fact identical) is lost.

Thus the result is

a-b = [- 0.00001, + 0.00001].

These overestimations occur frequently in numerical computation. Wwhen,
for example, inverting a 10 x 10 matrix, 93% out of the approximately
2000 operations performed are such, were dependencies are inveolved.
Therefore, the width of intermediate result intervals tend to grow very
rapidly such that the final result is often of not veryv much value.

But there is still another effect. When in a computation a division has
to be performed by an interval and the width has grown that far, that
this interval contains 0, then the computation has to be stopped because
division by 0 i1s not possible. Thus we have three cases of results of
naive interval arithmetic compared with standard flecating-point arithme-
tic:

-

ACRITH

naive interval arithmetic standard floating-point
1) sharp bounds good approximation

2) wide bounds may be good, mav be bad
3) no result (division by zero) may be gcod, may be bad

In those cases, where a better method would be of real need we either
get wide bounds or no result using naive interval arithmetic.

Floating-point number system

In the first digital computer a fixed point arithmetic was implemented.
As in analog computers only numbers of magnitude less than one were
allowed and every problem had to be scaled such that it fit in that num-
ber range. When floating-point arithmetic was introduced many people
warned : .
that due to a large exponent range rounding and cancellation errers may
falsify & computaticnal result significantiy. The classical paper of
Goldstine and Neumann [3] peoints in that direction.

In & floating-point number system on tedays computers the mantissa is
represented in binary or hexadecimal format. There is a first difficulty
when using floating-pecint numbers, that is the conversion between deci-
mal and binary format (with respect to the principle problem of conver-
sion or accuracy there is no difference between binary and hexadecimal
format). Many decimal numbers are not exactly convertible in binary for-
mat no matter how many digits are used in the mantissa. & simple example
is the decimal number 1.6. The representation in binary format is

1.10011001100110011

continuing for ever. On a computer this infinite sequence of digits has
to be chopped somewhere introducing a small error. These errors are usu-
ally small, but they might accumulate in a computation up to a cat-
astrophic error for a finmal result. ‘

Computer Arithmetic, traditional

The floating-point arithmetic on digital computers is designed to
approximate the true (infinite precise) result as good as possible.
Spoken in decimal, the resuit of 2/3 should be 0.6666...667 in a certain
accuracy because this is the nearest finite decimal to 2/3.

The implementation of the flecating-point arithmetic is due to the com-
puter manufacturer. From there usually no information is available on
the accuracy of the arithmetic operations addition, subtraction, multi-
plication and division. Usually, the computed results approximate the

16

ACRITH

infinite precise result fairly good, but the results on different
machines are not the same even if the numbers have the same
floating-point format.

Our example refers to System /370 short format, but similar examples can
be found on any machine. As pecinted out the number 1.6 is not exactly
representable in binary (and hexadecimal) format. That means, that writ-
ing

A=1.6
in a pregram does not imply that the value 1.6 is stored in the variable
A but a slightly different (rounded) value. In our case the last bit was
rounded upwards because the following bit is a 1 (that is like rounding
.5 upwards in decimal). The next assignment

B=8.0/5.0

gives the same infinite precise result, namely 1.& in decimal. On the
computer, again, the result has to be rounded because it is not exactly
representable. In this case the result is truncated vielding a differ-
ence between A4 and B in the last bit. Subtracting both vields a differ-

ence of 5 . 10-7. The difference is fairly small but may accumulate to

large errors.

The critical point is, that the implementation of the floating-point
arithmetic and the conversion between decimal and hexadecimal and vice
versa is due to the computer manufacturers. The latter, the conversion,
is computer dependent and results mayv even differ between different
releases of the same compiler on the same machine.

ACRITH -Computer Arithmetic

The first principle of the ACRITH computer arithmetic is, that anv sin-
gle operation is performed with maximum accuracy. This holds for the
basic arithmetic operations addition, subtraction, multiplication and
division and for conversion from decimal to hexadecimal and vice versa.

We distinguish different rounding modes: the rounding to nearest, down-
wards, upwards and towards zeroc. The result rounded downwards, for
instance, is the largest fleoating-point number keing less than or egual
the infinite precise result. In our example cf a 53-digit decimal comput-
er, the result of 2/3 rounded downwards is 0.66666. The ACRITH computer

rithmetic performs the mentioned coperations with maximum accuracy under
any circumstances. For example, the result of the cenversien from deci-
mal to haxadecimal of

0.000056000000000000000084703294725430033906832253006790415620513916015625

D1 -70
will be 2 in any rounding mode, that is the decimal number is exactly
converted to hexadecimal format. (The example should not encourage the
user to compute with numbers of that size, it should demonstrate the

ACRITH

fact, that maximum accuracy is achieved in ACRITH under any, even
extreme circumstances).

The maximum accuracy property for the fecur basic arithmetic operations

and the conversion guarantees a result of maximum accuracy for any sin-
gle operation or assignment. However, this need not be true for several
operations. Consider for example the following scalar product:

2.718281828 ¥ 1486.2497 -
3.141592654 + 878366.9879 -
1.414213562 * 22.37492 +
0.5772156649 % 4773714.647 +
0.3010299957 & 0.000185049
The correct value for the scalar product is -1.0065 . 10 ll. The reader

is encouraged te try this example on a pocket calculator and/or a large
computer. The computed approximation will almost alwayvs be vastly incor-
rect if the accuracy of the computer is notr at least 17 digits.

It turns out, that highly or even maximum accurate single operations do
not suffice to perform accurate computations. A closer look at the spac-
es in numerical computation gives a variety of higher spaces such as

- vectors
- matrices
- complex numbers
- complex vectors
- complex matrices
- intervals
- interval vectors
- interval matrices
- complex intervals
. - complex interval vectors
- complex interval matrices

-

Beside the basic operations within these spaces there are many "ocuter”
operations, i.e. operations between elements of different spaces.
Counting the number of all these operations vields a surprising number
of over 600.

It has been shown by the thecry of Kulisch and Miranker [1}, that all
these operations can be performed with maximum accuracy when a scalar
product for real numbers with maximum accuracy is available. Because of
the outstanding importance of the precise scalar product we refer in the
ACRITH arithmetic to

5 basic arithmetic operations, namely
additien, subtraction, multiplicaticn, division, scalar product.

18

ACRITH

A maximum accurate computer arithmetic for these 5 basic arithmetic
operations is a scund basis for computaticn in higher spaces in numer-
ical mathematics. The precise scalar product represents the step from
the accurate single operation between numbers to accurate (single) oper-
ations in higher numerical spaces. The essential progress of ACRITH is
the step from the single operation in higher numerical spaces to prob-
lems in numerical cemputation, to real world problems. The sound math-
ematical basis for solving problems in numerical computation is the
inclusion theory {2].

New Methods

Let's consider the case of a svstem of linear equaticns. In standard
numerical methods a verification of results is not possible. To improve
the quality of &n approximation a “residual iteration" is applied. In
theorvy this is a steady improvement of a given approximation, the limit
of which is the solution of the linear system,

In practice, the computation is not performed precisely (in infinite
precision), but in floating-point arithmetic. The introduced rounding
errors may falsify the intermediate steps of the iteration so that it
finally does not converge. On the other hand, & convergence in a math-
ematical sense (computed in infinite precision) implies, that the given
problem is solvable and that the iteration point is the solution. This
is not the case for a numerical convergence using flcating-point arith-
metic.

Therefore a key problem is the development of a criterion to decide,
whether an iteration converges or not. The next key question related to
that is, whether a solution exists and whether it is unigue. This prob-
lem is mathematically equivalent to the question, whether the matrix of
the linear system 1s not singular. This has, up to know, hardly been
solvable using floating-point arithmetic.

A respecting criterion is established by the new inclusion theory [2].
This theory contains theorems the assertions of which are“exactly what
we need:

- The iteration converges

- There exists a solution

The solution is unique

~ An inclusicn of the solution is provided.

This applies to linear as well as to nonlinear problems. We continue
referring to the linear case. The theorems use a new form of the resi-
dual iteration:

Xk+1 = Rb + (I - R=p) = Xk s

19

-

ACRITH

where A is the matrix cof the linear system and b is the right hand side.
I is the identity matrix and R an approximate inverse of the matriz A.

R may be represented as a triangular decomposition. Note, that there is
no assumption on the non-singularity of the matrix A or the matrix R.
This new residual iteration applies to sets of vectors rather than to
single vectors. An inclusion of one irerate in the next guarantees the
asserticns stated above.

The verification cof the inclusion of a set in another set and the calcu-
lation of the new residual iteration, the calculation with sets on com-
puters requires a new arithmetic. That is the correspondence between the
new inclusion theory and the new arithmetic. The arithmetic is used to
verify the assumptions of the theorems of the incliusion theory. Then the
assertions of the theorems are valid such as existence, uniqueness and
inclusion of the solution. ACRITH represents the implementation of this
combination between the new arithmetric and the new inclusion theory.

There is still a lot of work to do te obtain not only an inclusion of
the solution but sharp inclusions, which are mostly of maximum accuracy.
These implementation details represent the step from the inclusion theo-
rv to the practical algorithm, to the subroutine library.

The key feature of the new zalgorithms is that every result is automat-
ically verified to be correct. Another novel feature is that it is pos-
sible to solve problems where the data is afflicted with tolerances. If
scme input data is the output, for example, of a meter, then only a lim-
ited number of digits is ccrrect, the rest is in the tolerance level. In
standard floating-point arithmetic there is no wayv to handle inaccurate
data. The only chance is tc pick scme sample values out of the tolerance
interval, for instance using Monte Garlo methods. These methods cannot
give an overview over a1l possible solutions, thev cannot show whether
the problem is sclvable for all possible combinations of input data and
the methods are extremely time consuming.

i
A simple example can demonstrate this fact. Suppose, a 10 x 10 matrix
has to be inverted. If only 10 % of the 100 entries is afflicted with a

tolerance, and if only the extreme value of each tolerance are computed,

then there are still 210. that is over 1000 different possibilities. The
computing time only for the extreme cases is 1000 times splving the
problem. And still only the extreme values are covered and the infinite-
1y many possibilities within the tolerances are not taken intoc account.

With ACRITH it is possible to solve problems where the data is afflicted
with tolerances. Virtually, all infinitely many problems within the tol-
erances are solved. In practice, an inclusion is cemputed containing all
solutions of all possible problems within the tolerances. If within the
tclerances, within these infinitely many problems, there is only one
problem which is not solvable, this fact is reported to the user.

2N

ACRITH

ACRITH - examples

We first show a problem of dara afflicted with tolerances.

Example: Given a 3x3 matrix, coefficients with tolerances

5.24754155 {(~2.15251107,-2.15251104) -0.52157255
(8.62972789,8.62972795) ~5.84425364 (1.76003657,1.76003663)
(13.01191425,13.01191434) -9.53595622 4.0416457

Question: Is the matrix invertible for any combination ¢f tolerances?

Answer by ACRITH:

Yes, it has been automatically verified, that zl] matrices within the
tolerances are invertible and all inverses are included in:

row I column 1: ¢ 0.99999984D+00 , 0.100000022D+01)
column 2: (=0.20000006D+01 , =0.19999996D+01)
column 3: (0.999%9983D+00 , 0.100000032D+01)
row 2 column 1: 0.17518473D+01 , 0.17518481D+01)
column 2: (-0.4094866D+01 , -0.4094863D+01)
column 3: (0.20092867D+01 , 0.20092878D+01)
row 3 column. 1: ¢ 0.9139092D+00 , 0.9139099D+00)
colummn 2: (-0.3222645D+01 , ~0.3222642D+01)
column 3: 0.17687446D+01 , 0.17687454D+01)

The inversion with ACRITH gives an incliusicn of all matrices included
within the tolerances. Due to the fact that the input data is only cor-
rect to 10 figures, the inclusion cannct be more accurate.

In the second example only the first digit of the very first component

‘

of the matrix is changed from 5> to 4.

x

Example: Given a 3x3 matrix, coefficients with tolerances

4.24754155 (~2.13251107,-2.15251104) -0.52157255
(8.62972789,8.62872795) -5.84423364 (1.76003657,1.76003663)
(13.01191425,13.01191434) -9.,53599622 4.0416457

Question: Is the matrix invertible for any combination of tcloerances?
Answer by ACRITH:

No inclusion computed. The interval matrix probably contains a singular
matrix.

ACRITH

Now, somewhere within the tolerances, there is a singular matrix which
is not invertible. The user is informed of this fact which would be
impessible to find out trying some combinations of tolerances.

The last example poses the guestion whether the polvnomial

4 3 2
p{x) = 8118.0 x - 11482.0 x + x + 5741.0 x - 2030.0

has & zero near (0.7 or not. The answer with ACRITH is that between

0.

-1
o
~1
[
~t
o
~J
(]
~1
o
~i
(]
~1
Q
~J
j]
~J
<

and

0.707070707070707071

~I1

there is a zero of the polvnemial. This is computed in System /370 long
precision and is a result of maximum accuracy. In figure 3 we show a
small graph around the zero where the values indicated by an asterisk
are computed bv ACRITH.

‘ AN e (0 , ACRITH
! ¢
: !
| | w2 N
i -t F o ————————— . —— e e i e et e, ———————————
!] 0.707070706 707079707 0.707070708 X
I ‘__--A
* — !
! -} o gy g™ g} el]
|
; !
|
| STANDARD FLOATING-POINT
? (l] DEC, }
|
!
i
|
[

Figure 3: Graph of p{(x)

Using a standard floating-point algorithm (Horner's scheme), we obtain
in System /370 long precisicn the dotted results. This result indicates
that there is no zero of the polvnomial near 0.7.

However, when computing zercs of polynomials, these regiocns where the
value of the polynomial is small, have to be examined. These are some of

22

It

ACRITH

the regions where cancellations may alter an approximation of the value
of the polynomial significantly up to totally false results.

Summary

With the High-Accuracy Arithmetic Subroutine Library (ACRITH) a new
dimension in numerical computations is entered. The algorithmically
verified results delivered by the subroutines remove a significant bur-
den from the user.

References

[1]

(2]

[3]

Kulisch, U., Miranker, W. L.: Computer Arithmetic in
Theory and Practice. Academic Press, New York {1981).

Rump, S.M.: Solving algebraic Problems with High Accuracy,
76 pages, in A New Approach to Scientific Computation™, August
1982, Edited by U.W. Kulisch and W.L. Miranker, Academic Press (1583).

Neumann, J.v., Goldstine, H.H.: Numerical inverting of matrices
of high order, Bull. Amer. Math. Soc., 33 {1947} and Proc. Math. Soc.,
2 (1931).

