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Abstract— VSDP is a MATLAB software package for
solving rigorously semidefinite programming problems.
Functions for computing verified forward error bounds of
the true optimal value and verified certificates of feasibility
and infeasibility are provided. All rounding errors due to
floating point arithmetic are taken into account.

1. Introduction

Semidefinite Programming has emerged as a powerfool
tool in many different areas ranging from control engi-
neering to structural design, combinatorial optimization
and global optimization (see the Handbook of Semidefinite
Programming [1]). One reason is that there exists a kind of
calculus of conic quadratic and semidefinite representable
sets and functions, which offers a systematic way to rec-
ognize and reformulate a convex program as a semidefi-
nite program. This calculus is applied for example in CVX
[2], an optimization modelling language which is designed
to support the formulation and construction of optimiza-
tion problems that the user intends from the outset to be
convex. On the other hand non-convex problems are fre-
quently solved by using convex relaxations, where conse-
quently also SDP-solvers can be used.

Many algorithms for solving semidefinite programming
problems require that appropriate rank conditions are ful-
filled, and that strictly feasible solutions of the primal and
the dual problem exist, i.e Slater’s constraint qualification
holds. All these solvers do not provide a guaranteed ac-
curacy or prove existence of optimal solutions. Neverthe-
less, appropriate warranties for computed results and rig-
orous forward error bounds can be useful in many situa-
tions, especially for ill-conditioned problems with depen-
dencies in the input data, or ill-posed problems. It is well-
known that for such problems (but not solely) rounding er-
rors may affect the computation, and even many state-of-
the-art solvers may produce erroneous approximations (cf.
Neumaier and Shcherbina [3]).

Ill-conditioned and ill-posed problems are not rare in
practice. In a paper of Ordéfiez and Freund 2003 it is
stated that 71% of the Ip-instances in the NETLIB Linear
Programming Library are ill-posed, and recently Freund,
Ordoinez and Toh 2006 [4] have shown that 32 out of 85
problems of the SDPLIB are ill-posed.

VSDP is a software package which provides warranties

by computing verified forward error bounds. Verified, or
sometimes also called rigorous, means that the computed
results are claimed to be valid with mathematical certainty
even in the presence of rounding errors due to floating point
arithmetic. VSDP [5] is written completely in MATLAB
under use of INTLAB [6]. It is based on a rigorous post-
processing applied to the output of semidefinite program-
ming solvers. It is of particular importance that each solver
can be used, and the solver need not to produce any er-
ror bounds, neither in the forward nor in the backward er-
ror sense. This package implements techniques described
in [7] and [8], and has several features: it computes ver-
ified lower and upper bounds of the optimal value for
semidefinite programs, proves existence of feasible solu-
tions, also for LMI’s, provides rigorous certificates of in-
feasibility, facilitates to solve approximately the problem
by using different well-known semidefinite programming
solvers, can handle several formats, and allows the use of
interval data.

It is in the nature of verification methods that not ev-
ery approximate solution can be verified, such as solvers
normally cannot compute an approximate solution for each
solvable problem. However, a good verification method
should compute rigorous error bounds in almost all well-
posed cases, whenever the used solver can compute a suf-
ficiently close approximation. The numerical experiments
of VSDP with the SDPLIB suite exhibit that at least for
problems of middle size (up to thousands of constraints and
millions of variables) rigorous lower (upper bounds) of the
optimal value can be computed, provided the distance to
dual infeasibility (primal infeasibility) is greater zero. But
even if the distance to infeasibility is zero, i.e. the problem
is ill-posed, VSDP allows rigorous results, if an a priori as-
sumption about the existence of an optimal solution and its
magnitude is known (c.f. [8]).

2. Quick Start

VSDP solves rigorously semidefinite programming
problems in block diagonal form:

fp* = min Zl<Cj,Xj> S.t Zl<Aij,Xj> = bi, i = 1,. .,am
J= J=

X;=0, j=1,...n,
(1)



where b € R", and Cj,A;;, X; € S*, the linear space of
real symmetric s; X s; matrices. The usual inner product on
the linear space of symmetric matrices is denoted by (., .),
which is defined as the trace of the product of two matrices.
X > 0 means that X is positive semidefinite. Hence, >
denotes the Lowner partial order on this linear space. It
is f, 1= oo if the set of feasible solutions is empty, and
f, = —co if the problem is unbounded.

If s;j = 1forj=1,...,n(@Ge. Cj, A, and X; are real
numbers), then (1) defines the standard linear programming
problem.

The Lagrangian dual of (1) is

£ =maxb'yst Z; = Cj_zyiA[j >0forj=1,...,n,

i=1
@)
where y € R™. Itis f; := —oo, if the set of dual feasible
solutions is empty, and f; := +oo in the unbounded case.
The constraints )/, y;A;; < C; are called linear matrix
inequalities (LMI’s).
Both problems are connected by weak duality
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but strong duality requires in contrast to linear program-
ming additionally strict feasibility assumptions.

VSDP exploits the block-diagonal structure by an n X 2
cell-array b1k, n cell-arrays C, X, and an m X n cell-array
A as follows: The j-th block C{j} and the blocks A{i, j}
fori = 1,...,m are real symmetric matrices of common
size s; which is expressed by

blk{j,1} = ’s’, blk{j,2} = s;.!

The block-matrices C{j} and A{i, j} may be symmetric
floating-point or interval matrices, and can be defined in
dense or sparse format.

For the purpose of illustration, we start with the follow-
ing semidefinite program of dimension m = 4, n = 1, and
s; = 3, i.e. the matrices consists of only one block. The
problem depends on a fixed parameter DELTA:

>> DELTA = le-4;

>> C{1} =[O0 1/2 0;
1/2 DELTA ©0;
0 0 DELTA ];
>> A{1,1} = [ ® -1/2 0;
-1/2 0 0;
0 0 0];
> A{2,1} = [ 10 0 ;
00 0;
00 0];
>> A{3,1} = [ 0 0 1;
00 0;

! At the moment we have incorporated only symmetric matrices, which
makes the first instruction redundant. But in future versions we want to
distinguish also between other types of matrices. This structure is closely
related to an older version of SDPT3.

1;

1
>> A{4,1} = [ ©
0

(===
= =]

0 1 0];
>> b = [1; 2*DELTA; 0; 0];
>> blk{1,1} = ’s’; blk{1,2} = 3;

It is easy to prove that this problem has a zero duality gap
with the optimal value —0.5 for every DELTA > 0. For
DELTA = 0 the problem is ill-posed with nonzero duality
gap, and for negative DELTA it is primal and dual infeasible.
Especially, it follows that the optimal value is not continu-
ous in DELTA = 0.

At the moment, the two semidefinite solvers SDPT3
and SDPA are adapted in a VSDP routine called MYSDPS.
Therefore, VSDP can be used for computing approxima-
tions with different solvers. The user can integrate also
other solvers very easily. By default, the function MYSDPS
calls the semidefinite programming solver SDPT3:

>> [objt,Xt,yt,Zt,info] = mysdps(blk,A,C,b);

The output consists of approximations of (i) the primal and
dual optimal value both stored in objt, (ii) the primal and
dual solutions Xt, yt, Zt, and (iii) information about ter-
mination and performance stored in info:

>> objt, termination = info(l),
objt =
-5.0003225608e-001
termination =
0

-5.0000000622e-001

For termination = ® we have normal termination with-
out any warning. The first four decimal digits of the pri-
mal and dual optimal value are correct, but week dual-
ity is not satisfied since the approximate primal optimal
value is smaller than the dual one. In other words, the
algorithm is not backward stable for this example. If we
set the global variable VSDP_CHOICE_SDP = 2 in the file
SDP_GLOBALPARAMETER, then the solver SDPA is chosen
via MYSDPS, and we obtain

>> [objt,Xt,yt,Zt,info] = mysdps(blk,A,C,b);
>> objt, termination = info(l)
objt =
-8.4720539237e-001
termination =
3

6.9954120952e-001

No decimal digit of the optimal value is correct, but a warn-
ing is given, which indicates that the problem is primal or
dual infeasible. To obtain more reliability we can use the
function VSDPLOW which computes a verified lower bound
of the primal optimal value by using a previously computed
approximation. This function is based on the following the-
orem:



Theorem 1 Assume that the maximal eigenvalues of a pri-
mal optimal solution (X;) are bounded by a nonnegative
vector (x;), where also infinite components are allowed.
Let y € R™ (a computed dual approximation). Let

—zzﬁAmtmd4j<:AmJDﬂﬂwj:1“.qm
i=1
4

where Awin denotes the smallest eigenvalue. Assume that
D; has at most l; negative eigenvalues. Then the primal
optimal value is bounded from below by

s T~ —— . % — :
L2205+ Z‘zjgjx,- =t [ where d; :=min(0.d)). (5)
=

Moreover, if

c_ijZO for Xj=+oo, 6)
then the right hand side ]_‘; is finite. If c_ii >0 forj =
1,...,n, then ¥ is dual feasible and f; > ]_‘; and if more-

over y is optimal, then f; = f*.
=p

There are no assumptions about the quality of ¥, but the
last assertion implies that an approximation close to opti-
mality should produce a rigorous lower bound with modest
overestimation. The lower bound f; sums up the approx-

imate dual value b”§ and the violations of dual feasibility
by taking into account the signs and multiplying these vio-
lations with appropriate primal weights.

VSDPLOW uses as starting point the already computed ap-
proximations Xt,yt,Zt, and the call (all upper bounds %;
are assumed to be infinite) has the form

>> [fL, Y, dl1] = vsdplow(blk,A,C,b,Xt,yt,Zt)

The output fL, Y, and d1 corresponds to the lower bound
f*, the certificate of dual feasibility Y, and the vector of

eigenvalue bounds d where § =Y, respectively. In the case
where no certificate of feasibility could be computed we set
Y = NaN.

With the SDPA approximations the rigorous lower
bound is infinite, and dual feasibility is not verified, i.e. Y =
NaN. But working with the SDPT3 approximations yields

fL =
-5.0000000622e-001

With SDPT3 a finite rigorous lower bound close to the op-
timal value together with a certificate of dual feasibility Y
is computed. Therefore, strong duality is verified. If finite
upper bounds xu= (x;) are known then the call of VSDPLOW
is

>> [fL, Y, dl]=vsdplow(blk,A,C,b,Xt,yt,Zt,xu)

Similarly, with function VSDPUP we can compute a ver-
ified upper bound fU of the optimal value using the previ-
ously computed approximations. This function is based on
the following theorem:

Theorem 2 Assume that the absolute value of a dual opti-
mal solution is bounded by a vectory > 0, which may also

have infinite components. Let f(_,- e S% forj=1,...,n
and assume that each X j has at most k; negative eigenval-
ues. Letfori=1,...,mand j=1,...,n,
ri 2 Ibi - Z<A,,,X ) (7)
=
/_lj < /lmin(Xj)a and (8)

©j = sup{dmax(C; Zy, i) —y<y<y i

lj—

©))
Then the dual optimal value satisfies
n n m .
< DUCHEY = Y kidioi+ Y ri¥; =t fg (10)
j=1 j=1 i=1

where 45 = min(0, 4j). Moreover, if

ri=0for y;=+coand ;>0 for g;=+co,  (11)

then the right hand side ?Z is finite. If /_lj >0andr; =0
for all i, j, then (X j) is primal feasible and f, < ?2 If

moreover (X j) is optimal, then f, = J_‘d.

The bound J_‘Z sums up the approximate primal objec-
tive value Y, (C;, X;) and the violations of primal feasibility
j=1
(r; and 4}’.) by taking into account the signs and multiply-
ing these violations with appropriate weights ¢; and y;. The
call of VSDPUP has the form

>> [fU, X, 1b] = vsdpup(blk,A,C,b,Xt,yt,Zt);
fU =
-4.9996776932e-001

The output fU, X and 1b corresponds to the upper bound
f 4 the interval block-diagonal matrix (containing the rig-
orous certificate of primal feasibility), and the vector of
eigenvalue bounds A ..

Summarizing, by using the SDPT3 approximations we
have verified the inequality

—5.0000000622¢—-001 = ]_”; < ?; = —4.9996776932¢—-001,

Certificates of strictly primal and strictly dual feasible so-
lutions are computed. The Strong Duality Theorem implies
that the primal and the dual problem have a nonempty com-
pact set of optimal solutions. The upper and lower bounds
of the optimal value show a modest overestimation, mainly
due to the accuracy of SDPT3.



Table 1: Approximations f,

%
pr’

f;. Fof SDPT3

DELTA 5 7 7

1.0e-003  -5.00000e-001  -5.00000e-001  7.62771e-010
1.0e-004  -5.00032¢-001  -5.00000e-001 1.29041e-008
1.0e-005  -7.69935e-001  -6.45752e-001  2.34663e-005

Table 2: Rigorous bounds fU, fL

DELTA fUu fL
1.0e-003  -4.99997e-001  -5.00000e-001
1.0e-004  -4.98728e-001  -5.00000e-001
1.0e-005  1.57690e+000  -6.45752e-001

Further numerical results for different values DELTA are
summarized in Tables 1 and 2. The approximate primal and
dual optimal value computed by SDPT3 are denoted by f,

and f:i*, respectively. The value 7 is the maximum of the rel-
ative gap and the measures for primal and dual infeasibility.
In all cases the default values of SDPT3 are used, and nor-
mal termination without warning has occurred. SDPT3 is
not backward stable, since in two cases f;f < f; violating
the weak duality. For the smallest value of DELTA no deci-
mal digit of f; or f; is correct. In all cases no warning was
given. The approximate residual 7 leads to the suspicion
that at least five decimal digits are correct. The new rig-
orous bounds (which use the computed approximations of
SDPT3) reflects much more the reliability of SDPT3, and
the number of correct decimal digits for the computed re-
sult. The bounds fU and fL fulfill weak duality, and the
true optimal value —1/2 is inside the bounds, which is not
the case for the approximations f; and f:;‘ corresponding to
the values DELTA = 10~* and DELTA = 107,

3. Rigorous Error Bounds for the SDPLIB

The SDPLIB is a collection of semidefinite program-
ming problems with different areas of applications. Fre-
und, Ordéfiez and Toh [4] have solved 85 problems of the
SDPLIB with SDPT3. They have shown that 32 are ill-
posed. VSDP could compute (by using SDPT3 as approxi-
mate solver) for all 85 problems a rigorous lower bound of
the optimal value and verify the existence of strictly dual
feasible solutions. This implies a zero duality gap for all
these problems. A finite rigorous upper bound could be
computed for all well-posed problems with one exception;
this is hinf8 being ill-conditioned. For all 32 ill-posed
problems VSDP has computed 7; = +oo, which reflects
exactly that the distance to the next primal infeasible prob-
lem is zero as well as the infinite condition number.

Detailed numerical results can be found in [5]. For the 85
test problems, SDPT3 (with default values) gave 32 warn-
ings, but 13 warnings were given for well-posed problems.
No warning was given for 13 ill-posed problems. In other
words, there is no correlation between warnings and the
difficulty of the problem. What is the sense of warnings? I
have no satisfactory answer. But rigorous bounds provide

safety and are important, especially in the case where al-
gorithms subsequently call other algorithms, as is done for
example in branch-and-bound methods.

Some major characteristics of our numerical results for
the SDPLIB are as follows: The median of the time ratio
for computing the rigorous lower (upper) bound and the
approximation is 0.045, (2.4), respectively. The median of
the guaranteed accuracy for the problems with finite con-
dition number is 4.9 - 1077, We have used here the median
because there are some outliers. One of the largest prob-
lems which could be solved by VSDP is thetaG51 where
the number of constraints is m = 6910, and the dimension
of the primal symmetric matrix X is s = 1001 (implying
501501 variables). For this problem SDPT3 gave the mes-
sage out of memory, and we used SDPA as approximate
solver. The rigorous lower and upper bounds computed by
VSDP are fL= —3.4900 - 102, fU= —3.4406 - 102, respec-
tively. This is an outlier because the guaranteed relative
accuracy is only 0.014, which may be sufficient in several
applications, but is insufficient from a numerical point of
view. However, existence of optimal solutions and strong
duality is proved. The times in seconds for computing the
approximations, the lower and the upper bound of the opti-
mal value are t= 3687.95, tFL=45.17, and tFU= 6592.52,
respectively.
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