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1 Introduction

The true logic of the world is in the calculus of probabilities.
James Clerk Maxwell

It is believed that quantum mechanics is the fundamental physical theory.
Most physicists, not all, believe that it is a probabilistic theory describing mi-
croscopic systems. Thus, in the words of Maxwell, quantum theory is (perhaps)
the true logic of the world.

The concept of probability is related to phenomena with several uncertain
outcomes, the latter forming mutually exclusive alternatives. According to the
Cambridge dictionary, a probability is a number that represents how likely it is
that a particular outcome will happen. In other words, a probability describes
a quantitative measure of the uncertainty of an outcome.

In many cases, by measuring the relative frequencies of the occurrence of
certain outcomes, there should be no difficulty in empirically testing probabili-
ties that have been predicted theoretically. But the meaning of the mathemat-
ical concepts of probability is by no means predetermined. Today, several in-
terpretations of probability are discussed extensively. Already von Weizsäcker1

wrote:

Probability is one of the outstanding examples of the episte-
mological paradox that we can successfully use our basic concepts
without actually understanding them. von Weizsäcker

Numerical probabilities don’t come out of nothing. They don’t arise out
of a measure theory of probability, that is, they don’t occur from mathe-
matical axioms of a certain probability measure on a set of outcomes, like
in Kolmogorov’s classical probability theory. Historically, the first principle
to get numerical probabilities was achieved by determining a set of mutually
exclusive elementary events, the outcomes, such that there was no reason to
discriminate. Then, these elementary events were assigned probabilities with
the same positive values, all summing up to one. This approach is known as
the principle of indifference.

The right way which to assign probabilities to the elementary events is a
controversial philosophical discussion. Thus, for a better understanding, we
shall investigate the following questions concerning probabilities:

Formal aspect: Is there a widely accepted definition of probability?

Variety: What sorts of things are probabilities?

Rules: Are there universal mathematical rules or axioms that can be used in
all applications, from coin tossing to quantum electrodynamics?

Time: Are probabilities time dependent, and if so, in what form?

Quantum Probability: What is the relationship between classical probabil-
ity and quantum probability?

1von Weizsäcker [2006, pp. 59]
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It’s worth reading Einstein’s article2 about physics and reality:

The aim of science is, on the one hand, a comprehension, as
complete as possible, of the connection between the sense experi-
ences in their totality, and, on the other hand, the accomplishment
of this aim by the use of a minimum of primary concepts
and relations. Einstein 1936

Bohr said:

There is no quantum world. There is only an abstract quantum
physical description. It is wrong to think that the task of physics is
to find out how nature is. Physics concerns what we can say about
nature. Bohr3

Nowadays, the fundamental concepts of quantum mechanics seem to be
far away from any sense experiences. Penrose4 2016 has written the excellent
book ”FASHION, FAITH and FANTASY“. On page 216 he writes:

Can fantasy have any genuine role to play in our basic physical
understanding? Surely this is the very antithesis of what science
is about, and should have no place in honest scientific discourse.
However, it seems that this question cannot be dismissed as easily
as might have been imagined, and there is much in the working of
nature that appears fantastical, according to the conclusions that
rational scientific thought appear to have led us to when addressing
sound observational findings. As we have seen, particularly in the
previous chapter, the world actually does conspire to behave in a
most fantastical way when examined at a tiny level at which quan-
tum phenomena hold sway. A single material object can occupy
several locations at the same time and like some vampire of fiction
(able, at will, to transform between a bat and a man) can behave as
a wave or as a particle seemingly as it chooses, its behavior being
governed by mysterious numbers involving the ”imaginary“ square
root of -1. Penrose 2016

Moreover, he said in an interview:

Physics is wrong, from string theory to quantum mechanics.
Penrose, 2009, DISCOVER

Weinberg5 2017 writes in a readable article about quantum mechanics, in
particular, about the measurement problem:

Even so, I’m not as sure as I once was about the future of quan-
tum mechanics. It is a bad sign that those physicists today who are

2Einstein [1936]
3Quoted by Aage Peterson, Bulletin Atomic Scientists, 1963, Vol. 19, Issue 7, p. 12
4Penrose [2016, p.216]
5Weinberg [2017]
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most comfortable with quantum mechanics do not agree with one
another about what it all means. The dispute arises chiefly regard-
ing the nature of measurement in quantum mechanics. Weinberg
2017

Hossenfelder6 writes in her recently published book ”Lost in Math. How
Beauty Leads Physics Astray“:

Quantum mechanics is spectacularly successful. It explains the
atomic world and the subatomic world with the highest precision.
We’ve tested it upside-down and inside-out, and found nothing
wrong with it. Quantum mechanics has been right, right, and right
again. But despite this, or maybe because of this, nobody likes it.
We’ve just gotten used to it.

In a 2015 Nature Physics review, Sandu Popescu calls the ax-
ioms of quantum mechanics ”very mathematical“, ”physically ob-
scure“, and ”far less natural, intuitive and physical than those of
other theories“. He expresses a common sentiment. Seth Lloyd,
renowned for his work in quantum computing, agrees that ”quan-
tum mechanics is just counterintuitive”. And Steven Weinberg, in
his lectures in quantum mechanics, warns the reader that ”the ideas
of quantum mechanics present a profound departure from ordinary
human intuition“. Hossenfelder 2018

This small selection of statements of famous scientists are disillusioning. It
is somewhat curious that physicists do not agree what quantum theory tells
us, even after a century of discussions. There are a number of very good books
that have a critical attitude, not just writing about what we know, but about
what we do not know. A recommendable, critical, recently published book is
written by Cham and Whiteson7 with the telling title ”We Have no Idea, A
Guide to the Unknown Universe“.

In these notes, we argue that quantum mechanics can be developed and
formulated close to our sense experience, not counterintuitive, but very nat-
ural. Looking more deeply into experimental results, it seems that several
paradoxes and riddles can be avoided, and the well-known measurement prob-
lem can be explained, when we understand two concepts, namely probability
and time. We want to show that modifications of both concepts are useful
for a better understanding. In our opinion, quantum mechanics is simply a
probability theory about the reality which distinguishes between possibilities,
internal possibilities and outcomes. It is a theory characterizing the future and
telling us exactly what one should expect. Moreover, our approach contains
a ”single-world interpretation” that avoids many well-known paradoxes and
interpretations such as ”many worlds“ or ”many minds“. Nevertheless, the
presented concepts should be appropriate for teaching engineers.

The following notes are partially very different from what can be read in
most textbooks. We try to avoid magical descriptions, and instead try to

6Hossenfelder [2018, p.119]
7Cham, Whiteson [2017]
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maintain a more critical attitude. A major goal of these notes is to
stimulate students not to believe, but to ask. In particular, we do
not present or repeat one of the current and widely accepted physical
opinions.

If a man will begin with certainties, he shall end in doubts; But
if he will be content to begin with doubts, he shall end in certainties.

Francis Bacon, Advancement of Learning.

The strange paradox that ”a single material object can occupy several loca-
tions at the same time” contradicts deeply our experience, was never observed,
and was never measured. In 2017, I published my lecture notes ”Quantum In-
formation Theory for Engineers: An Interpretative Approach“, in the following
shortly denoted by QUITE8. My aim was to be as close to sense experiences as
possible. In particular, I argued that in quantum mechanics it is not necessary
to believe that a single object can occupy several locations at the same time,
provided we accept our daily observation that time is partitioned into past,
present, and future9. Moreover, complex numbers, under mild conditions, turn
out to be the maximal field of numbers, according to a Theorem of Hurwitz.
They can be visualized as simple arrows in the plane and are very natural. It
would be a surprise, if complex numbers would not be fundamental in physics
10. The concepts entanglement 11, Heisenberg’s uncertainty principle 12, and
the theory of special relativity13 are considered from a new perspective, by far
not restricted to microscopic systems14.

This article is a supplement to QUITE. One central point of view developed
here is as follows: quantum mechanics is a fundamental probability theory for
calculating numerical probabilities by generalizing Laplace’s rules to complex
numbers, hence really simple. The quantum calculus turns out to be the
universal tool for computing the probabilities of outcomes or elementary events
via probability amplitudes for possibilities and internal possibilities.

In QUITE, a basic knowledge of probability was assumed. This supplement
tries to give some more insight into probabilistic concepts. One major goal is
to build a bridge to the famous paper of Feynman15 about non-relativistic
quantum theory, written in 1948. The knowledge of several parts of QUITE is
advantageous. However, we have referenced these parts in most cases.

This presentation is hopefully suitable for students studying engineering,
but perhaps also for people interested in the philosophy of physics. It is written
in the form of lecture notes. Therefore, many repetitions occur, as is the case
when giving a lecture. It has the advantage that sections can be read partly
independent of each other.

8Jansson [2017]
9Jansson [2017, Section 4.3]

10Jansson [2017, Section 2.2]
11Jansson [2017, Section 4.13]
12Jansson [2017, Section 4.17]
13Jansson [2017, Section 4.14]
14Jansson [2017, Section 4.11]
15Feynman [1948]
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A short remark to the title of this supplement. ”Free climbing“ means
that a climber on a rock uses only his hands, feet, and body to make upward
progress, supporting his body in the vertical world. In other words, a free
climber doesn’t use any further technical support, except his sense experience
together with his body. Similarly, these notes don’t start with any of the
various technical quantum postulates. We start with our sense experiences
that can be used to reconstruct the technical properties of quantum theory and
of the theory of relativity, both theories known as the fundamental theories
in physics. However, this supplement does not match the actual consensus,
although it generates the same mathematical formalism up to quantum field
theories.

In the following we consider and discuss several experiments. The notion
”experiment“ has to be understood in its broadest sense. For defining proba-
bility we need an experimental situation, where we generally assume:

Postulate: The possible results of an experiment are mutually exclusive events.
In other words, the experimental results form empirically decidable al-
ternatives, which we call outcomes or elementary events. We can always
distinguish between mutually exclusive events. They either happen or
do not happen. But two or more elementary events cannot happen si-
multaneously. The set of outcomes forms the sample space. These are
the fundamental assumptions in probability theory.

Obviously, this assumption contradicts the widely accepted, but never mea-
sured, opinion that ”a single material object can occupy several locations at
the same time”. There are very many books on probability theory. In any
case, we recommend the Handbook of Probability16, and the many references
therein.

The remainder of this supplement is organized as follows.
After the introduction, in the second chapter we consider in Section 2.1

Laplace’s17 definition of probability and its basic rules which were the standard
for a long time. The Monty Hall problem, discussed in Section 2.2, empha-
sizes the importance of the exact knowledge of the sample space when solving
probabilistic problems. Then many erroneous conclusions can be avoided. In
Sections 2.3 and 2.4 two paradoxes are considered that violate the principle of
indifference. These paradoxes suggest that the knowledge of the sample space
alone is not sufficient for obtaining numerical probabilities. Further details of
the experimental set up are required. Then, the basic axioms of classical prob-
ability and its relationship to relative frequencies are presented in Sections 2.5
and 2.6. In particular, the fundamental add-and-multiply rule, meaning that
”probabilities for disjoint events are added, and probabilities for independent
events are multiplied“, is considered.

In the third chapter of these notes we describe how classical and quan-
tum probability can be unified. In Section 3.1 we replace the concept of an
external time parameter by the trinity future, present and past and show its

16Rudas [2008]
17Laplace [1814]
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consequences. We discuss the differences and relationships between possibili-
ties, outcomes, and facts. In Section 3.2, the superposition principle is shown as
the unspectacular property of expressing possibilities of one machine in terms
of the possibilities of other machines. This is a macroscopic interpretation of
this fundamental quantum principle. Moreover, it turns out that quantum
theory and classical probability theory are not different probability theories,
but complement one another. It follows that quantum mechanics is a proba-
bility theory calculating probabilities for outcomes via probability amplitudes
for possibilities. In the following Sections 3.3 and 3.4 we introduce three math-
ematical equivalent representations of possibilities and outcomes: the number,
register, and vector representation. Then, in the following sections, we apply
our concept to slit experiments, Hardy’s paradox and the Frauchiger Renner
paradox.

In the fourth chapter, we consider a reformulation of Feynman’s famous ap-
proach to quantum theory, where we use the notions of the previous sections.
In particular, we explain how the fundamental add-and-multiply rule together
with the concept of distinguishing between possibilities, internal possibilities,
and outcomes leads to a unification of classical probability theory and quantum
theory. We show that the Dirac-Feynman rules are straightforward general-
izations of Laplace’s rules. In Sections 4.1 and 4.2 this probability theory is
applied to space-time paths leading to Feynman’s path integral. A sketch of
the derivation of Schrödinger’s wave equation, and thus proving that Feyn-
man’s formulation implies the ordinary formulation of quantum mechanics, is
presented in Section 4.3. Hamiltonian mechanics is a mathematical formalism
that provides a deeper understanding of classical mechanics and of quantum
mechanics. In Section 4.4, we show the relationship between the Lagrangian
and the Hamiltonian, thus leading to Feynman’s path integral formulated in
terms of the Hamiltonian. Finally, we show how our probability concept can
be useful applied to quantum electrodynamics, our best physical theory ex-
plaining biology and chemistry.

In the fifth chapter of these notes we describe several aspects of measure-
ments in quantum theory, including causality. The latter, although daily ex-
perienced, is rejected by some physicists.

Finally, some conclusions are given, and an appendix is attached containing
”Keep in minds”.

Feedback This text is free to download from the internet.

• http://www.ti3.tuhh.de/jansson/.

I am deeply grateful for corrections, comments, and suggestions:

• jansson@tuhh.de.

Acknowledgements I wish to thank Ulrike Schneider for her assistance
in preparing this lecture notes, including graphics and tables. I wish to thank

http://www.ti3.tuhh.de/jansson/.
jansson@tuhh.de


1 INTRODUCTION 9

Kai Torben Ohlhus and David Sills for their critical reading of the manuscript,
their feedback, and their suggestions.

Hamburg, Germany, June 2019
Christian Jansson



2 CLASSICAL PROBABILITY 10

2 Classical Probability

We consider some basic classical probability concepts. Moreover, we show by
means of some paradoxes that probability is not self-evident.

2.1 Laplace Experiments

For a long time Laplace’s18 definition of probability was the standard: the
probability of an event is the number of outcomes in favor of this event, divided
by the number of all outcomes. Laplace begins with a series of principles of
probability, including the classical statement:

The theory of chance consists in reducing all the events of the same
kind to a certain number of cases equally possible, that is to say,
to such as we may be equally undecided about in regard to their
existence, and in determining the number of cases favorable to the
event whose probability is sought. The ratio of this number to that
of all the cases possible is the measure of this probability, which is
thus simply a fraction whose numerator is the number of favorable
cases and whose denominator is the number of all the cases possible.
Laplace 1814

Using the common notion that the set of all possible outcomes is called sample
space Ω, that any subset A of the sample space is called event, and that any
element ω ∈ Ω is called elementary event or outcome, Laplace has postulated:

• (Unity outcome): If there are several outcomes all contributing equally,
and it is agreed that neither seems favored over the other, all outcomes
should be equally likely assigned with the unit 1.

• (Addition rule) The probability of an event is obtained by summing up
over all outcomes contained in this event, where each term in the sum
is equal to 1, and then by dividing by a normalizing constant, namely
the number of all possible outcomes of the sample space. In other words,
probability is the ratio of the favored elementary events to the total
possible elementary events.

The first postulate that all outcomes have an equal probability, provided
there is no known reason for treating certain outcomes differently, is also called
the principle of indifference. For a large number of situations - fair coin or die
toss and so forth - there is no preference or dependency between outcomes,
and it is natural to assume that each outcome in the sample space is equally
likely to occur.

The second postulate implies the generalized addition rule:

• (Generalized addition rule): For pairwise disjoint events A1, A2, ..., Al ⊆
Ω it holds true:

Prob(A1∪A2∪ ...∪Al) = Prob(A1) + Prob(A2) + ...+ Prob(Al). (1)
18Laplace [1814]
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Pairwise disjoint events represent mutually exclusive alternatives, that is, they
either happen or do not happen, but two or more disjoint events cannot happen
simultaneously.

Laplace has also considered how to calculate the probability of events or
experiments that can be broken down into a series of steps happening inde-
pendently. He formulated that for independent events the probability of the
occurrence of all is the product of the probability of each. This can be deduced
from the fundamental multiplication rule that forms the foundation for solving
counting problems:

• (Multiplication rule) If we perform a sequence of experiments, say N ,
then the general principle of counting all outcomes is as follows: if the
first experiment results in n1 possible outcomes, and if for each of these
n1 outcomes there are n2 possible outcomes of the second experiment,
and if for each of these n1 · n2 outcomes there are n3 possible outcomes
of the third experiment, ... then there there is a total of n1 · n2 · ... · nN
outcomes of the sequence of experiments. In other words, the sample
space of this sequence has n1 · n2 · ... · nN elements.

Events are called independent, if the entering of one event does not influ-
ence the probabilities of the other events. Therefore, if in a sequence of N
independent experiments the events Aj, j = 1, ..., N , have mj possible out-
comes, then the number of all possible outcomes is the product m1 · ... ·mN ,
and the second principle implies the probability

Prob(A1∩A2∩...∩AN) =
m1 ·m2 · ... ·mN

n1 · n2 · ... · nN
= Prob(A1)·Prob(A2)·...·Prob(AN).

(2)

These principles apply to a large number of experiments provided the sample
space is finite. This requires, however, to define precisely the conditions of an
experiment, that is, to make a list of all possible outcomes, and to assure that
all outcomes are equally likely.

Keep in mind: Calculate the probability for the outcomes in
Laplace experiments by using the multiply-and-add rule, that is,
the probabilities for disjoint events are added, and the probabilities
for independent events are multiplied. This rule is universal, since
it applies also to classical probability as formulated by Kolmogorov,
and to quantum probability.

There are numerous experiments, however, that cannot be solved with these
rules. A simple example is to toss a pushpin. The probability that it ends up
on its head is in general not equal to the probability that the pin ends up
on the other side. These probabilities depend on the specific geometry of the
pin. Or, think of throwing darts on a disc, which is partitioned into different
sections. If we never miss the disc and do not aim to hit a special section,
then the probability of hitting some section should be the area of this section
divided by the area of the disc.
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Before we describe other concepts of probability, we proceed with some
seemingly paradoxical experiments, see also the Handbook of Probability19.

19Rudas [2008]
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2.2 Monty Hall Problem

The Monty Hall problem is a statistical puzzle named after Monty Hall, the
host of the television game show ”Let’s Make a Deal”. This puzzle was posed
(and solved) by Steve Selvin in 1975, and became famous by Marilyn vos
Savant’s ”Ask Marilyn” column in Parade magazine in 1990. It is as follows:
In a game show you are given the choice of three doors, where behind one of
the doors is a car, and behind the other two doors are goats. If you choose a
door, the host, who knows what is behind the doors, opens another door with
a goat behind. Then he asks whether you want to switch your chosen door or
you want to stay. Hence, the question arises, whether it is better to switch
your choice?

Most people argued that switching the door is not necessary, since there
are two unopened doors with one goat and one car behind. Thus, using the
principle of indifference, we get a 50/50 chance. It turns out, however, that
switching has a 2/3 chance of winning the car, while staying at the chosen
door has only a 1/3 chance, as correctly stated by Marilyn vos Savant.

The Monty Hall problem has attracted a lot of attention. About 10,000
readers of the magazine, including many PhDs, wrote to the magazine claim-
ing that vos Savant is wrong. Even the famous mathematician Paul Erdös
remained unconvinced until a computer simulation was given to him20 . Sur-
prisingly, this problem seems to have been so interesting that a book about
the letters from the readers of the magazine was written21.

There are many solutions for this problem, including approaches using
conditional probabilities, Bayes Theorem, and several other ideas. But the
key insight can be obtained when looking carefully at the sample space of this
problem. Almost everyone knows that defining the outcomes or elementary
events forms the basis for solving statistical problems.

Let’s do this. In fact, we have two problems. First, the decision is to
stay at the chosen door. Since the numbering of the doors does not matter, we
suppose that the chosen door is door 1. Then we obtain exactly three outcomes
displayed in Table 1. All outcomes are equally likely, and we can apply the
principle of indifference and Laplace’s rules. Only in one case you win the car.
Hence, staying at the chosen door has only a 1/3 chance of winning the car.

Behind door 1 Behind door 2 Behind door 3 Stay at door 1

Goat Goat Car Gets goat
Goat Car Goat Gets goat
Car Goat Goat Gets car

Table 1: The outcomes for the Monty Hall problem if you stay.

Secondly, the decision is to switch the chosen door 1. We obtain three
outcomes as before, displayed in Table 2. Now in two cases you win the car.
Hence, switching the chosen door has a 2/3 chance to win the car. Summariz-

20Vazsonyi [1999]
21Granberg, Brown [1995]
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ing, the solution is almost trivial, when looking carefully at the sample space
and identifying the problem as a simple Laplace experiment.

Behind door 1 Behind door 2 Behind door 3 switch

Goat Goat Car Gets car
Goat Car Goat Gets car
Car Goat Goat Gets goat

Table 2: The outcomes for the Monty Hall problem if you switch your choice.

Finally, let us change the problem such that the host opens the door at
random rather than always revealing a goat. Then the probability changes to
1/2, because 1/3 of the time he opens the door with the car behind, therefore
ending the game.

Keep in mind: When solving probabilistic problems it is neces-
sary to know precisely the sample space. Then many erroneous
conclusions can be avoided, as the letters to Marilyn vos Savant
demonstrate.
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2.3 Bertrand’s Chord Paradox

The Monty Hall problem is a so-called weak paradox, that is, a problem demon-
strating the weakness of understanding probability. But it can be solved with
a little thought. There exist various strong paradoxes that apparently seem to
falsify classical probability theory and pose challenges and deep problems to
the classical theory22.

Bertrand designed one type of well-known paradoxes. His aim was to ar-
gue that the principle of indifference is not applicable to experiments with
infinitely many outcomes, and as proof, he offered some examples leading to
contradictions. This includes his famous chord paradox:

We trace at random a chord in a circle. What is the probability
that it would be smaller than the side of the inscribed equilateral
triangle? Bertrand23

For solving this problem we can use the principle of indifference in three
different ways. A chord intersecting the circle is uniquely defined by its two
points intersecting the circumference. Hence, tracing out at random a chord
can be done by generating at random these two points. We consider three
possibilities for obtaining a probability:

• 1) Take one of the two points as the vertex A of the inscribed equilateral
triangle ABC. Then the chord is longer than the side of the triangle,
if it lies within the angle at the vertex A. This is true for one-third of
the chords, since the angle is 60 degree compared with 180 degree at A.
Hence, the probability of getting a longer chord is one-third, and the
probability of a smaller chord is two-thirds.

• 2) But we can argue also in another manner. Given the chord, let the
inscribed triangle be defined such that the side BC is parallel to the
chord. Then the midpoints of the chord and the side lie on the same
radius perpendicular to the chord and the side. Then the chord is smaller
if it intersects the outer half of the radius perpendicular to them, so that
their midpoint is outside the triangle. Hence, the probability is one-half.

• 3) Finally, a chord is longer than the side of the triangle, if its midpoint
falls within a circle inscribed within the inscribed equilateral triangle.
This inner circle has a radius one-half. Hence, its area is one-quarter of
the outer circle, leading to probability one-quarter. Thus, the probability
of chords being shorter is three-quarter.

We used in all cases the principle of indifference, frequently supposed to suf-
fice for solving probability problems. By definition, probabilities have unique
solutions, because they are described as a single function from the events of
interest into the interval [0, 1]. But now, three different ways of applying this

22[Chapter 3]Rudas [2008]
23Bertrand [1889, pp. 4]
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principle result in different probabilities for the same event. Bertrand con-
cludes that this example undermines the principle of indifference.

In the ”Handbook of Probability“ it is stated that Bertrand’s paradoxes are
unresolved, thus threatening our confidence when applying probability theory
to infinite sets24. But is this really a paradox? Perhaps not. You can write
three programs for the three cases. Then these programs are different and
produce approximately the probabilities above, provided your programs are
written correctly. The reason is that even a precisely defined sample space
does not necessarily imply correct probabilities. The experimental set up must
be incorporated appropriately, as in the programs. In fact, you might realize
these three cases also physically.

Keep in mind: When solving probabilistic problems, a precisely
defined sample space may be not sufficient. The ”principle of in-
difference“ may be violated. For obtaining numerical probabilities,
the process or program how the outcomes of the sample space are
constructed may be necessary.

24[pp. 54]Rudas [2008]
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2.4 Bertrand’s Cube Paradox

Here, we consider a paradox of Bertrand in the form adapted from van Fraassen
1989, see also the ”Stanford Encyclopedia of Philosophy: Interpretations of
Probability“ and ”Philosophies of the Sciences: A Guide25“. We quote Lyon,
see the chapter in the latter book.

Consider a factory that produces cubic boxes with edge lengths
anywhere between (but not including) 0 and 1 meter, and consider
two possible events: (a) the next box has an edge length between
0 and 1/2 meters or (b) it has an edge length between 1/2 and
1 meters. Given these considerations, there is no reason to think
either (a) or (b) is more likely than the other, so by the Principle
of Indifference we ought to assign them equal probability: 1/2 each.
Now consider the following four events: (i) the next box has a face
area between 0 and 1/4 square meters; (ii) it has a face area between
1/4 and 1/2 square meters; (iii) it has a face area between 1/2 and
3/4 square meters; or (iv) it has a face area between 3/4 and 1
square meters. It seems we have no reason to suppose any of these
four events to be more probable than any other, so by the Principle
of Indifference we ought to assign them all equal probability: 1/4
each. But this is in conflict with our earlier assignment, for (a)
and (i) are different descriptions of the same event (a length of
1/2 meters corresponds to an area of 1/4 square meters). So the
probability assignment that the Principle of Indifference tells us to
assign depends on how we describe the box factory: we get one
assignment for the ”side length“ description, and another for the
”face area“ description.

There have been several attempts to save the classical interpre-
tation and the Principle of Indifference from paradoxes like the one
above, but many authors consider the paradoxes to be decisive. See
Keynes [1921]3 and van Fraassen [1989]4 for a detailed discus-
sion of the various paradoxes, and see Jaynes [1973]5, Marinoff
[1994]6, and Mikkelson [2004]7 for a defense of the principle. Also
see Shackel [2007]8 for a contemporary overview of the debate. The
existence of paradoxes like the one above were one source of mo-
tivation for many authors to abandon the classical interpretation
and adopt the frequency interpretation of probability. [...]

Ask any random scientist or mathematician what the definition
of probability is and they will probably respond to you with an in-
credulous stare or, after they have regained their composure, with
some version of the frequency interpretation. The frequency inter-
pretation says that the probability of an outcome is the number of
experiments in which the outcome occurs divided by the number of
experiments performed (where the notion of an ”experimen“ is un-
derstood very broadly). This interpretation has the advantage that

25 Allhoff [2010]
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it makes probability empirically respectable, for it is very easy to
measure probabilities: we just go out into the world and measure
frequencies. Lyon 2010

What then is the probability of the previous event in question?
A little bit more insight can be obtained when we use instead of continu-

ous intervals a discrete version of the paradox. We suppose that the factory
produces only boxes that have edge lengths 1/4, 1/2, 3/4, 1. Thus, their
face areas are 1/16 , 1/4, 9/16, 1, and in both cases the principle of indiffer-
ence tells us that the probability is 1/2 for the event that the next box has
an edge length between 0 and 1/2 meters or a face area between 0 and 1/4
square meters. That look’s nice. Conversely we suppose now that the factory
produces only boxes that have face areas 1/4, 1/2, 3/4, 1. Thus, their edge
lengths are 1/2, 1/

√
2,
√

3/2, 1, and in both cases we obtain, by using the
principle of indifference, probability 1/4. In summary, for the discrete version
of this paradox, the probabilities for both events are identical. One might say
that the paradox vanishes in the discrete case, but occurs when we pass to the
continuous case.

Similarly, as in the previous chord paradox, it is a different situation
whether the factory produces the boxes by firstly choosing the edge length,
or by firstly choosing the face area. This can be verified by writing a pro-
gram. The mathematical reason behind is the fact that a uniform distribution
entails a non-uniform distribution when transforming nonlinear. This can be
seen immediately from the discrete version above. There, we have squared
the edge length in order to obtain the face area. Thus, a uniform distribution
remains no longer uniform under quadratic transformations, and the principle
of indifference does not apply in the infinite case.

Keep in mind: In general, under nonlinear transformations the
type of distributions changes, and the principle of indifference does
not apply.
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2.5 Kolmogorov’s Axiomatization

We have seen that the assumption of a finite sample space is sometimes unsatis-
factory, remarked already by Bertrand 1889. Rather late in 1933, Kolmogorov
presented a mathematical theory of probability in terms of some axioms which
have become orthodoxy. Actually, it is a measure theory. Measures generalize
volumes and are used in several non-probabilistic applications, for instance,
Lebesgue measures and integration. The axioms in measure theory, however,
do not calculate probabilities for outcomes like Laplace did.

In the following, the sample space Ω of outcomes may be finite or infinite. A
field is a set of subsets of Ω that contains the sample space itself, and is closed
under the countable set operations union, intersection, and complement. Thus,
for countable subsets A1, A2, ... the set A1 ∩A2 ∩ ..., the set A1 ∪A2 ∪ ..., and
the set Am −An are elements of the field. The elements of the field are called
events. The outcomes are called elementary events.

The basic axiom is to assign a mapping Prob, called probability function,
from the field of events

A→ Prob(A) (3)

into the set of real numbers that satisfies

0 ≤ Prob(A) ≤ 1, Prob(Ω) = 1, (4)

and moreover for any countable set of disjoint events Am the equation

Prob

(
∞⋃
m=1

Am

)
=

∞∑
m=1

Prob(Am). (5)

must be fulfilled.
The axiom (4) is important when performing the same experiment several

times. Otherwise, we cannot hope that the relative frequencies of an event A
approaches Prob(A). The relative frequency is the number of times the event
A occurred in a series of executions of an experiment divided by the number
of executions, thus is bounded between 0 and 1.

Two events A and B are called independent, if both have no influence on
each other. For instance, if we toss a coin twice, and we know the outcome A of
the first toss, then this has no influence on the result B of the second toss. In
accordance with Laplace experiments, the probabilities for independent events
are multiplied, that is,

Prob(A ∩B) = Prob(A)Prob(B). (6)

In summary, the probabilities of disjoint events are added, and
the probabilities of independent events are multiplied. This is the
well-known multiply-and-add rule which holds valid already for Laplace
experiments, but now for non-negative real numbers.

From these axioms one can deduce the well-known and useful rules for
calculating probabilities, provided the probabilities for the outcomes are given,
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or some distribution. We assume only a rudimentary knowledge of the most
important probabilistic rules.

The mathematics of Kolmogov’s probability theory is well understood, but
its interpretation is controversial. A nice survey about various other inter-
pretations is written by Hajek26. In particular, there are also many non-
Kolmogorovian theories of probability. Usually, a probability is a single num-
ber. But there are approaches that use interval-valued probabilities, or offer
axioms for ”upper“ and ”lower” probabilities. Even some scientists drop the
normalization assumption altogether, allowing probabilities to attain the value
∞. We mention this for the interested reader, but we don’t go into details.

26Hajek [2001]
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2.6 Probability and Relative Frequency

Above, we have already mentioned:

Ask any random scientist or mathematician what the definition
of probability is and they will probably respond to you with an in-
credulous stare or, after they have regained their composure, with
some version of the frequency interpretation. Lyon 2010

In experiments we can always distinguish between mutually exclusive out-
comes. They either happen or do not happen, but two or more outcomes
cannot happen simultaneously.

This assumption seems to be trivial. It is accepted everywhere when solving
classical probabilistic problems. It seems to be accepted in quantum theory,
since all (well-working) detectors display only one outcome. However, remem-
bering the quotation of Penrose in the introduction, a single material object
can occupy many different places, although this was never measured. This is a
strange paradox in quantum mechanics. In QUITE, however, it is argued that
a single material object occupies exactly one location. Hence, in the following
we always use our assumption of mutually exclusive outcomes.

Let us perform the same experimentN times, and suppose that an outcome,
say k, occurred nk times in this series. Then we call the ratio

fk =
nk
N

(7)

the relative frequency corresponding to outcome k. This ratio is a rational
number between 0 and 1. Intuitively, we expect that the relative frequency is
a number close to a probability of this outcome, at least when we repeat this
experiment a lot of times.

When tossing a fair coin, for example, it seems plausible that the relative
frequency is close to 1/2 for the outcome ”heads“. Also for throwing a fair
die fk should be close to 1/6 for all outcomes k = 1, 2, 3, 4, 5, 6. Now it seems
to be natural to define a probability Prob(k) for outcome k as the limit of
fk for N → ∞. This point of view is the frequentist definition of probability,
providing an operational definition.

It is perhaps the most widespread imagination of probability, although
there are several disadvantages. Experiments can be repeated only a finite
number of times, even if they could be performed infinitely often in principle.
Moreover, this definition could be misleading, since even a fair coin might land
heads 99 out of 100 times. However, there is a probabilistic model supporting
this operational definition. It is the law of large numbers, stating that for an
experiment, performed many times, the relative frequency tend to be close to
the theoretical probability of this model. But this definition does not work in
general, since many experiments are unrepeatable, such as elections or events
in sports. This problem of the so-called ”single case“ is striking, since the
frequentist definition does not apply. For the moment, however, we can take
this definition as an operational point of view of probability.
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3 Unification: Classical and Quantum Proba-

bility

So far we have discussed classical probabilities and some paradoxes. We have
not dealt with quantum probability, probability amplitudes, and interference
yet. Such phenomena have been investigated 1948 by Feynman27. He described
a third formulation of quantum theory, interpretative completely different to
previous insights. His formulation can be viewed as a non-classical probability
theory with complex numbers, not with real positive ones. He proved this for-
mulation to be mathematically equivalent to Schrödingers wave theory and the
matrix algebra of Heisenberg. What is the value of mathematical equivalent
descriptions? Well, he could describe old things from a new point of view, and
could offer distinct advantages of his formulation. In particular, he discussed
from his perspective the superposition in quantum mechanics, wave equations,
operator algebra, the relationship to a large class of action functionals, com-
mutation relations, Newton’s mechanics, statistical mechanics, and ideas of
his extension to quantum electrodynamics. It is a wonderful written paper
containing all fundamental concepts of quantum theory on a few pages. It is
simply great, and I recommend anyone interested in quantum theory to read
it.

Feynman’s formulation is based on spacetime. He used a typical physical
language in his article. He argued with measurements, and thus came to
wave-particle duality and the related measurement problem in quantum theory,
namely the well-known problem whether and how the wave function collapses
to a certain event or outcome. This questioning has pushed one of the most
challenging and partially nebulous debates about reality and quantum theory.

Our approach replaces spacetime by a trinity of time, namely future, present,
and past. Moreover, we use a set-theoretical language that is typical in clas-
sical probability theory, as described in the previous sections. This offers a
completely distinct interpretation without paradoxes and riddles, and many
things become much clearer. In particular, we consider the difference be-
tween outcomes, possibilities, and internal possibilities. It turns out that
these quantities depend on time. We obtain a probability theory that unifies
the Dirac-Feynman rules with classical probability theory. We show that the
Dirac-Feynman rules are straightforward generalizations of Laplace’s rules. We
discuss polarization and slit experiments, as well as Hardy’s paradox, a spec-
tacular experimental setup where simple logical arguments about its physical
constraints lead to a surprising contradiction. However, we can explain these
experiments in a rather simple manner, without any strange arguments.

27Feynman [1948]
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Figure 1: Trinity of time.

3.1 Trinity of Time

Quantum theory can be understood rather easily when we replace the concept
of an external time parameter t, generally used in physics, by the trinity future,
present, and past, see Figure 1. It is very close to our sense experiences. In this
section, we present a short and rough overview. Precise definitions are given
afterwards. More details and several applications are considered and discussed
in QUITE.

There, we have interpreted quantum mechanics as a theory of probabilistic
predictions that characterize the future only. The future is timeless, nothing
happens, and it might be best described by the phrase ”What might happen,
when nothing happens?”. In other words, quantum mechanics has to be un-
derstood prognostically. It is a probability theory that assigns to mutually
exclusive possibilities complex numbers, the so-called probability amplitudes.
We look in the following at three types of experiments: throwing a die, the slit
experiment, and the polarization of photons.

When throwing a fair die, we obtain six mutually exclusive possibilities
k = 1, 2, 3, 4, 5, 6 with probability amplitudes 1/

√
6. Squaring gives the prob-

abilities 1/6.
In a double-slit experiment, see Figure 2, the paths from a fixed initial point

s via any slit to any final point at the screen, here defined as a position detector
dm, describe the possibilities. They are allocated with complex probability
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Figure 2: The double-slit experiment described for a discrete spacetime. The
particle leaves source s, passes one of the two slits a or b, and is finally detected
in d1.

amplitudes28.
Finally, we consider the polarization experiment in Figure 3. The mutually

exclusive possibilities in a future execution are:

• (1) The photon is absorbed by the first polarizer.

• (2) The photon passes the first polarizer, then moves on the upper beam
between the birefringent plates, and finally is absorbed by the second
polarizer.

• (3) The photon passes the first polarizer, then moves on the lower beam
between the birefringent plates, and finally is absorbed by the second
polarizer.

• (4) The photon passes the first polarizer, then moves on the upper beam
between the birefringent plates, and finally passes the second polarizer,
detected after that.

• (5) The photon passes the first polarizer, then moves on the lower beam
between the birefringent plates, and finally passes the second polarizer,
detected after that.

28Jansson [2017, Sections 2.6 and 2.7]
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Figure 3: The first polarizer generates photons polarized at an angle α. The
first birefringent plate splits into two beams of horizontally x-polarized and
vertically y-polarized photons. These are recombined in a second birefringent
plate which has an optical axis opposite to the first plate. According to the
law of Malus the transition probability after the second polaroid is cos2(β−α).

So far to the prognostic future. In the present, experiments are performed.
The present is characterized by classical random access. In the present mo-
mentary decisions take place. The possible results, expressed by the detectors,
are called outcomes or elementary event. They define the sample space. In
general, possibilities and outcomes differ. The outcomes are those possibil-
ities that represent possible interactions with detectors or the environment,
whereas the remaining ones are the internal alternatives which we call internal
elementary possibilities. We call physical models classical, if the possibilities
coincide with the outcomes, that is, internal elementary possibilities are not
present.

When throwing a fair die, the table where the die is finally located acts as
a detector. Possibilities and outcomes don’t differ for this example; they are
the numbers k = 1, 2, 3, 4, 5, 6. Hence, we have a classical model.

In the slit experiment without detectors at the slits, a particle follows
exactly one path in the present, from the starting point to any position at the
wall of detectors. The positions at the last wall form the outcomes. But there
are many paths through the slits, describing internal possibilities, that lead
to the same outcome. This is a non-classical model. However, if we position
detectors at the slits, then we obtain a classical model.

The outcomes for the polarization experiment in Figure 3 are:

• (1) The photon is absorbed by the first polarizer.

• (2) The photon passes the first polarizer, then moves through the bire-
fringent plates, and finally is absorbed by the second polarizer.

• (3) The photon passes the first polarizer, then moves through the bire-
fringent plates, and finally moves through the second polarizer, detected
after that.

Hence, five possibilities are reduced to three (detected) outcomes. It is a
non-classical model. The possibilities, describing what happens between the
birefringent plates, are internal, that is, they are not given to the environment.
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In fact, this characterizes a fundamental difference between future and present.
The property that there may be more possibilities than outcomes becomes
incomprehensible when using spacetime only. Actually, models based solely on
spacetime lead to statements like ”a material objects occupies several locations
at the same time“. The failing distinction between past, present, and future
in physics, is the reason for many paradoxes in current quantum theory.

Deterministic models, like classical mechanics or electromagnetism, are de-
scribed uniquely in terms of differential equations that don’t allow alternative
solutions. There is a unique outcome changing deterministically with time,
yielding a classical model. Statistical mechanics is classical, since there are
no internal elementary possibilities. All possibilities are outcomes. Quantum
mechanics is non-classical, since outcomes can be reached via several internal
elementary possibilities. Summarizing, we have precisely defined the notion
”classical”. In the literature, this notion is vague.

In statistical mechanics the concept probability is defined mathematically
as a map from the set of all outcomes, namely the sample space, into the set
of real numbers between zero and one. Since probabilities are non-negative
numbers, cancellation or interference does not occur. It is a notion of the
present, where probabilities determine which of the outcomes momentarily
becomes a fact. A probability amplitude is defined as a map from the set of all
possibilities into the set of complex numbers with magnitudes between zero and
one. Squaring the magnitude of probability amplitudes gives the probabilities,
according to Born’s rule. Probability amplitudes are the quantities that can
describe appropriately geometric details of the experimental set up. Since
these are complex numbers, cancellation producing interference phenomena
may occur.

In the past, one of the outcomes has become a fact. The past is determinis-
tic, and classical mechanics can be viewed as a theory of the past. The concept
of relative frequencies describe the outcomes or measured results of repeated
experiments, and thus belongs to the past. Not surprisingly, the past serves
to verify or falsify prognostic statements. But from the philosophical point
of view, however, it is doubtful to define probabilities for events that didn’t
happen via concepts of the past.

It is important to notice that in our approach possibilities are
properties of the machines that form the experimental set up, as
seen above. Possibilities represent mutually exclusive alternatives in
the sense that in a future experiment, a particle interacting with
a machine, chooses exactly one of these alternatives, not two or
more. For example, polarization is first and foremost a property of the optical
apparatus, not of a photon itself. We can only say that a photon interacts in
the present with a specific crystal or polarizer by choosing exactly one of its
possibilities. A single material object doesn’t occupy several locations at the
same time. It chooses in the present exactly one location.

This trinity is close to experience. Learning would be impossible, if we
don’t distinguish between things that might happen and things that have hap-
pened. Time is one of the most discussed concepts in physics and philosophy.
Here, we quote two prominent physicists. In the introduction we have already
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quoted Einstein’s article29 about physics and reality. He claimed at various
pages closeness to sense experiences. However, when he considered the con-
cept of time30 he changed from an ”experienced local time“, which connects
the temporal sequence of experiences, to an ”objective time“:

The concept of space is, it is true, useful, but not indispensable
for geometry proper, i.e. for the formulation of rules about the rel-
ative positions of rigid bodies. In opposition to this, the concept of
objective time, without which the formulation of the fundamentals
of classical mechanics is impossible, is linked with the concept of
the spatial continuum.

The introduction of objective time involves two statements which
are independent of each other.

(1) The introduction of the objective local time by connecting the
temporal sequence of experiences with the indications of a ”clock“
i.e. of a closed system with periodical occurrence.

(2) The introduction of the notion of objective time for the hap-
penings in the whole space, by which notion alone the idea of local
time is enlarged to the idea of time in physics.

[....]
The illusion which prevailed prior to the enunciation of the the-

ory of relativity - that, from the point of view of experience the
meaning of simultaneity in relation to happenings distant in space
and consequently that the meaning of time in physics is a priori
clear, - this illusion had its origin in the fact that in our everyday
experience, we can neglect the time of propagation of light. We are
accustomed on this account to fail to differentiate between ”simul-
taneously seen“ and ”simultaneously happening“; and, as a result
the difference between time and local time fades away.

Einstein 1936

In physics, time t appears in almost all equations. Physicists think that
these equations describe what happens in the next moment. Variables such
as the position x(t), the velocity v(t), the momentum p(t), the energy E(t),
and so on, are time-dependent. In the case of the harmonic oscillator, the
well-known Euler-Lagrange equation takes the form of a differential equation

d

dt
(mẋ)− kx = 0. (8)

The idea of equations without the variable time seems questionable at first, or
even very strange. But after a while, you realize that the variable time is not
necessary. We can establish timeless relationships between the other variables.
For the harmonic oscillator, for instance, the Hamiltonian

H =
p2

2m
+

1

2
kx2 (9)

29Einstein [1936]
30Einstein [1936, pp. 357]
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is the conserved total energy, that is, the sum of kinetic and potential energy.
This equation describes the harmonic oscillator just as well without t, implic-
itly. It represents an ellipse in the phase space. Exactly the same situation can
be found in the famous Wheeler-de Witt equation, a candidate for the solution
of the well-known quantum gravitation problem. This equation contains no
time parameter. The time-dependent equations don’t describe what happens
in the next moment, but describe deterministic quantities belonging to the
past in its explicit form.

In QUITE, Sections 4.13 and 4.14, we gave several arguments to choose
an Euclidean (3+3)-position-velocity space as a basis of physics, without any
time parameter. The major reason was that we view quantum mechanics as
a theory describing the future, and the future is timeless. But then space-
time vanishes, and there seems to be no theory of relativity. Nevertheless, it
was shown to reproduce the mathematical formalism of special relativity by
constructing clocks in the (3+3)-position-velocity space. In particular, we de-
rived the key of relativity theory, namely the Lorentz transform, without any
assumption about ”propagation of light”. Hence, both statements of Einstein
above, ”the concept of objective time, without which the formulation of the
fundamentals of classical mechanics is impossible“ and ”this illusion had its
origin in the fact that in our everyday experience, we can neglect the time of
propagation of light”, can certainly be questioned. It was shown that the Eu-
clidean position-velocity space31, being close to our sense experiences, allows
us to describe Hamilton’s classical mechanics, the theory of special relativity,
and a reasonable explanation of entanglement.

In summary, we have three models related to future (quantum mechan-
ics), present (statistical mechanics), and past (classical mechanics). These are
timeless theories in the sense that we don’t need an external time parameter
and spacetime. In classical mechanics, for instance, the time parameter t is a
geometric parameter that serves to represent a classical solution in an explicit
form. At a first glance, this trinity seems to create another time concept when
the circle in Figure 1 rotates. However, this concept is completely different
from other time ideas since it rotates the past into the future, the future into
the present, and the present into the past. Moreover, it is completely different
to the imagination of an arrow of time.

Von Weizsäcker32 emphasizes at various places the fundamental difference
between the ”factual past“ and ”possible future“. Using the language of tem-
poral logic, he distinguished between ”presentic, perfectic, and futuric state-
ments“. However, he returned to spacetime by investigating the quantum
theory of binary alternatives.

31Geometrically described by the isomorphic Lie algebras so(4) ∼= so(3)× so(3) ∼= su(2)×
su(2)

32von Weizsäcker [1988], von Weizsäcker [1992], von Weizsäcker [2006]
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Keep in mind: Bertrand’s paradoxes have shown that the sample
space is not sufficient for calculating probabilities. Further informa-
tion about the experiment is necessary. This information depends
on the geometry of the experimental set up. Moreover, we assume a
time trinity that distinguishes between future possibilities, present
random access of outcomes in terms of momentary decisions, and
the facticity of the past in terms of facts. Facts are elements of the
set of outcomes, the latter are contained in the set of all possibili-
ties. Time trinity allows, in a very simple way, to describe precisely
experiments. A probability is defined as a map from the set of all
outcomes into the set of real numbers between zero and one, and is
related to the present. A probability amplitude is defined as a map
from the set of all possibilities, including internal elementary possi-
bilities, into the set of complex numbers with magnitudes between
zero and one, and is related to the future. Squaring the magni-
tude of probability amplitudes for outcomes gives the probabilities,
according to Born’s rule.
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3.2 The Superposition of Probability Amplitudes

We consider an imaginary experiment consisting of three machines A,B, and
C connected in series33. The machines can interact with a specific type of
particles. Which type doesn’t matter in the following. The machines are
characterized by its elementary mutually exclusive alternatives, that is, the
elementary possibilities a ∈ A, b ∈ B, c ∈ C. Elementary means that the
possibilities cannot be further separated. Mutually exclusive means that the
possibilities are non-overlapping and distinguishable. Moreover, we assume
that, in the present, a particle can interact with a machine by choosing exactly
one possibility, but two or more possibilities cannot be chosen simultaneously.
Consequently, viewing space as a machine of positions, a single material object
cannot occupy several locations simultaneously.

We assume that the set of elementary possibilities is countable. The el-
ementary possibilities of the complete experiment ABC consist of all triples
abc. It says that, in a future interaction of a particle with the experimental set
up, the particle chooses possibility a, then b, and finally c. We call the set of
all elementary possibilities abc the possibility space P of the experiment, that
is,

P = {abc : a ∈ A, b ∈ B, c ∈ C} . (10)

The experiment itself can be viewed as one single machine.
The field FP is defined as the set of all subsets of the possibility space, that

is,

Fp = {abc, abC, aBc,Abc, aBC,AbC,ABc,P, ∅, where a ∈ A, b ∈ B, c ∈ C} .
(11)

There, the elementary possibilities abc, which we identify with {abc}, are the
subsets consisting of one element. The other subsets are the non-elementary
possibilities defined as

abC := {abc : c ∈ C} , (12)

aBc := {abc : b ∈ B} , (13)

Abc := {abc : a ∈ A} , (14)

aBC := {abc : b ∈ B c ∈ C} , (15)

AbC := {abc : a ∈ A c ∈ C} , (16)

ABc := {abc : a ∈ A b ∈ B} , (17)

ABC := P. (18)

For instance, the possibility aBc means that, in a future interaction of a par-
ticle with the experimental set up ABC, the particle chooses the elementary
possibility a, finally has chosen c, and further it must have chosen some inter-
mediate, not further specified, elementary possibility b provided by machine
B.

33See Section 2, Feynman [1948]
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It may be that we are not interested in the possibilities of B. But it may
also be that the interaction with B is not known and cannot be determined. In
other words, it is not given outside to the environment. Then we say that the
possibilities b ∈ B are internal. It turns out that the internal possibilities
of an experimental set up must be explicitly defined. They are
responsible for interference. We speak of a classical experiment, if internal
possibilities do not occur.

The double slit experiment, described in Figure 2, consists of three ma-
chines denoted by SWD. The first machine denotes the source S producing
particles, the second machine W is the wall with two slits without detectors,
say a and b, and the third machine D is the screen of position detectors dm.
Since there are no detectors at the slits, the possibilities of W , representing
both slits, are internal. In the present, it is not given to the environment
through which slit the particle passes, yielding a non-classical experiment.
This experiment becomes classical, if we put detectors at the slits.

Notice, we consider future interactions that do not happen, but might hap-
pen in the present. Hence, any particle choosing in the present a possibility
a ∈ A must fortunately not go through all internal possibilities b ∈ B simul-
taneously, as it is usually assumed in quantum theory.

Similarly, the possibility aBC means that there is some interaction with A
in a in the present, but the interactions with B and C are not further specified.
Hence, we can identify aBC with a. The other possibilities in the formulas
above are interpreted in the same way.

Now, we have defined non-elementary possibilities in terms of subsets of the
possibility space. But what are outcomes? Let us consider three examples.
The first one is the classical experiment where we throw a die three times.
This can be viewed as three identical machines ABC = AAA in series, where
each machine A is described by the set of possibilities {1, 2, 3, 4, 5, 6}, and the
particle is identified with the person who throws the dice. There are no internal
possibilities, and each elementary possibility, say abc, is an outcome and thus
can become a fact. For example abc = 666 is the elementary possibility that
all dies show 6. The possibility space coincides with the classical sample space

P = Ω = {abc : where a ∈ A, b ∈ B, c ∈ C} . (19)

Hence, we have a classical experiment. For fair dice their probabilities are
1/63.

Let us change this experiment such that the result of the second die, say
B, is not detected. In other words, the results of B are internal. Then the
outcomes are aBc, and thus differ from the elementary possibilities. Clearly,
a change of the experimental set up changes the probabilities. For fair dice
these probabilities are 1/62.

For the double slit experiment, where no detectors are at the slits, both
slits at the wall W describe internal elementary possibilities. In the present, a
particle interacts with W in exactly one slit, which cannot be a fact, since it
is not detected. Hence, only the subsets sWdm ∈ FSWD define outcomes, and
thus facts in the past.
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More general, for the experimental set up P = ABC, when we assume
internal possibilities b ∈ B, the sample space of outcomes is the set of subsets

Ω = {aBc : a ∈ A, c ∈ C} . (20)

All other subsets of P are not outcomes.
A probability amplitude is a mapping ϕ from the field of possibilities FP

into the set of complex numbers

F → ϕF ∈ C (21)

that satisfies

|ϕF |2 ≤ 1, |ϕP |2 = 1, (22)

and for any countable set of pairwise disjoint possibilities Fm ∈ FP such that
F = ∪mFm it is

ϕF = ϕ(
⋃

m Fm) =
∑
m

ϕFm . (23)

The latter is the rule for the superposition of probability amplitudes.
Two possibilities F and G are called independent, if both have no influ-

ence on each other. In accordance with Laplace experiments and classical
probability theory, the probability amplitudes for independent possibilities are
multiplied, that is,

ϕF∩G = ϕF ϕG. (24)

Thus, the multiply-and-add rule carries over to complex numbers yielding quan-
tum mechanics. These rules allow to compute probability amplitudes for all
outcomes of the sample space Ω, that is, for all classical elementary events.

With Born’s rule

Prob(F) = |ϕF |2 for all F ∈ Ω, (25)

we obtain from the calculated probability amplitudes of the outcomes the clas-
sical probabilities. Then we can use Kolmogorov’s rules for obtaining probabil-
ities for non-elementary events, that is, for the subsets of the sample space Ω.
Notice that we apply Born’s rule only to complex amplitudes of outcomes, and
not to a set of outcomes. The reason is that the square of a sum of magnitudes
of complex numbers is not equal to the sum of squared magnitudes of complex
numbers.

In summary, these rules serve to calculate the complex amplitudes for the
outcomes allowing interference. Born’s rule provides probabilities for all out-
comes, and with Kolmogorov’s rules we obtain classical probabilities for the
non-elementary events. In most applications, the important and difficult task
is the calculation of the probability amplitudes of the outcomes. The proba-
bility amplitudes of the outcomes are the relevant quantities, and sometimes
it is difficult to calculate them.
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Let us consider our experimental set up P = ABC. We assume that the
possibilities of machine B are internal, and the possibilities ab := abC and
bc := Abc are independent. Then the possibilities ac := aBc are the outcomes.
The value ϕab is the probability amplitude that if the possibility a ∈ A is
chosen, then the possibility b ∈ B will be chosen in the next step. The value
ϕabc is the probability amplitude that firstly the possibility a ∈ A is chosen,
then the possibility b ∈ B, and finally c ∈ C. The other probability amplitudes
are defined analogously. Since the elementary possibilities {abc} are pairwise
disjoint, formula (23) implies

ϕac =
∑
b∈B

ϕabc. (26)

Since ab ∩ bc = abc, from (24) we get Feynman’s well-known formula (5)34

ϕac =
∑
b∈B

ϕab ϕbc. (27)

Since all possibilities of B are internal, the probability detecting a particle
in a and c must take all routes abc into consideration, although the particle
chooses only one route in the present. The superposition of probability am-
plitudes (26) and (27) is the sum of several complex amplitudes, one for each
route. This allows cancellation of probability amplitudes, yielding the typical
phenomena of interference.

The superposition of amplitudes for calculating the amplitude of an out-
come occurs only if the experiment contains internal possibilities. If there are
no internal possibilities, the outcomes coincide with the elementary possibil-
ities abc, and for each outcome there is exactly one route. Cancellation of
amplitudes, and thus interference, does not occur. This is the reason why we
speak of classical experiments, if internal possibilities are absent.

The term possibility is a notion of the future describing possible interactions
of a particle with machines in the present. Superposition means that the
possibilities of machine A can be expressed in terms of the possibilities of B,
and these can be expressed in terms of those of C. ”Expressed” means that a
particle, interacting in the present with machine A choosing the possibility a,
chooses with probability amplitude ϕab the possibility b ∈ B afterwards, and
so on. This is our unspectacular interpretation of the celebrated superposition
principle as a property of future possibilities, not of facts or outcomes that
happen at one moment. Notice the difference to the superposition of probability
amplitudes (26), where we sum up complex numbers over internal possibilities.

Let us go through this probabilistic framework in terms of the double-slit
experiment SWD. Firstly, the possibility space is

P = {sadm, sbdm : s ∈ S, a, b ∈ W,dm ∈ D} . (28)

The internal possibilities are the slits in W . Secondly, the sample space of
outcomes has the form:

Ω = {sWdm : s ∈ S, dm ∈ D} . (29)

34See Section 2, Feynman [1948]
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Thirdly, we use the multiply-and-add rule:

ϕsadm = ϕsa ϕadm , ϕsbdm = ϕsb ϕbdm . (30)

These are disjoint possibilities, and the superposition of both amplitudes yields
the amplitudes of the outcomes

ϕsWdm = ϕsadm + ϕsbdm . (31)

Inserting the concrete amplitudes for the possibilities, see also QUITE, we
obtain the amplitudes for the outcomes. With Born’s rule we obtain the prob-
abilities of the outcomes, and using Kolmogorov’s rules we can calculate the
probabilities for the non-elementary events. This small recipe shows the unbe-
lievable simplicity of explaining the double slit experiment within the frame-
work of possibilities and the trinity of time. Later, we show some further
aspects of slit experiments.

We started these notes with probability paradoxes and the unanswered
question: What are probabilities, and how can we calculate probabilities?
Laplace experiments and the principle of indifference gave us rules for calculat-
ing probabilities for some problems. But starting with Bertrand’s paradoxes
we have seen that these rules are by far not sufficient. In particular, inter-
ference phenomena cannot be described, since probabilities are non-negative
numbers. Now we have a very general formalism working with com-
plex probability amplitudes assigned to possibilities that allow us to
calculate classical probabilities of outcomes, including interference
phenomena. This formalism is a key in our interpretation of quan-
tum mechanics, the latter known as the most fundamental physical
theory. From our point of view, quantum theory is a timeless theory of the fu-
ture that uses the geometrical properties of experimental setups for calculating
classical probabilities of outcomes. Quantum theory and classical probability
theory are not different probability theories that are in contrast, as some-
times mentioned. In our approach they complement one another. Quantum
theory describes future interactions, probability theory describes momentary
decisions or present interactions that happen at some moment, and classical
mechanics describe the facts of the past, namely the specific interactions that
have happened.

The generalization of these postulates to a large number of machines, say
A,B,C,D, .....,K, is straightforward and left as an exercise.
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Keep in mind: The recipe for calculating probabilities:
Given an experimental setup:

1. Define the possibility space P, and the internal possibilities.

2. Define the sample space Ω of outcomes.

3. Calculate the probability amplitudes for the outcomes by us-
ing the multiply-and-add rule, that is, the probability ampli-
tudes for disjoint possibilities are added (superposition), and
the probability amplitudes for independent possibilities are
multiplied.

4. Calculate the probabilities for the outcomes using Born’s rule.

5. Calculate with Kolmogorov’s rules the probabilities for the
classical non-elementary events.

The possibility space P and the field of subsets FP are defined sim-
ilarly as in classical probability theory the sample space Ω and the
related field of subsets of the sample space. Moreover, in quantum
theory the multiply-and-add rule holds true for probability ampli-
tudes as well. The essential difference is (i) that amplitudes are
complex numbers, (ii) that possibilities and outcomes are differ-
ent quantities, and (iii) that internal possibilities, responsible for
interference, are essential. Quantum theory can be viewed as a cal-
culus with complex numbers that delivers numerical probabilities
for outcomes based on experimental setups. This calculus is not re-
stricted to microscopic systems. In contrast, it is mainly based on
macroscopic machines. Quantum theory and classical probability
theory are not different probability theories, but complement one
another. We speak of classical experiments, if internal possibilities
are absent. This recipe completes our formulation of proba-
bility theory and the fundamentals of quantum mechanics.
Feynman’s path integral, one of the mathematical equivalent formu-
lations of quantum mechanics, is an immediate consequence of this
recipe. Experiments, classical or quantum ones, can be explained
by using this recipe.
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3.3 The Vector Representation

We have defined and discussed outcomes or elementary events, the sample
space, elementary possibilities, and internal elementary possibilities35. But
how can we represent outcomes and possibilities? Looking at the previous
examples it follows that both, possibilities and outcomes, can be represented
by numbers. For a dice or a coin toss the outcomes are natural numbers.
Similarly, the outcomes of most other physical models can be counted and
represented by natural numbers. In summary, any experimental setup can be
characterized by a collection of numbers that have a specific meaning in the
experimental context. These numbers form mutually exclusive alternatives.
We call this the number representation of outcomes or possibilities. It is the
most commonly used representation in physics.

Additionally, there are two other mathematically equivalent representa-
tions. Any number can be represented as a string of bits, called register.
Commonly, a bit is defined as a quantity that can take only one of two values,
0 and 1. It is the basic unit in information theory. A frequent interpretation
of a bit is a question at a system that has exactly two possible answers, say
YES for 1 and NO for 0. The two values are interpreted as logical values
TRUE or FALSE. Since we can represent any number by a register, it fol-
lows that any possibility of a finite possibility space can be represented by a
finite series of bits, that is, of binary possibilities which are related to YES-
NO questions. The same holds true for outcomes. Thus, in addition to any
number representation we have an equivalent register representation of out-
comes or possibilities. The register representation is the most commonly used
representation in information theory.

Quantum mechanics, a theory of linear algebra, is usually described by
using Dirac’s “bracket” notation: each vector in a linear space is written in
the form

|x〉 (32)

where x is a label for the vector, and the notation |·〉 denotes a column vector
called “ket”. The conjugate transpose of this vector is written as

〈x|, (33)

and called “bra”. It follows that the inner product of two vectors |x〉 and |y〉

〈x|y〉 =
∑
i

x∗i yi (34)

is represented as a “bracket”. It consists of the bra part 〈x| and the ket part
|y〉.

It is very natural to think of a classical bit as a two-dimensional vector

|ψ〉 = ψ0|0〉+ ψ1|1〉, ψ0, ψ1 ∈ {0, 1}, ψ0 + ψ1 = 1, (35)

35For more examples, details and applications see Jansson [2017]
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such that the bit value 0 is represented in the form

|ψ〉 = |0〉 ⇔ |ψ〉 =

(
ψ0

ψ1

)
=

(
1

0

)
, (36)

and the bit value 1 is written as

|ψ〉 = |1〉 ⇔ |ψ〉 =

(
ψ0

ψ1

)
=

(
0

1

)
. (37)

This is the vector representation of a bit. The two mutually exclusive bit values
are represented as orthonormal vectors.

A string of two bits leads to the registers 00, 01, 10, and 11. We can
represent them as four-dimensional orthonormal vectors

|ξ〉 = ξ00|00〉+ ξ01|01〉+ ξ10|10〉+ ξ11|11〉,

ξij ∈ {0, 1},
1∑

i,j=0

ξij = 1.
(38)

Thus, exactly one ξij is equal to 1, the other ones are 0. The vectors cor-
responding to the four mutually exclusive register values are represented as
the four-dimensional canonical orthonormal unit vectors in the complex vector
space C4:

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1

 . (39)

If we write both bits in the form (35), that is,

|ψ〉 = ψ0|0〉+ ψ1|1〉, |ϕ〉 = ϕ0|0〉+ ϕ1|1〉,
ψ0, ψ1, ϕ0, ϕ1 ∈ {1, 0}, ψ0 + ψ1 = 1, ϕ0 + ϕ1 = 1,

(40)

take their tensor product, and compare with (38), then we obtain

ξ00 = ψ0ϕ0, ξ01 = ψ0ϕ1, ξ10 = ψ1ϕ0, ξ11 = ψ1ϕ1. (41)

Hence, the coefficients ξij are just the products of the coefficients ψi and ϕj,
and the four possibilities have the register and vector representations (39).

The vector representation of a register of n bits is, via the tensor product
of the bits in the register, a standard unit vector in C2n . It is almost obvious
and easy to show that each finite-dimensional linear space can be embedded
into a tensor product of two-dimensional spaces.

The transition from the number representation or the register representa-
tion to the vector representation is called vectorization. The vector represen-
tation is widely used in quantum theory, when working with bits and qubits.

Summarizing, we have three mathematical equivalent representations: the
number, register, and vector representation. This has some important conse-
quences, as shown in QUITE36. Among them are consistent definitions of states

36Jansson [2017]
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and observables for various physical models, a vectorized classical mechanics,
or a unified treatment of classical mechanics, classical probabilistic mechanics,
and quantum theory via semimodules.

Experimental setups or machines are characterized by their mutually exclu-
sive and empirically decidable alternatives, namely the possibilities, outcomes
or elementary events. In the vector representation these alternatives form or-
thonormal unit vectors. Thus we call them base states. States are vectors
defined as superpositions37 of base states:

|ξ〉 =
∑
i

ξi|i〉, ξi ∈ C,
∑
i

|ξi|2 = 1, (42)

where {|i〉} denotes an orthonormal base, describing the mutually exclusive
and empirically decidable alternatives of a machine in its vector representa-
tion. The orthonormality implies that the coefficients, namely the probability
amplitudes, are inner products

ξj = 〈j|ξ〉. (43)

In our approach, the possibilities of one machine can be expressed in terms
of the possibilities of another machine, in the sense that a particle, interacting
in the present with the first machine choosing possibility |ξ〉 interacts with the
other machine by choosing possibility |j〉 with probability amplitude 〈j|ξ〉.

Born’s rule states that the transition from a state |ξ〉 to some state |j〉
is the squared magnitude of the amplitude 〈j|ξ〉. There is not much choice
to replace Born’s rule. Given a normalized state |ξ〉 as defined in (42), the
completeness of the orthonormal base {|i〉} implies∑

i

|i〉〈i| = 1,
∑
i

|〈i|ξ〉|2 =
∑
i

〈ξ|i〉〈i|ξ〉 = 〈ξ|ξ〉 = 1, (44)

where the 1 in the first equation denotes the identity operator. The sum over
all squared magnitudes |〈i|ξ〉|2 is one, and thus they can be interpreted as
a probability. If we would choose any other expression for the probability,
according to the Theorem of Gleason, these expressions would not add up to
one.

Since states can be described as vectors, it follows that the change of states
is described by matrices or linear operators. Therefore, quantum mechanics
is a linear theory in contrast to classical mechanics. But it turns out that a
vectorized classical mechanics is a linear theory as well, working with permu-
tation matrices, a special class of unitary matrices38. Given wave functions
and Schrödinger’s equation in the number representation, then vectorization
leads immediately to the language and machinery of matrix algebra with many
applications. For example, vectorization yields Newton’s equation of motion
in matrix form39.

37Formally, superposition means that with vectors, representing states, their linear com-
bination is also a state.

38Jansson [2017]
39See also Sections 8 and 9, Feynman [1948]
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3.4 Superposition in the Vector Representation

In this section, we write our probability theory in terms of the vector represen-
tation. When we use Dirac’s ”bra-ket“ notation and express the possibilities
as an orthonormal basis, we get back well-known quantum formulas.

The elementary possibilities of machines A,B, and C are mutually ex-
clusive and form orthonormal bases {|a〉} , {|b〉}, and {|c〉} of corresponding
Hilbert spaces. The possibilities of machine A can be expressed in terms of
the possibilities of B, and these can be expressed in terms of those of C, in
the sense that a particle, interacting in the present with machine A choosing
the possibility |a〉, chooses with probability amplitude ϕab the possibility |b〉
afterward, and so on. This superposition principle can be written as

|a〉 =
∑
b∈B

ϕab|b〉, where
∑
b∈B

|ϕab|2 = 1 and ϕab = 〈b|a〉. (45)

The last equation follows from the orthonormality, and using Dirac’s ”bra-ket“
notation, where the initial state is on the right hand side of the bracket and
the final state is on the left hand side. We have represented possibility {|a〉}
as a vector in the Hilbert space generated by the orthonormal basis {|b〉}. In
the same way, we can express each possibility {|b〉} in terms of the basis {|c〉}:

|b〉 =
∑
c∈C

ϕbc|c〉, where
∑
c∈C

|ϕbc|2 = 1 and ϕbc = 〈c|b〉. (46)

Therefore, |a〉 can be represented as a vector in the Hilbert space generated
by the orthonormal basis {|c〉}, yielding

|a〉 =
∑
b∈B

ϕab
∑
c∈C

ϕbc|c〉 =
∑
c∈C

(
∑
b∈B

ϕabϕbc)|c〉. (47)

Then equation (47) yields the probability amplitudes of the possibilities |aBc〉:

〈c|a〉 = ϕac =
∑
b∈B

〈c|b〉 〈b|a〉. (48)

which coincides with the superposition of probability amplitudes (27). If we
assume that the possibilities provided by machine B are internal, then the
outcomes are the possibilities |ac〉 = |aBc〉, and for calculating the amplitude
of an outcome we have to sum up over all amplitudes of the routes abc with
b ∈ B.

The complete experiment can be expressed as the superposition of its out-
comes:

|ξABC〉 =
∑
a∈A

∑
c∈C

ϕac|ac〉, (49)

where |ϕac|2 is the probability of outcome |ac〉.
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For the double-slit experiment, formulas (30) and (31) can be written as

〈dm|s〉 = 〈dm|a〉 〈a|s〉+ 〈dm|b〉 〈b|s〉. (50)

Keep in mind: The superposition principle in the interpretation
of the trinity of time is the unspectacular property of expressing
possibilities of one machine in terms of the possibilities of other
machines. Consequently, a quantum state is not a property of
one or more particles, but instead represents the properties
of an experimental setup.

These rules were never falsified when appropriately applied. A common
ground in probability theory is the multiply-and-add rule: (i) in quantum the-
ory the probability amplitudes for disjoint possibilities are added, and the
probability amplitudes for independent possibilities are multiplied, (ii) in clas-
sical probability theory we use the multiply-and-add rule with nonnegative real
numbers, and (iii) in Laplace experiments we count with natural numbers.
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3.5 The Unbelievable Simplicity of Slit Experiments

In this section, although we already discussed some aspects of the double-
slit experiment, we describe in more detail how simple and unspectacular slit
experiments can be explained, when we use our probabilistic recipe. For some
other aspects, see also Sections 2.6, 2.7, and 4.5 in QUITE.

The double-slit experiment40 with its diffraction pattern has been called
“The most beautiful experiment in physics”. The used experimental setups
depend on the type of objects interacting with the slit apparatus. It can be
done with photons or electrons, and becomes more difficult for increasing size of
the particles. Even large molecules, combined of 810 atoms, show interference.
In 2012, scientists at the University of Vienna developed a double-slit experi-
mental setup using large molecules called phthalocyanine. These molecules can
be seen with a video camera. The molecules are sent one at a time through the
wall with slits, such that exactly one molecule only interacts with the setup.
At the screen of detectors they arrive localized at small places. This is typical
for macroscopic objects, not for waves. Nobody has ever seen a collapsing
wave. Moreover, the pictures produced with a video camera demonstrate the
obvious incorrectness of the wave picture. But over a long period of time the
molecules, one after the other, build up into an interference pattern consisting
of stripes. This distribution shows the same kind of wave interference as if you
drop two stones into a smooth pool, simultaneously. This seems to be evidence
that this big molecule might travel as a wave. However, it is not a wave like a
water or a sound wave. It is simply a probability distribution.

Strangely enough and frequently emphasized, the interference pattern also
disappears if we obtain information only from one slit by using a detector there.
The molecules passing through the other slit know what happens at the slit
with detector. This phenomenon is called non-locality: what happens in one
location seems to effect what happens in a distant location instantaneously.
Non-locality is a fundamental mystery of today’s quantum mechanics. Notice
that in our approach this type of non-locality does not apply; the particle moves
on one path in the present in agreement with the probabilities calculated with
our recipe.

There is another strange mystery called the observer effect, that is, observ-
ing affects reality. Whether an interference pattern or a classical pattern occurs
depends on observing the slits. The usual explanation is that ”which-slit in-
formation“ makes the wave collapse into a particle. Therefore, in experiments
we can change the way reality behaves by simply looking at it. Consequently,
many physicists say that there is ”no reality in the quantum world“. Below
we show that the observer effect can easily be explained when carefully apply-
ing probability theory. There is no ”wave collapse”, but instead the detectors
producing the ”which-slit information“ change the whole experiment together
with its sample space.

Moreover, there is another aspect of the widely celebrated wave-particle
duality. In quantum mechanics, two-state systems are frequently discussed.
These are systems that can exist in a superposition of two mutually exclusive

40Crease [2002]
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base states. They form the fundamental quantities in quantum information
theory, namely the qubits, or the urs as von Weizsäcker calls them. Polarization
states or spin 1/2 states are examples. It is really questionable to use the
term ”wave“ for a two state system. The right way is to speak of probability
distributions, generated by all machines that form the experimental setup.
These machines are globally positioned in a large area, and thus give the
impression that quantum mechanics is non-local.

We mention a further series difficulty of the wave picture. Obviously,
Schrödinger’s wave equation can be no longer an ordinary wave propagating in
spacetime, if systems with N particles are considered. Instead, it propagates
in the so-called configuration space of dimension 3N, where even for a small
macroscopic system this dimension becomes astronomically large.

Zeilinger, well-known for his pioneering experimental contributions to the
foundations of quantum mechanics, gave an impressive talk in 2014 41 ”Break-
ing the Wall of Illusion“. He said that in science we broke down many illusions
in the course of history, for instance, that ”the earth is flat“, that ”the earth
is the center of the universe“, that ”we are biologically special and different
from other animals“, that ”space and time is something absolute“, and ”in
quantum mechanics we broke down many illusions about reality. One of the
illusions, we first broke down in quantum mechanics, is that an object can only
be at a given place at a given time. There have been many experiments about
that. One of the experiments was done by Jürgen Blinek many years ago, the
so-called double-slit experiment with atoms, which shows that atoms can go
through two slits at the same time.“

Can we resolve Zeilinger’s quantum mysteries? My guess is yes. Our ex-
planation of the double-slit experiment below breaks down the illusion that a
particle is a wave and can be at several places at the same time. This supports
experimental observations: an atom being at different places at the same time
has been never measured. The latter statement is only a mathematical conclu-
sion, not an experimental one. Secondly, the slit experiment (in our approach)
is a simple consequence of a probability theory which carefully distinguishes
between outcomes, possibilities, and internal possibilities. The experimental
setup, consisting of various machines, is responsible for the patterns. These
machines are distributed non-local over space. They are responsible for the
possibility space, the sample space, and the probability amplitudes, thus for
the concepts characterizing the future. The molecule’s property are local in-
teractions with the machines in the present. The patterns of the double-slit
experiment are facts in the past. There is no mystery. Mystery occurs because
most arguments are based on pushing the ”local“ properties of molecules in
the foreground, and not the global aspects of experimental setups.

41see for example YOUTUBE
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Keep in mind: The slit experiment in 2012 with the large ph-
thalocyanine molecules shows: (i) a molecule is not a wave, (ii)
supports clearly our probabilistic approach, (iii) the pictures of the
molecules with the video camera show that a material object is
not at different places at the same time, and (iv) it leaves many
quantum interpretations at least doubtful.

We consider a source of objects. For the sake of convenience, we assume
an experimental setup with a discrete space consisting of points

(m, t), m = −2,−1, 0, 1, 2, t = t0, t1, t2, (51)

where m denotes five spatial points at three times t, as displayed in Figure 2.
Of course, the future is timeless, and thus t represents no time. This notation
means that the future events at t0 would happen before the future events at t1,
and those before the future events at t2. In other words, the values ti describe
merely a causal ordering of the experiment. It is a property of the ordering
of machines inside the experimental set up, not time. This slit-experiment
consists of three machines, the source S containing only one possibility s, the
wall W with two slits a and b, and the screen of detectors dm ∈ D. At t0 a
particle leaves the source S, arrives at t1 at the wall with two slits a and b, and
is detected at t2 in exactly one of the detectors dm. We ask for the probability
that the particle is detected at point m.

It makes no difference for the mathematical treatment, if we choose a much
finer grid, for instance with 10100 points, leading to an approximation of space-
time that is much finer than the accuracy of any measurements.

Now we explain this experiment by using our recipe: firstly, we define the
possibility space, secondly, we define the sample space, thirdly, the complex
amplitudes are multiplied for independent possibilities and are added for mu-
tually exclusive possibilities, and finally, for the outcomes the magnitudes of
the amplitudes are squared according to Born’s rule. In the following, we use
the vector representation.

At first, we consider the experiment where b is closed. Then the possibility
space is

P = {|sadm〉 : m = −2,−1, 0, 1, 2, } . (52)

There are no internal possibilities. Therefore, the outcomes coincide with the
possibilities, and the possibility space P is equal to the sample space Ω. Hence,
according to our definition, we have a classical experiment. In the following
we write shortly |dm〉 for the outcomes.

The probability amplitude 〈a|s〉 = 1, since we consider only particles that
pass the slit a. Since the other slit is closed, it follows that

〈dm|s〉 = 〈dm|a〉〈a|s〉 = ψm. (53)

There is only one route. Alternatively, we could set 〈b|s〉 = 0. Then

〈dm|s〉 = 〈dm|a〉〈a|s〉+ 〈dm|b〉〈b|s〉

= 〈dm|a〉 · 1 + 〈dm|b〉 · 0

= ψm.

(54)



3 UNIFICATION: CLASSICAL AND QUANTUM PROBABILITY 44

'

&

$

%
Figure 4: Results of a double-slit-experiment performed by Dr. Tonomura
showing interference. The numbers of electrons are 11 (a), 200 (b), 6000 (c),
40000 (d), and 140000 (e). The electrons were shot one by one through the
double-slit so that they could not interfere with each other.
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Born’s rule implies Prob{〈dm|s〉} = |ψm|2. Thus, we obtain a classical proba-
bility without any interference, as expected.

Secondly, we consider the experiment where slit a is closed. Using the same
arguments as above, we obtain Prob{〈dm|s〉} = |ϕm|2 without any interference.

Finally, we assume that both slits are open. Then the possibility space is

P = {|sadm〉, |sbdm〉 : m = −2,−1, 0, 1, 2, } . (55)

The internal possibilities are the two slits a and b in the wall W . Hence, the
sample space consists of the outcomes

Ω = {|sWdm〉 : m = −2,−1, 0, 1, 2, } , (56)

In the following, we write shortly |dm〉 for these outcomes. The possibility
space is larger than the sample space yielding a non-classical model.

We assume that the experiment is symmetric with respect to both slits,
that is, in a future experiment the particles pass with probability 1

2
through

each slit. Hence, we set 〈a|s〉 = 〈b|s〉 = 1√
2
. The probability amplitudes

calculated by the multiply-and-add rule are

〈dm|s〉 = 〈dm|a〉〈a|s〉+ 〈dm|b〉〈b|s〉

= 1√
2
ψm + 1√

2
ϕm.

(57)

Therefore, we get the probabilities

Prob{〈dm|s〉} = | 1√
2
ψm + 1√

2
ϕm|2

= 1
2
(ψm + ϕm)∗(ψm + ϕm)

= 1
2
(ψ∗mψm + ψ∗mϕm + ϕ∗mψm + ϕ∗mϕm)

= 1
2

(|ψm|2 + |ϕm|2) + 1
2
(ψ∗mϕm + ϕ∗mψm).

(58)

It follows that the first term in this sum corresponds to the classical probability,
and the second term describes interference.

This can easily be seen as follows. For points m with ψm = ϕm we obtain
from (58)

Prob{〈dm|s〉} = 2|ψm|2. (59)

This doubles the classical probability, where only one slit is open. Hence,
we have constructive interference. If ψm = −ϕm, the probability of finding the
particle at point m is

Prob{〈dm|s〉} = 0, (60)

yielding destructive interference. For other combinations we obtain probabili-
ties that are between both extreme cases, as displayed in Figure 5.

Until now we don’t have the correct values for all amplitudes, such as ψm
and ϕm. In order to calculate the amplitudes for particle with momentum p
going from one position x1 to another x2 we need the classical physical action
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Figure 5: Schematic illustration of the double-slit experiment. The arrows
represent the complex amplitudes for each path and their sum. Squaring the
magnitude of the sum determines the corresponding probability. This leads to
destructive and constructive interference, as displayed on the wall of detectors.
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Figure 6: The double-slit experiment with slit-detectors. There are two paths
for the event that a particle arrives at point 2 and detector da clicks. For the
other points there are two paths as well.

of this process, usually denoted by S. In classical mechanics a first order
approximation of the action is S = p(x2 − x1), and the related amplitude of a
path between positions x1 and x2 is proportional to the complex number

〈x2|x1〉 = eiS/~ = eip(x2−x1)/~, (61)

where ~ is Planck’s constant.
Now, we want to discuss the case where we can get information about

which slit the particle passes through. This information can be given by two
additional detectors da and db that click when a particle passes slit a or b,
respectively. Of course, detectors may fail and information might be wrong.
Such cases are not considered at the moment. We assume that the detectors
work correctly, that is, it cannot happen that a particle arrives at m via slit b
and detector da clicks, or both detectors da or db don’t click.

The experimental setup has changed. Now, we apply our recipe. Addition-
ally, we have at the third place the machine I = {da, db} of detectors which
gives information through which slit a particle passes. Looking at the experi-
ment SWID, displayed in Figure 6, we have the possibilities that a particle is
detected at point m and the detector da or db clicks. Obviously, there are no
internal possibilities. Therefore, the outcomes coincide with the possibilities,
and the possibility space is equal to the sample space:

P = Ω = {|sadadm〉, |sbdbdm〉 : m = −2,−1, 0, 1, 2, } . (62)
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Thus, we have a classical experiment without any interference. But the out-
comes have changed. They are doubled. Of course, a change of the possibility
space and the sample space must imply a change of the statistics.

In the following we denote |m, da〉 and |m, db〉 as the outcomes. The am-
plitude that a particle goes from source s via slit a to point m and detector da
clicks is

〈(m, da)|s〉 = 〈m|da〉〈da|a〉〈a|s〉. (63)

For each outcome we have exactly one path. Our assumptions imply the

probability amplitudes 〈da|a〉 = 1 and 〈a|s〉 =
1√
2

. Hence,

〈(m, da)|s〉 = 〈m|a〉〈a|s〉 =
1√
2
ψm, (64)

which leads to the classical probability Prob{〈(m, da)|s〉} = 1/2|ψm|2, see (54).
Analogously, we obtain the classical probability Prob{〈(m, db)|s〉} = 1/2|ϕm|2.
The fact that in this experiment internal possibilities are absent, such that
possibilities coincide with outcomes, implies the disappearance of interference.
It is simply a consequence that there are no internal possibilities. This has
nothing to do with human observes, as frequently and erroneously mentioned.

The same result is obtained when we use only one detector, say detector
da. Then the detector db is replaced by the possibility ”detector da does not
click“. As above we obtain the same possibilities and outcomes yielding the
same classical probabilities.

Finally, we consider the experiment where it may also happen that a parti-
cle arrives at m via slit b and detector da clicks, or that a particle arrives at m
via slit a and detector db clicks. The case where both detectors click or both
don’t click is left as an exercise.

Now the slits represent internal possibilities. The possibility space is

P = {|sadadm〉, |sbdbdm〉|sadbdm〉, |sbdadm〉 : m = −2,−1, 0, 1, 2, } . (65)

yielding the sample space:

Ω = {|sWdadm〉, |sWdbdm〉 : m = −2,−1, 0, 1, 2, } . (66)

As before we denote |m, da〉 and |m, db〉 as the outcomes.
In our new experiment, the amplitude that a particle goes from source s

via slit a to point m and detector da clicks is

〈m|da〉〈da|a〉〈a|s〉. (67)

But it may also happen that a particle arrives at m via slit b and detector da
clicks. This possibility has the amplitude

〈m|da〉〈da|b〉〈b|s〉, (68)
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and should happen rarely, provided the detectors work well. Other mutually
exclusive possibilities do not occur, as can be seen from Figure 6. According
to our addition rule we have to add both amplitudes

〈(m, da)|s〉 = 〈m|da〉〈da|a〉〈a|s〉+ 〈m|da〉〈da|b〉〈b|s〉 (69)

for the outcome that a particle arrives atm from source s and detector da clicks.
Thus, we have a non-classical model with interference. The corresponding
probability is

Prob{〈(m, da)|s〉} = |〈(m, da)|s〉|2. (70)

If the detectors are perfect, then the probabilities

Prob{〈da|a〉} = 1 and Prob{〈da|b〉} = 0, (71)

yielding 〈da|a〉 = 1 and 〈da|b〉 = 0. The superposition vanishes, and assuming
〈a|s〉 = 1√

2
gives

Prob{〈(m, da)|s〉} = |〈m|a〉〈a|s〉|2 =
1

2
|ψm|2, (72)

which is the classical probability as in (64).
With the same arguments as before, we obtain the amplitude

〈(m, db)|s〉 = 〈m|db〉〈db|a〉〈a|s〉+ 〈m|db〉〈db|b〉〈b|s〉 (73)

for the event that a particle arrives at point m from source s and detector db
clicks. For an ideal detector 〈db|a〉 = 0, and assuming 〈b|s〉 = 1√

2
, we obtain

the classical probability

Prob{〈(m, db)|s〉} = |〈m|b〉〈b|s〉|2 =
1

2
|ϕm|2. (74)

Finally, if both detectors don’t work, say all amplitudes 〈da|a〉, 〈da|b〉,
〈db|a〉, and 〈db|b〉 are equal to some value α, then the total amplitude becomes

〈m|s〉 = 〈(m, da)|s〉+ 〈(m, db)|s〉
= α · ( 1√

2
ψm + 1√

2
ϕm).

(75)

Comparing with (57), it follows that this is the probability if both slits are
open, except for the factor α. Thus we have interference as in the case without
any detectors.

All of our calculations have nothing to do with properties of particles or
human beings that observe. Particles must only interact with the experimental
setup. Only the experimental setup, consisting of several machines, determines
the possibilities, outcomes, and amplitudes. A change of outcomes and pos-
sibilities in the experiment implies a change of the probabilities. That’s all,
nothing strange happened.
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In many textbooks, phrases like ”a conscious observing implies that in-
terference vanishes“ can be found42 . This popular belief, that a conscious
mind can directly affect reality, is not necessary when using the trinity of
time. We have a clear cut between interacting objects and experimental se-
tups, distinguishing between possibilities, internal possibilities, and outcomes
or elementary events. In our approach, last looker or other strange properties
are not required.

Keep in mind: When using the concept ”trinity of time“ with
distinguishing between possibilities, internal possibilities, and out-
comes, then last looker or other strange properties are not required.

42The term ”observed“ is ambiguous. What means ”observing a quantum system“? Is it
an interaction with another physical system of matter or energy, say the measuring appa-
ratus? Or does it require a human intelligent mind? In our approach, any observations or
measurements of a quantum system are physical interactions with a measuring apparatus
or the environment in the present.
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3.6 Hardy’s Paradox

Hardy’s paradox43, published in 1992, is a spectacular experimental setup,
where simple logical arguments about its physical constraints lead to a sur-
prising contradiction: logic says that the experiment is not realizable, although
it is realized with photons. See also Laloë for a nice presentation44 on this.
Hence, this paradox is a challenge for each interpretation, also for our proba-
bilistic approach.

Hardy’s paradox involves a two-qubit state consisting of two particles that
are emitted simultaneously from a source S. Each particle interacts with two
machines in series, say A and A′ for the first particle and B and B′ for the
second particle. They can choose two kinds of possibilities for each machine
which we denote by the values ±1, that is, a = ±1 for a ∈ A and so on.

Let us, for instance, consider a polarization experiment. Imagine that the
not-primed possibilities a and b describe interactions of two photons with bire-
fringent plates such that the z-axis is the optical axis. The primed possibilities
a′ and b′ are the possibilities with respect to a plate with an optical axis in
the xz-plane making an angle ϑ with the z-axis. Horizontal polarization is
denoted by the value −1, and vertical polarization is denoted by the value +1.

Let us now look at an optical experimental setup, where additionally the
following three conditions must be fulfilled when performing this experiment
several times:

(i) The not-primed result, a = +1 and b = +1, sometimes occurs.

(ii) The mixed-primed results, a = +1 and b′ = +1 as well as a′ = +1 and
b = +1, never occur.

(iii) The doubly-primed result, a′ = −1 and b′ = −1, never occurs.

The first condition guarantees that, when performing the experiment sev-
eral times, sometimes the result a = +1 and b = +1 is obtained. But in these
cases the second condition implies that b′ = −1, since we have a = +1. Anal-
ogously, it must be a′ = −1, since we have b = +1. Obviously, this violates
the third condition. In other words, the three conditions cannot be fulfilled,
simultaneously, leading to a striking contradiction.

A real surprise is the existence of a well-working experimental realization
of Hardy’s thought experiment with photons45. How can it be, although logic
tells us that there cannot be a realization? The basic building blocks of this
experiment is a pair of Mach-Zehnder interferometers that interact through a
beam splitter.

Hardy’s paradox is not restricted to photons. In principle, we can also take
spin 1/2 particles. There is a subtle, not essential, difference between both
types of particles. The two orthonormal base states for photons are horizontal
and vertical polarization with respect to some axis. The two spin base states
are called ”up“ and ”down“, with the difference that the angles for photons are

43Hardy [1992]
44Laloë [2001]
45Irvine, et al. [2005]
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mathematically handled as being half the angles for spin 1/2 particles. Apart
from that, the mathematical framework for photons and spin 1/2 particles is
the same.

Moreover, we can also describe and discuss Hardy’s paradox in terms of a
three-slit experiment, and we will do this in the following. The experimental
setup consists of a source that produces simultaneously two particles, which
arrive afterwards at a wall with three slits, and which are finally detected
on a wall of position detectors. The realization must satisfy the following
conditions:

(a) The value a = +1 denotes the possibility that the first particle passes in
the present the topmost slit. The value a = −1 denotes the possibility
that the first particle passes the middle slit.

(b) The value b = +1 denotes the possibility that the second particle passes
in the present the lowest slit. The value b = −1 denotes the possibility
that the second particle passes the middle slit.

(c) It is impossible that both particles pass the middle slit simultaneously.
Perhaps, the slit is too small, or they annihilate each other. Moreover,
the first particle cannot pass the lowest slit, and the second particle
cannot pass the topmost slit, since there is a partition in the middle of
the wall. For the possibility where both particles don’t pass the middle
slit in the present, this slit is open, and we have the usual interference
patterns for each particle as in the double slit experiment. It follows
that the final wall of detectors is partitioned into areas of destructive
and constructive interference.

(d) The primed value a′ = +1 denotes the possibility that in the present the
first particle would end in the area of destructive interference. This can
be the case only if the second particle blocks the middle slit, and thus
destroys the area of destructive interference. The primed value a′ = −1
is the negation, thus denotes the possibility that the first particle does
not end in the area of destructive interference. In the same way, the
primed values b′ = +1 and b′ = −1 are defined.

Now we have a thought experiment of a two-qubit state system which
satisfies the conditions above. Does it work, and if yes, why? The condition
(i) is satisfied, since it is possible that the first particle may pass the topmost
slit whereas the second particle may pass the lowest slit, that is, ”a = +1
and b = +1“ may sometimes occur. The second condition (ii), that ”a =
+1 and b′ = +1 never occurs“ is fulfilled, since the first particle passes in
the present the topmost slit such that the middle slit is free. Hence, the
second particle comes to two open slits, and thus cannot end in the area of
destructive interference. Similarly, the second statement of condition (ii) is
fulfilled. Finally, the third condition (iii) is satisfied, because both interference
patterns are not destroyed, if both particles can simultaneously pass the middle
slit. But because of (c) this is forbidden, such that a′ = −1 and b′ = −1 never
occurs.
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Because of the contradiction proved above it seems that this slit experiment
cannot be realized. What is wrong? However, we show that the experiment
can be realized theoretically without any contradiction, and we explain it with
classical logic by using our probability recipe.

Let us apply our recipe. Our first step is to find all possibilities. The
elementary possibilities are the subsets {saba′b′} consisting of one element. In
the vector representation, these are all states

|saba′b′ : a = ±1, b = ±1, a′ = ±1, b′ = ±1〉. (76)

But many of them vanish because of the conditions above. For instance, the
possibility where a = −1 and b = −1 vanishes, since both particles cannot pass
the middle slit simultaneously. Because of condition (iii) the values a′ = −1
and b′ = −1 are not allowed. We simplify our notation slightly and write for
non-elementary possibilities:

|a′ = +1, b′ = +1〉 = |SABa′b′ : a′ = +1, b′ = +1〉, (77)

|a = +1, b′ = −1〉 = |SaBA′b′ : a = +1, b′ = −1〉, (78)

|a = −1〉 = |SaBA′B′ : a = −1〉, (79)

and so on.
Since there are no detectors at the slits, the internal possibilities describe

the different situations in which both particles may pass the wall of slits.
Therefore, the internal possibilities are

|a = +1, b = +1〉, |a = +1, b = −1〉, |a = −1, b = +1〉. (80)

The possibility |a = −1, b = −1〉 is forbidden or has probability zero because
of condition (c). Both particles can choose in a future experiment the first as
well as the second and as well as the third internal possibility. Remember, if
the experiment is performed in the present, then either the first or the second
or the third internal possibility is chosen. Summarizing, we have described all
possibilities and all internal possibilities.

In the second step we determine the sample space of outcomes. From
conditions (i), (ii), and (iii) it follows that, in the vector representation, all
outcomes are given by

|a′ = +1, b′ = +1〉, |a′ = +1, b′ = −1〉, |a′ = −1, b′ = +1〉. (81)

The possibility |a′ = −1, b′ = −1〉 is forbidden or has probability zero because
of condition (iii).

Since the complete experiment can be expressed as the superposition of its
outcomes (49), it follows that the state vector of outcomes takes the form

|ξ〉 = α|a′ = +1, b′ = −1〉+β|a′ = −1, b′ = +1〉+γ|a′ = +1, b′ = +1〉. (82)

This superposition of outcomes is an entangled state vector, where Born’s rule
applied to the probability amplitudes α, β, and γ yields the probabilities for
the outcomes. We calculate the amplitudes in a moment.
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Now, our basic question, whether Hardy’s experiment is realizable, is equiv-
alent to the question whether the probability of the possibility |a = +1, b = +1〉
is greater than zero. Hence, we ask for the existence of a non-zero probability
amplitude for this possibility. If the probability amplitude is zero, then the
experiment is not realizable.

Since the possibility |a = +1, b = +1〉 is not an outcome, this is in some
sense an inverse problem. Thus in step 3 of our recipe, at first we calculate
the probability amplitudes α, β and γ of the superposition (82).

The primed possibilities as well as the possibilities without prime form
orthonormal bases in C2. We use a reference frame such that both vectors
|a = ±1〉 and both vectors |b = ±1〉 are the unit vectors along the z-axis
and the x-axis. The primed orthonormal vectors |a′ = ±1〉 and both vectors
|b′ = ±1〉 define the basis with respect to a different axis in the xz-plane.
This axis makes an angle ϑ with the z-axis. Now the important point is that
in our approach we can express possibilities of one machine in terms of the
possibilities of another machine, that is, we use superposition in terms of the
Ansatz:

|a = +1〉 = cosϑ|a′ = +1〉+ sinϑ|a′ = −1〉,

|b = +1〉 = cosϑ|b′ = +1〉+ sinϑ|b′ = −1〉.
(83)

Since the tensor product is bilinear, we simply can write the possibility
|a = +1, b′ = +1〉 in terms of the primed quantities as

|a = +1, b′ = +1〉 = cosϑ|a′ = +1, b′ = +1〉+ sinϑ|a′ = −1, b′ = +1〉.(84)

According to Born’s rule, the transition amplitude from one state to another
(in the same Hilbert space) is described by the inner product of both states.
In our case the interesting amplitude is the inner product 〈ξ| a = +1, b′ = +1〉.
Since both vectors in the inner product are primed quantities according to (82)
and (84), this inner product is well-defined, Condition (ii) says that ”a = +1
and b′ = +1“ never occurs, thus has probability zero. Hence, the related
probability amplitude must be zero, that is,

0 = 〈ξ| a = +1, b′ = +1〉 (85)

= 〈ξ| cosϑ|a′ = +1, b′ = +1〉+ 〈ξ | sinϑ|a′ = −1, b′ = +1〉 (86)

. = γ cosϑ+ β sinϑ. (87)

Analogously, the exclusion condition a′ = +1 and b = +1 is equivalent to

0 = 〈ξ|a′ = +1, b = +1〉, (88)

= γ cosϑ+ α sinϑ. (89)

Both equations are equal to zero. Division with sinϑ yields

α = β = −γ cotϑ. (90)
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Since the state vector (82) is not normalized until now, we can multiply with
sinϑ and get

|ξ〉 = − cosϑ (|a′ = +1, b′ = −1〉+|a′ = −1, b′ = +1〉)+sinϑ |a′ = +1, b′ = +1〉.
(91)

We have obtained the state vector of the outcomes with its probability
amplitudes. Now, we can ask for the probability for condition (i), that is,
whether the internal possibility ”a = +1 and b = +1“ sometimes occurs.
According to Born’s rule we must calculate the bracket

〈ξ|a = +1, b = +1〉, (92)

square its magnitude, and divide this expression by the square of the norm of
state ξ. With (83) and (91) it follows that

〈ξ|a = +1, b = +1〉 = 〈ξ|(cosϑ|a′ = +1〉+ sinϑ|a′ = −1〉)

⊗ (cosϑ|b′ = +1〉+ sinϑ|b′ = −1〉) 〉

= 〈ξ| cos2 ϑ|a′ = +1, b′ = +1〉

+ 〈ξ| cosϑ sinϑ|a′ = +1, b′ = −1〉

+ 〈ξ| cosϑ sinϑ|a′ = −1, b′ = +1〉

+ 〈ξ| sin2 ϑ|a′ = −1, b′ = −1〉

= − cos2 ϑ sinϑ

(93)

We square the magnitude of this expression, divide it by the square of the
norm of state ξ, and obtain the probability for the possibility a = +1 and
b = +1:

Prob(a=+1 and b=+1) =
cos4 ϑ sin2 ϑ

2 cos2 ϑ+ sin2 ϑ
. (94)

The maximum of this probability is about 0.09.
Summarizing, our probability recipe based on a careful distinction between

possibilities, internal possibilities, and outcomes proves that the three condi-
tions (i), (ii), and (iii) can be realized, in contrast to the proof based on simple
logical arguments. Why?

If you look into the literature, then either the realization of this experiment
is not further discussed, or sometimes erroneous arguments are presented. In
his interesting presentation Moti46 writes:

A lot of confusion has been said about this experiment. Peo-
ple discussed specific properties of antiparticles and annihilation.

46https://motls.blogspot.com/2011/01hardys-paradox-kills-all-realistic.htm



3 UNIFICATION: CLASSICAL AND QUANTUM PROBABILITY 56

However, the surprising content of this thought experiment - and
real experiment - has nothing whatsoever to do with antimatter.
It is just another example of the difference between the incorrect
classical logic and the correct quantum logic (including the rules of
entanglement). Moti 2011

However, going through the derivation above once more, we have used only
classical logical arguments. Quantum logic is not necessary. The key difference
to deterministic classical mechanics is the fact that quantum mechanics is a
probability theory of the future: possibilities of one machine can be expressed
in terms of the possibilities of another machine, according to the superposition
principle which is described as a simple mathematical equation. Classical
mechanics, as a theory of the past, works with facts, and thus superpositions
like (83) are not allowed. In our derivation, it is the superposition principle,
applied to internal possibilities, which is responsible for the realization of this
spectacular experiment. Then interference occurs leading to the realization of
Hardy’s paradox.

But we can ask whether this derivation works also for classical probabilities.
Hence, we use the Ansatz

|a = +1〉 = p|a′ = +1〉+ q|a′ = −1〉, (95)

|b = +1〉 = p|b′ = +1〉+ q|b′ = −1〉, (96)

where p and q are non-negative real numbers such that p2 + q2 = 1. Moreover,
the values α, β and γ in (82) must be non-negative, such that the squared
values sum up to one. Proceeding as above, and dividing with q yields

α = β = −γ p
q
. (97)

Hence, negative values occur yielding a contradiction. It shows that this ex-
periment is not realizable with the formalism of classical probability theory,
and in particular with classical mechanics.

In our derivation we didn’t use imaginary numbers, only real ones. Thus,
using our rules with real numbers already explains the realization of this ex-
periment. The reason is that the axes of the machines are in the xz-plane. It is
possible to generalize Hardy’s paradox to an experimental setup that requires
axes in the real three-dimensional space. Then we need imaginary numbers,
like in polarization and spin experiments.

The quantum superposition only applies if internal possibilities occur in the
experiment. In other words, the distinction between possibilities and internal
possibilities can be viewed as the basic reason for the realization of Hardy’s
experiment. Internal possibilities remain unknown and are not given outside.
This is in contrast to many, perhaps most other interpretations of quantum
mechanics. There, it is allowed that a superposition of microscopic particles
carry over to macroscopic objects. Look, for example, at von Neuman’s mea-
surement, at Schrödinger’s cat, or at Wigner’s many mind interpretation.
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3.7 The Frauchiger Renner Paradox

In the well-known journal ”Quantamagazine“ an article47 about the Frauchiger
Renner thought experiment starts with the statement ” A thought experiment
has shaken up the world of quantum foundations, forcing physicists to clarify
how various quantum interpretations (such as many worlds and the Copen-
hagen interpretation) abandon seemingly sensible assumptions about reality“.

The spectacular title of the paper of Frauchiger and Renner48 is ”Quan-
tum theory cannot consistently describe the use of itself“. In particular, a
no-go theorem is presented stating that three very natural-sounding assump-
tions cannot all be valid. Table 4 in this paper presents violations of these
assumptions for almost all well-known quantum interpretations. For instance,
it is argued that no single-world interpretation can be self-consistent. A single-
world interpretation is each theory stating that for measurements actually just
one outcome occurs. In fact, our approach is a single-world interpretation.

This paper is closely related to Hardy’s paradox together with ”Wigner’s
friend“ arguments. With our knowledge now, it may be a funny and fascinating
exercise to find out whether this paper is true, thus falsifying our approach, or
classifying it as a ”crackpot paper“ as pointed out in motls.blogspot.com.

47New Quantum Paradox Clarifies Where Our Views of Reality Go Wrong, Dec 4, 2018
48Frauchiger, Renner [2018]
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3.8 Pinball, Polarization and Spin

In quantum mechanics spin is known as an intrinsic form of angular momentum
carried by particles. Spin is required in order to describe several experiments,
such as the Stern-Gerlach experiment. A simple visualization, already sug-
gested 1925 by Uhlenbeck and Goudsmit, is a particle spinning around its own
axis. It turned out that spin is quantized, that is, it can have only a finite
number of discrete values with respect to a given axis. Electrons, or more gen-
eral fermions, have spin 1/2, that is, they have two discrete values s+ = +1/2
and s− = −1/2 for each axis. In orthodox quantum theory, spin is described
by a spacetime-spin wave function

ψ(x, s, t). (98)

The degrees of freedom are the continuous position coordinates and the discrete
spin values. Usually, this wave function is written as a column vector, where
the spin values are related to the indices of the vector. For electrons we get

ψ =

(
ψ0(x, t)

ψ1(x, t)

)
= ψ0(x, t)

(
1

0

)
+ ψ1(x, t)

(
0

1

)
. (99)

This representation is called a spinor. It allows to work appropriately with
Pauli matrices.

But now we have a big problem. Complex spacetime-spin wave func-
tions describe in our approach possibilities belonging to the future and repre-
senting the stochastics of experimental set ups, but not momentary interactions
of the particles with the setup. The latter happen in the present in accordance
with the related probability amplitudes. In other words, spin should be part
of a random variable, in physics called wave function, which describes proper-
ties of the macroscopic mechanical experiments, not in the first place intrinsic
properties of particles. A particle has mainly one property, namely that it can
interact in the present with the experimental setup.

In the same way, an electron or a silver atom should have no spin. Instead
the Stern-Gerlach platform should be responsible for the spin stochastics. Ac-
tually, Ohanian49 argued that ”spin may be regarded as an angular momentum
generated by a circulating flow of energy in the wave field of the electron. [...]
This provides an intuitively appealing picture and establishes that neither the
spin nor the magnetic momentum are internal - they are not associated with
the internal structure of the electron, but rather with the structure of its wave
field“. The wave field is generated by a machine, for instance the Stern-Gerlach
apparatus.

All this may be similar to the pinball game. The pinball machine and the
player describe by its mechanical structure the entire stochastics. The ball
merely has to be just round with an appropriate size for interacting with the
pinball machine. The game, namely all interactions, takes place in the present
in accordance with the stochastics, the latter being part of the future.

Similarly, the polarization of a photon may not be associated with the
internal structure of the photon, but the optical elements are responsible for

49Ohanian [1986]
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the polarization stochastics. The same holds valid for other particles. This, of
course, raises a completely different picture on particle physics, and questions
many statements. This seems counterintuitive and is against the faith of almost
all physicists. But this is what you have to pay, if you describe quantum theory
as a probabilistic theory of future events. To some extent, this turns particle
physics upside down. Von Weizsäcker50, who often emphasized the splitting
of time into past, present, and future, solved this dilemma by introducing a
temporal logic. Instead we go the direct route, but preserve classical logic.

50Wei88, Wei92, Wei06
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4 Feynman Revisited

In this section, we present some important aspects of Feynman’s publications51.
From his principles many other quantum mechanical rules emerge in a rather
natural way. A remarkable feature of Feynman’s formulation is on the one
hand its simplicity, and on the other hand its universal applicability. They
were never falsified when correctly applied. This is in contrast to many other
physical frameworks.

Even strange claims survive until now. For example, Dyson writes:

Thirty-one years ago [1948], Dick Feynman told me about his
”sum over histories” version of quantum mechanics. ”The electron
does anything it likes,” he said. ”It just goes in any direction at
any speed, forward or backward in time, however it likes, and then
you add up the amplitudes and it gives you the wave-function.” I
said to him, ”You’re crazy.” But he wasn’t.52

We mention that today Feynman’s approach is an actual fundamental tool
in string theory. For instance, superstring scattering amplitudes in the RNS
picture have been calculated only with Feynman sums over histories. There,
the usual quantum operator calculus would be ugly, perhaps would be impos-
sible.

In this section, we describe Feynman’s approach in terms of our probabil-
ity theory. In particular, we show that Feynman’s path integral, one of the
mathematical equivalent formulations of quantum mechanics, is an immediate
consequence of our recipe. It would be a good exercise to read his publication
in parallel and compare it with our presentation.

51Feynman [1948, 1985]
52https://en.wikiquote.org/wiki/Freeman_Dyson

https://en.wikiquote.org/wiki/Freeman_Dyson
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4.1 The Probability Amplitude for a Space-Time Path

The previous ideas about probability and probability amplitudes can be used
for describing the motion of a particle in spacetime53.

Usually, a uniformly moving three-dimensional space of positions (X, v) is
viewed as a reference frame. In QUITE, Sections 4.13 and 4.14, we have argued
that such a three-dimensional space of positions can be viewed as a position
machine, or as a ”train“ X moving at constant speed v. This machine is
characterized by the mutually exclusive possibilities of positions x ∈ X. Now,
imagine that our experimental setup consists of a finite number of position
machines. In the present, a particle can interact with these machines at points,
say with coordinates x0, x1, x2, ... successively. From a classical point of view,
the possibilities xi define a (non-continuous) path at successive times ti+1 =
ti + ε.

Now, our central question is: what is the probability that a particle starts
in xa ∈ X and ends in xb ∈ X? We shall solve this problem with the recipe as
described in Section 3.2.

At first, we ask: what is our possibility space? Obviously, the elementary
possibilities of our experiment consist of all paths with position coordinates
xa, x1, x2, ..., xb starting in xa and ending in xb. They define the possibility space
P. The complex probability amplitude of such a path is frequently written as
a function of the coordinates:

ϕ(xa, ..., xi, xi+1, ..., xb) = ϕxa...xixi+1...xb . (100)

We use both notations.
Assuming that only the starting point xa and the final point xb are detected,

and the other points of the path are internal possibilities, the outcomes can be
defined in the form

xaxb = xaXXX...Xxb. (101)

These subsets of the possibility space P describe a particle starting in xa and
ending in xb in a future experiment, where all other points xi are internal
possibilities. Hence, according to equation (23), the probability amplitude for
an outcome is

ϕxaxb = const
∑

all paths xa→xb

ϕ(..., xi, xi+1, ...). (102)

From Born’s rule we obtain the probability

Prob(xaxb) = |ϕxaxb|2. (103)

for this outcome.
In summary, we have applied our recipe to space-time machines and have

obtained probabilities for outcomes. However, the formulas (102) and (103)
are not complete, since we don’t know the explicit values of the probability

53See also Section 3, Feynman [1948]
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amplitudes ϕ(..., xi, xi+1, ...), as well as the normalization constant. This will
be considered in the next section.

Finally, we mention the case of more degrees of freedom. Then the position
coordinate xi will represent a set of coordinates (x

(1)
i , x

(2)
i , ..., x

(k)
i ) describing

a configuration with k degrees of freedom. A path is a sequence of such con-
figurations.
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4.2 The Calculation of Probability Amplitudes for a
Path

In the following we show how to compute numerically the important probability
amplitudes for outcomes54 yielding via Born’s rule probabilities. Then we can
apply Kolmogorov’s rules to calculate probabilities for subsets of the sample
space.

We remember Laplace’s rules:

• (Unity outcome): If there are several outcomes all contributing equally,
and it is agreed that neither seems favored over the other, all outcomes
should be equally likely assigned with the unit 1.

• (Addition rule) The probability of an event is summing up over all out-
comes contained in this event, where each term in the sum is equal to 1,
and then dividing by a normalizing constant, namely the number of all
possible outcomes of the sample space. In other words, probability is the
ratio of the favored elementary events to the total possible elementary
events.

In some sense quantum mechanics generalizes these rules from unities to com-
plex numbers, all equal in magnitude. We formulate the generalized principle
of indifference or unity outcome as follows:

• (Generalized unity outcome) All paths contribute with complex numbers
ϕ, equally in magnitude, that is,

ϕ(..., xi, xi+1, ...) = e
i
~S(...,xi,xi+1,...). (104)

The phase S of their contribution is called the action of the path.

From this point of view, quantum mechanics turns out to be a generalized
probability theory of Laplace experiments using complex numbers. In other
words, it shows the unbelievable simplicity of quantum theory as a generalized
Laplace calculus delivering numerical probabilities. We must only find an
appropriate action for the experimental setup.

Obviously, the action, from which the classical equations of motion of a
system can be derived, plays a fundamental role in physics. What is action?
In classical mechanics, it is a functional which takes the trajectory or path of
some system as its argument and maps it on a real number. Action has the
dimensions of energy multiplied by time or momentum times length. More
generally, the action S may be viewed as a universal number that summarizes
specific geometrical properties of the experimental setup. For simple exper-
iments, like throwing a die, the action can be defined as the zero function
yielding e

i
~S = 1. Then Feynman’s rules lead to Laplace’s rules in this special

case. In other words, classical experiments, which can be solved by the rules of
Laplace, can be solved with Feynman’s formalism by defining the action equal
to zero. The transition from elementary knowledge about probability theory,

54See Section 4, Feynman [1948]
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as taught in school, to quantum mechanics is simple, not strange, and quantum
mechanics turns out to be a natural extension of classical probabilistic rules.

On trajectories satisfying the Euler-Lagrange equations the action S, de-
livering the phase, is extremal. Hence, its first derivative with respect to small
path-perturbations is zero. Therefore, the probability amplitudes for the paths
in the neighborhood of the classical trajectory and those nearby almost have
the same direction. Hence, they add up without cancellation yielding a high
probability of the classical trajectory or orbit. The neighboring paths include
smooth and non-smooth zig-zag ones. Non-extremal orbits only have low prob-
abilities, because the amplitudes mostly cancel each other out55.

The law (104) can be viewed as the main result in Feynman’s theory. It
links the formulation of classical physics in the form of an extremal principle,
namely the action, with the Schrödinger equation in quantum physics. In our
language, it connects the past with the future, while Born’s rule connects the
future with the present, and the collapse marries the present with the past.

Spacetime paths are explained in classical mechanics. There, it is well-
known that the classical action of a path x(t) requires evaluating the integral

S [x(t)] =

∫
L(x, ẋ)dt, (105)

where the Lagrangian L(x, ẋ) is a function of position and velocity. We assume
that the path (..., xi, xi+1, ...) between two points is connected by a straight
line. Since the integral is a sum, we obtain

S [x(t)] =
∑
i

S(xi+1, xi), (106)

where the value S(xi+1, xi) is the classical action for the path on the small line
(xi+1, xi). This value is the one making the action extremal on this line.

The chronological order, frequently used in quantum physics and also used
in Feynman’s article, is to write the previous point xi on the right hand side,
and the final point xi+1 on the left hand side. In order to obtain the same
formulas as in Feynman’s article, we use his ordering.

Now we look at the problem of how to calculate the sum (102) over all
paths. In the following we consider only the one-dimensional case, since it is
easy to generalize the equations to the multi-dimensional case. For each path
we set

dxi = xi+1 − xi, ε = ti+1 − ti, i = 0, ..., N. (107)

Now we apply Riemann integration yielding via (106) the Feynman path inte-
gral

ϕxaxb = lim
ε→0

1

A

∫ ∫
...

∫
e

i
~ [

∑
i S(xi+1,xi)] ...

dxi+1

A

dxi
A
..., (108)

55For a proof see for example Egli [2004]
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where the normalization factor A is introduced such that condition (22) holds
true for the probability amplitude ϕxaxb . This is similar as for Laplace exper-
iments, where we need the normalization number N . Frequently, Feynman’s
path integral is denoted in the form

ϕxaxb =

∫
e

i
~S(x(t)) Dx(t). (109)

Now we have a formula for the probability amplitude for general actions,
which must be calculated explicitly. For a free particle the Lagrangian contains
only kinetic energy, that is, L = mẋ2/2. A lot of calculations which can be
found in most textbooks about quantum mechanics lead to

ϕxaxb =

[
2πi~(tb − ta)

m

]−1/2
exp

im(xb − xa)2

2~(tb − ta)
, (110)

where tb−ta denotes the required time. For other examples we refer the reader
to the literature.

Finally, Feynman56 writes that equation (108) completes his for-
mulation of quantum mechanics. Therefore, all basic notions of quan-
tum mechanics (wave functions, Schrödingers wave equation, operator algebra,
Newton’s equations, the Hamiltonian formalism, commutation relations, ....)
can be mathematically derived from his path integral formalism. All these
mathematical derivations can be found in his nicely written article.

We have derived Feynman’s equation (108) by simply using our
probabilistic recipe. Hence, this recipe can be viewed as the foun-
dation of quantum theory. Moreover, we have shown that Feynman’s for-
mulation can be derived easily from a generalization of Laplace’s rules and the
generalized principle of indifference. This generalization is based on complex
numbers, the largest field of reasonable numbers according to Hurwitz57. In
this sense, quantum theory has nothing to do with strange concepts such as
the wave-particle duality. It is a simple probability theory that applies ev-
erywhere, and is not restricted to microscopic systems, as mentioned several
times.

Keep in mind: Quantum mechanics turns out to be a generalized
probability theory of Laplace experiments using complex numbers,
the largest field of reasonable numbers according to Hurwitz. It
shows the unbelievable simplicity of quantum theory, not strange,
and easy to teach already in school.

56See end of Section 4, Feynman [1948]
57Jansson [2017, Section 2.2]
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4.3 Schrödinger’s Wave Equation

In this section we give a sketch of the derivation of Schrödinger’s wave equation,
thus proving that Feynman’s formulation implies the ordinary formulation of
quantum mechanics. All details can be found in his paper58.

Since integration is summation, for any point xc on a path between xa and
xb the action integral satisfies

S(xb, xa) = S(xb, xc) + S(xc, xa). (111)

Therefore, Feynman’s path integral fulfills the equation

ϕ(xb, tb;xa, ta) =

∫
ϕ(xb, tb;xc, tc) ϕ(xc, tc;xa, ta)

dxc
A
, (112)

where ta < tc < tb denotes the times related to the positions xa, xc, xb. Since
the probability amplitudes for disjoint possibilities are added, and the probabil-
ity amplitudes for independent possibilities are multiplied, the total amplitude
Ψ(xb, tb) to arrive at the point (xb, tb) is equal to the sum over all possible
values xa of the amplitudes ϕ(xb, tb;xa, ta) multiplied by the total amplitude
Ψ(xa, ta). Thus, we obtain

Ψ(xb, tb) =

∫
ϕ(xb, tb;xa, ta) Ψ(xa, ta)

dxa
A
. (113)

This distribution of probability amplitudes is called wave function, although it
has nothing to do with a wave. It’s simply a probability distribution describing
future events; nothing happens in contrast to classical waves.

We replace a and b by points xk and xk+1, respectively. Moreover, let t = ta
and t+ ε = tb for small ε. Then we can write

Ψ(xk+1, t+ ε) =

∫
ϕ(xk+1, t+ ε;xk, t) Ψ(xk, t)

dxk
A
. (114)

Comparing with (108) we get Feynman’s formula (18)59:

Ψ(xk+1, t+ ε) =

∫
e

i
~ [S(xk+1,xk)] Ψ(xk, t)

dxk
A
. (115)

Actually, our discrete path, and thus this equation, are only approximations
of first order in ε. The following equations must be understood in this sense.
We use the first order approximation of the action on the line (xk+1, xk):

S(xk+1, xk) = ε L

(
xk+1,

xk+1 − xk
ε

)
. (116)

Let us consider a particle with kinetic energy mẋ2/2 and potential energy
V (x). The Lagrangian is the difference between kinetic and potential energy,
thus yielding the approximation

S(xk+1, xk) =
mε

2

(
xk+1 − xk

ε

)2

− εV (xk+1). (117)

58See Section 5 and the following ones, Feynman [1948]
59See p. 14, Feynman [1948]
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Inserting this term into equation (115), some mathematical calculations60 im-
mediately lead to the well-known Schrödinger equation:

−~
i

∂Ψ

∂t
=

1

2m

(
~
i

∂

∂x

)2

Ψ + V (x)Ψ. (118)

The orthodox Copenhagen interpretation says that a system of particles is
completely described by its wave function Ψ, which lives in a Hilbert space. It
obeys a linear first order partial differential equation, namely the Schrödinger
equation. These are abstract mathematical statements without any relation-
ship to sense experience, see also the various comments of well-known physicists
about the quantum postulates in the introduction of QUITE. Frequently, in the
Copenhagen interpretation, it is emphasized that quantum mechanics makes
only statements about outcomes of experiments, but it is not allowed to ask
what is actually happening. These statements have led to endless discussions.

Our probabilistic approach generates quantum mechanics from our expe-
rience of mutually exclusive alternatives which characterize not particles, but
machines and the trinity of time, without leading to well-known paradoxes.

60See p. 20, Feynman [1948]



4 FEYNMAN REVISITED 68

4.4 The Hamiltonian

Hamiltonian mechanics is a mathematical formalism that provides a deeper
understanding of classical mechanics and of quantum mechanics61. In contrast
to space-time with four independent variables, Hamiltonian mechanics works
with six independent variables, namely three spatial coordinates x and three
velocity coordinates v, or, if you like, three momenta coordinates p . In classical
mechanics a state of a particle is a vector (x, p) of these six coordinates. The
phase space is the set of all states. Paths in the phase space consist of sequences
of states (x, p), that is, of pairs of positions and momenta or velocities. A path
can be visualized as a particle that jumps from one ”train“ (X, vi) to another
one.

The Hamiltonian function

H(x, p) = K(p) + V (x) (119)

is the sum of kinetic energy and potential energy. The Hamilton equations are
defined on the phase space:

ṗk = −∂H
∂xk

, ẋk =
∂H

∂pk
, (120)

The usual interpretation of these beautiful symmetric equations is: given any
Hamilton function H(x, p) and the values of the position and momenta coordi-
nates at some time t, the equations (120) give the coordinates of the resulting
path at an infinitesimal time later. The complete trajectory in the phase space
is obtained by successively updating the coordinates. This is the usual inter-
pretation of Hamilton’s equations. But in our interpretation these equations
describe facts of the past, and we know that the past is timeless. What does
t mean? Well it’s just a geometrical parameter that allows us to describe the
solution of the equations in an explicit form.

The relationship between Hamiltonian mechanics and the Lagrangian for-
malism is given by the equation

L(x, v) = pv −H(x, p), (121)

where for a particle of mass m the kinetic energy is K = mv2/2 and the
momentum is p = mv. Thus Feynman’s path integral can be defined with the
Hamilton function instead of the Lagrangian62. In QUITE, Sections 4.13 and
4.14, many advantages of describing classical physics and quantum physics in
terms of the phase space are explained.

61See also Section 10, Feynman [1948]
62Soff [2002]
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4.5 QED

In this section we present a very short introduction into a rather difficult topic,
namely the theory of quantum electrodynamics (QED). This is the oldest and
the most successful quantum field theory. The other theories in particle physics
are modeled in similar ways.

Although the details of this theory are complicated, some basic princi-
ples can be explained. A fundamental and very recommendable book with
title ”QED, the strange theory of light and matter“ is written by Feynman63.
We recommend the reader to work through this book parallel, in particular
through Chapter 3. This would be beneficial, because our language of future
events differs from the conventional reasoning in physics. It turns out, how-
ever, that our recipe for probability theory is a good starting point for a better
understanding of QED.

QED describes the interaction of light and electrons, and thus all of chem-
istry and biology. In particular, the behaviour of electrons in molecules, light
reflection, the Pauli principle, and all other well-known quantum phenomena
can be explained with this theory, except gravitation and nuclear phenomena.
Actually, this theory and consequently Nature deals with probability ampli-
tudes, and Feynman64 points out:

There are no ”wheels and gears“ beneath this analysis of Nature;
if you want to understand Her, this is what you have to take.

It is out of our scope to describe complicated formulas and details. But
the fundamental ideas can be presented on few pages. QED works with the
electromagnetic field, thus necessarily requires the relativistic (3+1)-spacetime
with coordinates (x, t). There is a difference between time t and space. In space
a material object can go forward or backward, left or right, and up and down.
But it cannot visit yesterday. In other words, it cannot go backward in time.
Unfortunately, in our approach the future, and therefore quantum theory, is
timeless. How is it possible to preserve QED, our best theory?

Well, we use spacetime coordinates only for calculating amplitudes, and we
can view spacetime formally as a machine itself described by four-dimensional
coordinates (x, t) such that particles can move free with respect to spatial co-
ordinates x, but only forward with respect to the coordinate t. In other words,
space and time are not separate quantities with distinct meanings. Instead,
they represent just different directions. Symmetry requires that there is an-
other type of particles which move only backwards with respect to coordinate
t, but move free in space X. These particles are called antiparticles. In sum-
mary, the coordinate t has a purely geometric character suitable for a timeless
theory.

In the following we consider only two examples. Firstly, we ask for the
probability that an electron and a photon, starting at two different points in
spacetime, are detected later on two other points. Secondly, we investigate
how an electron is scattered by an electromagnetic field. In QED such a field

63Feynman [1985]
64Feynman [1985, page 78]
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can be described as a machine composed of a collection of photons. Electrons
can interact with this machine. Thus, we have the actors, namely electrons
and photons, and we ask how to describe their interactions.

Surprisingly, it turns out that in QED only three key actions are sufficient
to describe all phenomena of light and electrons, namely the interactions:

• p(x, y): A photon goes in spacetime from position x, tx to position y, ty.

• e(x, y): An electron goes in spacetime from position x, tx to position y,
ty.

• s(z): A photon is scattered in spacetime by an electron, that is, the
electron emits or absorbs a photon at position z, tz, the latter called a
vertex.

Notice that these actions do not happen in the future, they describe only
possibilities. It’s the same as if you say that a coin has head and tails, but you
don’t throw the coin. It turns out that all possibilities, internal possibilities
and outcomes can be defined with these actions. The antiparticles can perform
the three key actions as well.

In order to get short formulas we suppress frequently the t value such that
we write only x instead of (x, tx) . In the following figures, the space coordinate
x is displayed on the horizontal axis, the coordinate t on the vertical axis, a
traveling photon is represented as a wiggly line, a traveling electron is displayed
as a straight line, and a scattering is drawn as a vertex where a photon, an
incoming electron, and an outgoing electron meet, see Figure 7. Our scaling
is not in terms of seconds. Instead we use a 45 degree angle for motion with
the speed of light. Then the horizontal distance y − x is equal to the vertical
distance ty − tx.

With these three actions we can define all possibilities, including the inter-
nal ones. Each possibility has an amplitude which can be calculated according
to our rules of the recipe. Feynman’s formulas are mathematically expressed
in terms of the spacetime coordinates. Since it is much easier to calculate
with the corresponding Fourier transforms leading to energy and momentum
coordinates, almost no textbooks use Feynman’s formulas. In our short pre-
sentation we abstain to derive and write down the exact formulas for these
amplitudes65. For the interested reader we recommend the book of Griffiths66

about particle physics; see also the article of Kummericki67.
The formula for the amplitude of the first action φp(x,y) is simple. It de-

pends on the differences y − x and ty − tx where the essential contribution
occurs for the speed of light. Surprisingly, in Feynman’s theory about
quantum electrodynamics68 a photon can move faster or slower than
the speed of light. There are nonzero amplitudes for these cases. It is al-
lowed that an electron or a photon can move to any place in spacetime with

65They depend on polarization and spin of the particles. Essentially, they are the solutions
of the Dirac equation for electrons and the Klein-Gordon equation for photons.

66Griffiths [2004]
67Kumericki [2016]
68Feynman [1985, page 89]
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Figure 7: Feynman diagrams for the three key actions.

speeds greater than light. The mathematical formalism shows that these am-
plitudes almost cancel out over long distances. But over very short distances
the photon travels zigzagging with speeds different to the speed of light.This
contradicts the fundamental postulate in the theory of relativity, namely that
nothing can move faster than the speed of light. Fortunately, in QUITE,
Chapter 4, we have derived the Lorentz transform, and thus the
mathematical formalism of special relativity, without this postulate.

Now we come to the second fundamental action e(x, y). The corresponding
amplitude φe(x,y) depends also on the differences y−x and ty− tx, but is more
complicated.

Finally, the third basic action s(z) describing scattering is simple. Its
amplitude φs(z) is just a number called j with value about −0.1.

With this preparation we can consider two examples, namely Compton
scattering and calculating the value of the magnetic moment. We shall use our
probabilistic recipe.

Compton scattering is a quantum process associated with an incoherent
interaction between a single photon and a free electron. An electron and a
photon are placed at distinct points x and y in spacetime, respectively. We
ask for the probability of detecting the electron at u and the photon at v.

In the first step of our recipe we have to determine all possibilities includ-
ing the internal ones. It suggests itself to consider all processes that can be
constructed by using our three key actions.

The simplest type of possibilities is described by two paths between y and
u for the electron and x and v for the photon, see the left diagram in Figure 8.
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Figure 8: Compton scattering.

Both are independent , so that we have to multiply both amplitudes, obtaining
φ1(y, u)·φ1(x, v). But that’s not all. As we know from slit experiments, we have
to compute all arrows for all possible paths between y and u for the electron
and x and v for the photon. All these arrows represent mutually exclusive
internal possibilities. Therefore, we have to add all these arrows yielding the
amplitude

φ1 =
∑

all paths y→u,x→v

φ1(y, u) · φ1(x, v) (122)

As we know, only the amplitudes of the paths that are infinitesimally close
to the path of least action contribute constructively, whereas all arrows cor-
responding to the paths distant from the classical path of least action cancel
out.

But the electromagnetic field, the machine consisting of a large, perhaps
infinite, number of photons, allows everything what is not forbidden. So the
next type of possibilities is displayed in the middle of Figure 8. The electron
travels to vertex z0, absorbs a photon, then travels to z1 emitting a photon,
and is finally detected at u, while the photon is detected in v. The vertices
describe internal possibilities. The amplitudes are again calculated with the
amplitudes of the three key actions: three electron actions, two photon actions
and two scattering vertices. These independent actions must be multiplied
for obtaining the amplitude describing two vertices. Then as before, we have
to add up all arrows for all vertices z0 and z1 and all paths, obtaining the
amplitude φ2. This involves integration.

We have a third diagram on the right hand side of Figure 8. The electron
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travels to the internal vertex z0, emits a photon detected in v, while the electron
travels to the internal vertex z1, where it absorbs the first photon, and is finally
detected at u. Again the amplitudes are calculated as before, obtaining φ3.

But this is not all. There is an infinite number of other possibilities with
more and more internal vertices, including also antiparticles. They can be
described by corresponding Feynman diagrams. Yes, the electromagnetic field
is a magical machine making almost everything possible.

All amplitudes must be added. Diagrams with more internal vertices are
multiplied with higher power of j ≈ 0.01. This is a very small number, such
that they don’t contribute to the overall amplitude φ for the outcome, namely
that an electron and a photon are placed at distinct points x and y in spacetime,
and are detected at u and at v. Thus, the overall amplitude is

φ = φ1 + φ2 + φ3 + ... (123)

Squaring the magnitude of this amplitude yields the probability of the
outcome. This is the fundamental approach of QED. It can be derived
with our probabilistic recipe in a natural way close to the Laplace
concept.

There is, however, a drop of bitterness. If we want to calculate ampli-
tudes for couplings and consider all possible vertices that can occur until zero
distances between them, then we obtain meaningless answers, since infinities
occur. Actually, physicists obtained infinities for every problem in QED. Now,
there exists a collection of techniques in QED and in quantum field theories,
called renormalization, that are used to treat such infinities. For an introduc-
tion we recommend the books of Feynman and Griffiths69.

Now we come to the calculation of the value of the magnetic moment.
This number stands for the response of an electron to a magnetic field. More
precisely, we want to compute the probability that an electron travels from
one position to another and scatters with a photon. The positions of the
electron and the photon are detected, thus describe the outcomes. A diagram
is displayed in Figure 9.

It was Dirac who calculated the magnetic momentum by deriving a formula
for the amplitude φ1

e(x,y). He obtained the value 1 when using appropriate
units. But later experiments showed that this number was not right. Instead
it should be about 1.00116.

Well, assuming that this measured amplitude is a better approximation, the
magical field of photons suggests the existence of other possibilities. Another
possibility is a path where the electron emits a photon at vertex z1, then
scatters with a photon at z0, and finally absorbs a photon at spacetime point
z2 before reaching the final position u, see Figure 10.

Therefore, electron lines and photon lines meet at three vertices z0, z1, and
z2 yielding an amplitude proportional to the small value j3. More precisely,
we write

φ2 = j3
∫
ψe(1,0)ψe(0,2)ψp(1,2)dz, (124)

69Griffiths [2004], Feynman [1985]
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Figure 9: Feynman’s diagram for calculating the magnetic moment.
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Figure 10: Another possibility for improving the magnetic moment.
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Figure 11: A possibility of higher order for improving the magnetic moment.

where the three vertices represent internal possibilities. The integral represents
the fact that the vertices can be anywhere in spacetime yielding infinitely many
mutually exclusive possibilities. Hence, we have to add all related arrows, that
is, we have to evaluate an integral. If we add the amplitude φ2 to the value 1,
then we obtain the value 1.00116.

Later, improved experiments produced more accurate values. So we should
look for more complicated diagrams. At the next level we have diagrams with
5 vertices representing internal possibilities. One of them is displayed in Figure
11. The electron emits a photon at z1, the photon decays into an electron-
positron pair at z3, annihilating each other to form a new photon at z4, which
is absorbed by an electron at z2.

In 1949, Karplus and Kroll 70 calculated the amplitudes of the diagrams
with 5 vertices. Physicists found several algebraic errors in their calculations
eight years later. Fortunately, the corrections affected only the fifth decimal
digit.

Actually, there are more distinct Feynman diagrams, and it is a nice exercise
to find out the geometrical picture of other ones with 5 vertices.

As before, adding all amplitudes together yields the overall amplitude:

φ = φ1 + φ2 + φ3 + ... (125)

In 1983, the magnetic moment was further improved with about 70 ad-
ditional diagrams containing 7 vertices to the theoretical number 1.0011596
5246. This value coincides with the experimental value except for the last two
digits. This accuracy is the same as if someone would measure the distance of
about 3000 miles from Los Angeles to New York to within one millimeter. It
took twenty years to obtain this extra accuracy. Kinoshita has improved this
result to 13 decimal digits with a calculation involving 891 distinct diagrams.

70Feynman [1985, page 117]
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Just as Einstein and many others with ideas on a solid basis were refused,
Feynman had great difficulties. On the Pocono Conference of 30 March to 2
April 1948, arranged by Oppenheimer, Schwinger, Harvard’s ”Wunderkind“,
presented almost the whole day his developments in QED without any dia-
grams. Afterward late in the day, Feynman started his talk with his diagrams,
wrote down the related integrals, and removed the infinities. He had to with-
stand frequent interruptions from Bohr, Dirac, Teller, and others, and no one
seemed to be able to understand him. Feynman left the conference frustrated,
even depressed.
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5 Measurement

We describe the strange wave-particle duality and its consequences. It leads
to the measurement problem in quantum theory, namely, the problem whether
and how the wave function collapses to a certain outcome. This questioning
has pushed one of the most challenging and partially nebulous debates about
reality and quantum theory.

In our approach to quantum mechanics, using the trinity of time and dis-
tinguishing between possibilities, internal possibilities, and outcomes, many
experiments become unbelievably simple to understand and are far from being
strange or weird. They are described in a simple way by our probability recipe.

In Sections 5.1, 5.2, and 5.3 we discuss measurements as usually presented
in many textbooks. In Section 5.4 we describe these phenomena from our point
of view. Finally in Section 5.5, we discuss one of the fundamental principles in
physics, consistent with our daily experience, namely causality: Events always
happen in a fixed order, they cannot happen in different orders simultaneously.
In recent literature it is stated that causality is violated.
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5.1 The Wave-Particle Dualism and Paradoxes

One of the most well-known challenging problems in quantum theory is:

• No physicist has ever succeeded in detecting any particle traveling in
one or the other path of a Mach-Zehnder interferometer, while observing
simultaneously an interference pattern.

Similarly, the same holds true for slit experiments: the interference pattern
vanishes whenever it is known through which slit the particle passes71. What
is the nature of this impossibility? Is it a technical problem in the experimental
setups? Is it a problem of interpretation? Or is it a consequence of incomplete
physical models?

With our probabilistic recipe these questions can be simply answered.
Please try it. Below, however, we will consider this problem and related ones
as described frequently in the literature and from the historical point of view.

Interference patterns are typical for waves. In contrast, classical single
particles exhibit either a deterministic behavior or a classical probabilistic
behavior without any interference or cancellations. Experiments show that in-
terference is destroyed whenever ”which-path information” is available. Hence,
we arrive at the well-known wave-particle duality, a concept in quantum theory
where every physical object may be described as a particle, but also as a wave;
see our critical remarks in Section 3.5.

Historically, the wave-particle duality originated from earlier works of Planck
1900 and Einstein 1905. The contribution of Einstein was that energy of a light
beam is transmitted by discontinuous quanta, and not in the accepted form of
a continuous wave propagation. He assessed his idea as a heuristic assumption
and submitted a draft to some peers. Not surprisingly, as all ideas stated on
a solid basis, but disturbing the actual consensus, his concept was rejected.
Until 1922 Einstein was alone in believing the existence of light-quanta, called
photons. However, Louis de Broglie, 1923, extended Einstein’s idea to massive
particles. He argued: if a beam of light, represented as a continuous wave,
exchanges discontinuous photons when interacting with an appropriate envi-
ronment, then, conversely, any particle can interact with environments as a
wave. Moreover, he gave a mass to the photon. This statement seems to be
proved. The photon mass72 is about 10−51kg.

In 1926, de Broglie’s ideas and Schrödinger’s wave equation were known,
and Max Born proposed a probabilistic version of the wave model. Born73

claimed that his wave model satisfies an invisible causality:

The particles motion obeys the probability laws, but probability
itself propagates according to causality laws. [...] The question of
knowing if the waves are something real, or a mere function for de-
scribing phenomena in an easy way, is a personal question. Person-
ally, I like to think that a probability wave, even in a 3N-dimension

71See also the discussions and examples in QUITE, Section 2.
72See for example Evans List: Photon mass and ECE Theory
73M. Born, Z..Phys. 437, 863-867 (1926)
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space, is real, is something more than a tool for mathematical pre-
dictions. [...] For how could we believe probabilistic predictions,
if by this notion we did not refer to something real and objective.
Born 1926

Thus, Born considered himself as a realist.
Bohr, 1927, introduced the concept of complementarity which states that

a physical event cannot be understood in a single picture, but must be consid-
ered as complementary, that is, two pictures are absolutely necessary to obtain
a complete information about a single microscopic object. Wave or particle as
well as position or velocity are complementary quantities. The complementar-
ity principle was mathematically justified a few months later by Heisenberg’s
uncertainty principle74.

Notice that the three-dimensional position space and time are not comple-
mentary, they don’t fulfill an uncertainty relation, but form the basis of physics
in terms of the non-Euclidean space-time. This is doubtful. In QUITE, we
have argued that the fundamental concepts of physics should be defined in
terms of a six-dimensional Euclidean position-velocity space, and in fact this
makes many things much easier.

Finally, we mention again a serious difficulty of the wave picture, if systems
with N particles are considered. Obviously, Schrödinger’s wave equation can
be no longer an ordinary wave propagating in space-time. Instead, it propa-
gates in the so-called configuration space of dimension 3N . Even, for a small
macroscopic system this dimension becomes astronomical huge.

74See QUITE, Section 4.17 for another interpretation of Heisenberg’s uncertainty.
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Figure 12: My experimental set-up costs about 90 Euros. The left half shows
four polaroid filters, and on the right half there are two calcite crystals. The
following experiments can be performed easily with these optical elements.

5.2 Polarization of Light

In order to understand the wave-particle complementarity more clearly, we
consider linear polarization of light75. In the first part of this section, several
experiments are considered and described with explanations that can be found
in many textbooks. Only at the end of this section, we discuss these examples
by using our probabilistic approach.

If a photon has passed a polarizer with transmission axis α, we write |α〉
for this base state. Usually it is said that the photon is linearly polarized at
this angle. As in Section 3.3, we assign to any transition from one initial state
|α〉 to another state |β〉 a complex probability amplitude (arrow in the complex
plane):

ϕα→β = 〈β|α〉 ∈ C. (126)

The amplitude ϕα→β is written as a bracket, the initial state |α〉 is on the right
hand side of the bracket, and the final state |β〉 is on the left hand side.

The following polarization experiments can be comprehended with opti-
cal elements such as with polaroid filters and calcite crystals. They are not
expensive, see Figure 12.

Birefringent plates like calcite crystals split incident light with respect to
their optical axis into a beam of vertically polarized light and a beam of hori-
zontally polarized light. Both beams can be seen in the double pictures under
the calcite crystals in Figure 12. In a more sophisticated experiment, where
only one photon is interacting with the calcite, either detector Dx or Dy clicks,
see Figure 13. Of course, we assume that the experimental setup is perfect,

75See also the discussions and further examples in QUITE, Section 2.
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Figure 13: The birefringent plate splits incident light with respect to their
optical axis into vertically polarized light and horizontally polarized light. If
only one photon is in the experiment, either detector Dx or Dy clicks.'
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Figure 14: For two birefringent plates, where the horizontally polarized light
after the first plate is blocked, only the vertical detector Dy clicks. If we block
the vertically polarized light after the first plate, then only the horizontal
detector Dx clicks. If the optical axis of the second birefringent plate is chosen
opposite to the axis of the first plate, then we obtain analogous results, only
the detectors change, that is, if the horizontally polarized light after the first
plate is blocked, only the horizontal detector Dx clicks.

that is, the detectors are perfect, the single photon is not absorbed, and each
emission of a photon is kept track of. Moreover, we assume that the incoming
light is unpolarized.

Then what happens for unpolarized light is that in half of the cases the
photon turns out to be vertically polarized, and in half of the cases the photon
is horizontally polarized. This exhibits the particle-like picture of the photon.
The photon has either chosen the upper beam with classical probability 1/2,
or the lower beam with the same probability.

The particle-like behavior of photons can be seen in experiment Figure 14.
When the lower beam after the first plate is blocked, only the vertical detector
Dy clicks. If we block the upper beam after the first plate, then only the
horizontal detector Dx clicks. If the optical axis of the second birefringent
plate is chosen opposite to the axis of the first plate, then we obtain analogous
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Figure 15: The first polarizer generates photons polarized at an angle α. The
first birefringent plate splits into two beams of horizontally x-polarized and
vertically y-polarized photons. These are recombined in a second birefringent
plate which has an optical axis opposite to the first plate. According to the
law of Malus the transition probability after the second polaroid is cos2(β−α).

results, only the detectors change. In other words, if the lower beam after
the first plate is blocked, only the horizontal detector Dy clicks. Clicks of a
positioned detector show and support the particle-like behavior of light and
not wave-like pictures. If the photon passes the first plate, and the second
plate has the same optical axis, thus both plates are identical, then the photon
passes through the same beam of the second plate. In other words, if we repeat
a measurement, then the experimental result does not change. If the optical
axis of the second plate is chosen opposite to the axis of the first plate, then
the photon passes the second plate on the opposite beam.

Let us now turn to the experiment displayed in Figure 15. We will show
that a particle-like behavior of light is not sufficient to explain this experiment.
There, the first polarizer, a polaroid filter with optical axis α, generates a
photon polarized at an angle α. As before, the first calcite with optical axis at
angle 0 implies a split into two beams of horizontally x-polarized and vertically
y-polarized photons. The second calcite has an optical axis opposite to the
first one. Experimentally, it turns out that these two paths are recombined as
displayed in Figure 15. According to the law of Malus the transition probability
after the second polaroid filter is cos2(β−α). In particular, if β = α, then the
photon passes the second polaroid filter with probability one.

Obviously, this cannot be explained with a particle-like picture. Let us
consider the case β = α = π/4. When the photon has passed the second
calcite, then it is either horizontally polarized at angle 0 or vertically polarized
at angle π/2. From the law of Malus it follows that only one half of the photons
pass the second polaroid filter. This is not what happens. It contradicts the
experimental results, namely, that in this experiment each photon passes the
second filter. This type of experiments has been performed countless times,
and they all state that with probability one the photon passes the second filter.

Since the particle picture is completely incompatible with these experi-
mental results, in the literature it is stated that a photon cannot be a particle.
Hence, lets think of a photon as a wave. Then after passing the first polaroid
filter, the wave interacts with the first calcite and splits into two parts, one
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component in the upper beam, the other one in the lower beam. Both parts
arrive at the second calcite with opposite optical axes. Constructive interfer-
ence recombines both parts to the original wave, which then passes the second
filter. Thus, this wave-like interpretation works very well for this specific ex-
perimental setup.

In summary, these experiments suggest to think of a photon as an os-
cillatory wave-packet that is constrained within a small region. Then on a
large region the photon can be viewed as a localized disturbance that resem-
bles a particle. Unfortunately, this nice picture of a particle as a localized
wave-packet cannot describe our previous experiment in Figure 13. The cal-
cite would split the wave-packet into two parts. The experiment says that
exactly one of both detectors clicks. Hence, one part is responsible for the
click, whereas the other part does nothing. All wave-packets are prepared in
the same way, but sometimes we obtain horizontal polarization and sometimes
vertical polarization, each with a chance of 1/2. But then there must be the
chance 1/4 that both detectors don’t click, and there must be a chance of 1/4
that both detectors click. This, obviously, doesn’t happen. Hence, the photon
is neither a classical particle nor a wave, nor a localized wave-packet. From
where does the photon, viewed as a wave, know that one of its parts leads to
a click in a detector, and so the other part is not allowed to interact with the
other detector? The photon is not like a sound wave, or a water wave, or a
local disturbance in any medium.

We close this section with Penrose’s point of view76:

The quantum behaviour of things is indeed much more subtle
than this. The wave that describes a quantum particle is not like
a water wave or a sound wave, which would describe some kind
of local disturbance in an ambient medium, so that the effect that
one part of the wave might have on a detector in one region is in-
dependent of the effect that another part of the wave might have on
a detector in some distant region. We see from experiment 1 [A
Mach-Zehnder interferometer experiment] that the wave picture of
a single photon, after it has been ”split“ into two simultaneous sepa-
rated beams by a beam splitter, still represents just a single particle,
despite this separation. The wave appears to describe some kind of
probability distribution for finding the particle in various differ-
ent places. This is getting somewhat closer to a description of what
the wave is actually doing and, indeed, some people refer to such
a wave as a probability wave. This, however, is not a satisfac-
tory picture, because probabilities, being always positive quantities
(or zero) cannot cancel one another out, as would be needed for an
explanation of the absence of any responses at E in experiment 2.

Sometimes people attempt a probability-wave type of explana-
tion of this nature by allowing the probabilities somehow to become
negative in places, so that cancellation can then take place. How-
ever, this is not really how quantum theory operates (see figure 2-5).

76See page 136, Penrose [2016]
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Instead it goes one step further than this by allowing the wave am-
plitudes to be complex numbers [...] These complex numbers are
crucial to the whole structure of quantum mechanics. Penrose
2016

In these notes we have introduced a new general concept of probabilities.
The experimental setups solely allow us to distinguish between ”as well as“ pos-
sibilities (future things that are allowed in the experimental set) and ”either-
or“ outcomes or elementary events (things that might happen when performing
an experiment in the present). Each outcome can become a fact in the past.
Outcomes are well-defined possibilities, but, in general, not every possibility
is an outcome. Internal possibilities are responsible for interference. Complex
probability amplitudes are assigned to possibilities, and via Born’s rule prob-
abilities are assigned to outcomes. The probability amplitudes for disjoint
possibilities are added, and the probability for independent possibilities are
multiplied. In the same way, the classical probabilities for disjoint events are
added, and the probabilities for independent events are multiplied.

The experimental setup alone (without performing the experiment) deter-
mines the probability amplitudes and probabilities. The particles, during the
execution in the present, obey the calculated probabilities. It is not necessary
to attribute further properties to the particles, such as waves or points, or
polarization, or spin, and so on, except the property that they can interact
with the given machines or experimental setups.

We assign possibility amplitudes to the possibilities between machines,
only. The amplitude 〈π

2
|π
4
〉, for example, where in the present a photon passes

a first polarizer in base state |π
4
〉 and then the next polarizer in base state |π

2
〉 is

a complex number which depends only on both polarizers, not on the photon
itself. In the future interactions don’t happen.

In our approach, the phrase ”If a photon has passed a polarizer with trans-
mission axis |α〉, the photon is linearly polarized at this angle“ means: A
polarizer with any transmission axis, not the photon, is characterized by two
mutually exclusive possibilities, called horizontal and vertical polarization. In
the present, a photon interacting with this polarizer chooses exactly one of
both possibilities.

Keep in mind: A photon is neither a classical particle, nor a wave
like a sound or a water wave, nor a localized wave-packet, that is,
a local disturbance in any medium. But the photon can interact
with experimental setups, which may consist of various optical el-
ements. These machines obey the probability theory as described
above. This theory is based on complex probability amplitudes
and the distinction between possibilities, internal possibilities and
outcomes.
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Figure 16: In this experimental setup the horizontally polarized photons |0〉 are
blocked after the first birefringent plate. Then the photons with polarization
|−π/4〉 are blocked after the second birefringent plate. Finally, after the third
plate their polarization is measured with two detectors. Obviously, they have
lost their original polarization. But if we replace the second plate by two plates
that recombine both beams, as shown above, then all photons have the original
polarization, that is, only the upper detector clicks.

5.3 The Measurement Problem

The wave-particle duality leads to the measurement problem in quantum the-
ory, that is, the problem whether and how the wave function collapses to a
certain event or outcome. This questioning has pushed one of the most chal-
lenging and partially nebulous debates about reality and quantum theory.

In this section we consider the widely used von Neumann measurement
scheme. We present this scheme by using the customary language of quantum
mechanics. At first, we look at polarization experiments with photons as dis-
cussed above. Later, we consider the general case introduced by von Neumann
1932.

Above we have discussed several experiments with photons, among them
the experiment where both beams are recombined, see Figure 15. In this
case it is not possible to know which path is used by a photon. We have
interference due to internal possibilities, since only the upper detector clicks.
Hence, the wave function is not reduced, but is unchanged equal to |π/4〉.
In the experiment described in Figure 16, where the block, which recombines
both beams, is simply replaced by one plate, the original polarization is lost.

In quantum theory, measurements are usually described by a microscopic
system or any particle that interacts with the apparatus. The apparatus is
equipped with detectors. The particle is described in the form of states.

Any polarization experiment equipped with two detectors at the right hand
side, as in Figure 16, can be in three possible distinguishable base states: the
state |d〉 before detecting a photon, the state |dy〉 when a photon is detected
in the upper detector, and the state |dx〉 when a photon is detected in the
lower detector. Moreover, we have a pointer that displays 0,+1, or −1 for the
base states |d〉, |dx〉, or |dy〉, respectively. In other words, the pairs (0, |d〉),
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(+1, |dx〉) , and (−1, |dy〉) are the eigenpairs of an observable D that describes
the apparatus.

Let the photon be horizontally polarized in base state |0〉, or vertically
polarized in base state |π/2〉. The photon and the apparatus are composed via
the tensor product of six mutually exclusive base states

|0〉|d〉, |0〉|dx〉, |0〉|dy〉, |π/2〉|d〉, |π/2〉|dx〉, |π/2〉|dy〉. (127)

Now we look at the experiment in Figure 16, but we remove the block after
the first plate such that all incoming photons pass the first plate. Moreover, we
replace the second plate by two plates that recombine both beams as described
in Figure 15. Obviously, each photon passes this experiment and is detected
in one of the detectors.

If the incoming photon is horizontally polarized |0〉, the wave function of
the whole system before detection is the tensor product state

|ξ〉 = |0〉|d〉. (128)

After the particle has passed the apparatus, it is detected in the lower detector,
and the total wave function is

|ξx〉 = |0〉|dx〉. (129)

Hence, this interaction changes the apparatus to base state |dx〉, but leaves the
polarization of the photon unchanged.

If the polarization of the incoming photon is vertically polarized |π/2〉, the
wave function of the whole system before detection is the tensor product

|ξ〉 = |π/2〉|d〉. (130)

After the particle has passed the apparatus, it is detected in the upper detector,
and the total wave function is

|ξy〉 = |π/2〉|dy〉. (131)

As before, this interaction changes the apparatus to base state |dy〉, but leaves
the polarization of the photon unchanged.

Now we discuss the case where the incoming particle is in state

|π/4〉 =
1√
2

(|0〉+ |π/2〉). (132)

This is a base state corresponding to a polarizer with transmission axis π/4,
according to the law of Malus. Then the wave function of the whole system
before detection is the tensor product

|ξ〉 =
1√
2

(|0〉+ |π/2〉)|d〉 =
1√
2

(|0〉|d〉+ |π/2〉|d〉). (133)

This initial state is a product state, thus not entangled. As we know, the
whole system develops unitarily, thus linearly. Moreover, we know from the
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equations above how each single term evolves, namely each part of the sum on
the right hand side of (133) develops as in (129) and (131). Therefore, linearity
necessarily implies that the total wave function when the photon interacts with
the detectors is

|ξfinal〉 =
1√
2

(|0〉|dx〉+ |π/2〉|dy〉). (134)

This state entangles the photon with the polarizing apparatus. According to
Born’s rule the probability that the apparatus shows +1 or −1 is 1/2.

Now we have some trouble with this measurement theory, where the com-
plete system is described quantum mechanically. We know that the state of
the detectors are either |d〉, |dx〉, or |dy〉. Paradoxically, these three mutu-
ally exclusive alternatives contradict equation (134). What does this mean
for both detectors? Well, it is a quantum mechanical superposition which is
usually interpreted that at the same time both detectors interact with the
photon. One way to get out of this trouble is to measure both detectors with
some second apparatus. After this second measurement, we expect that the
wave function |ξfinal〉 is reduced to one part in the sum. But now, the ad-
ditional second apparatus is part of a larger system that contains the second
apparatus itself. Hence, we have to use a third apparatus, and so on. Obvi-
ously, in this infinite sequence of measurements we don’t find a reduction of
the wave function. Consequently, in quantum theory there seems to be nothing
that converts probabilities into facts. To avoid this apparent paradox between
our experience and the quantum measurement formalism, von Neumann con-
templated a collapse that should select exactly one term in the superposition
(134) with probability 1/2, perhaps caused by the consciousness of a human
observer. This idea was later propagated by Wigner. In this connection one
speaks today also of subjective theories.

The conclusions in the book of Susskind and Friedman77 are:

Does the last entity to look at the system collapse the wave func-
tion, or does it just get entangled. Or is there a last looker? I won’t
try to answer these questions, but what should be apparent is that
quantum mechanics is a consistent calculus of probabilities for a
certain kind of experiment involving a system and an apparatus.
We use it, and it works, but when we try to ask questions about
the underlying ”reality“, we get confused. Susskind and Friedman
2013

Below, we show that an underlying ”reality“ can be recovered without getting
confused when using internal possibilities. Then quantum superpositions do
not carry over to an infinite sequence of measurements.

This measurement paradox was illustrated by Schrödinger 1935, with the
help of a cat, the famous and widely discussed Schrödinger cat. He described
a Gedankenexperiment in which one could create a superposition of a macro-
scopic system. The cat’s life or death depends on the state of a radioactive

77Susskind [2014], page 223
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atom. If the atom has emitted radiation, a gun shoots the cat. Thus, formula
(134) says that the cat remains alive and dead at the same time, leading to a
superposition of a macroscopic system. That seems to be really weird, and it is.
Schrödinger introduced the idea of dead-and-alive cats to illustrate the absur-
dity of the quantum mechanical formalism. Today, however, many physicists
regard the dead-and-alive cat as quite real. Often, they use Schrödinger’s cat
as a way to illustrate and compare the strength and the weakness of particular
quantum interpretations.

As early as 1952, Schrödinger78 argued that there is no reason to collapse.
He argued that the collapse is absurd: one cannot control the wave function
in two different ways, sometimes by the wave equation, but occasionally by
interference with the observer, not controlled by the wave equation. His so-
lution was that the wave function never collapses, since a choice between a
superposition of states is not necessary, provided our world is large enough.
In terms of his famous cat experiment, both wave functions, leading to the
”dead cat“ and the ”live cat“, are equally real, that is, the world contains two
”parallel worlds“ one with the cat dead, the other one with the cat alive. The
key interpretation is that these two worlds have always existed: starting with
two cats alive, the two worlds change if one of the cats dies. Both worlds have
exactly the same histories until the experiment is carried out. Then one world
has a dead cat, the other world has a living cat. In fact, there is no splitting
of worlds, no creation of new worlds, and no measurement problem, since all
alternatives already exist. Hence, this means that our reality can be viewed as
a path through the universe containing all these alternatives or parallel worlds,
similar to bifurcation models. Obviously, this interpretation is closely related
to the ”many worlds“ interpretation. This interpretation was originally formu-
lated by Everett, but 5 years later in 1957. Schrödinger stagnated in darkness
until in the 1980s David Deutsch developed his many worlds interpretation
that is almost equal to Schrödinger’s work, perhaps without being aware of
this paper.

Finally, we consider the general case of von Neumann’s measurement the-
ory. The microscopic system or particle is represented in a Hilbert space HP

containing an orthonormal basis, say {|pi〉} with index set i ∈ I. The parti-
cle can interact with a measurement apparatus described by an observable D.
This observable is represented by the eigenpairs (Di, |di〉) and defined on HA.
These pairs should correspond to mutually exclusive pointer positions. More-
over, these pairs are assumed to correspond to the outcome of an interaction or
measurement if the particle is exactly in the base state |pi〉. At the beginning
before the measurement, the apparatus is initially in a ”ready position”, say
|r〉. The total system, namely the particle and the apparatus, is described
with the tensor product space HP ⊗HA. In this space the total system evolves
unitarily in the form(∑

i

ψi|pi〉

)
|r〉 t→

∑
i

ψi|pi〉|di〉. (135)

78 Schrödinger, Erwin. ”Are there quantum jumps? Part I.” The British Journal for the
Philosophy of science 3.10 (1952): 109-123.
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This unitary evolution of the wave-function above is referred to as a pre-
measurement, since the measurement itself has not been completed. This wave-
function is an entangled superposition of the particle with the measurement
apparatus. We obtain the same paradox as above, that is, without any addi-
tional physical process, such as a collapse of the wave-function, it is not clear
how to get a definite pointer position after the measurement. This is the well-
known wave-function reduction problem, sometimes also called the problem of
definite outcomes. There is another problem called the problem of the preferred
basis: the expansion (135) of the superposed wave-function is not uniquely de-
fined in general, since it is not clear which basis shoud be used. Hence, the
measured observable is not uniquely defined79.

79Schlosshauer [2015]
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5.4 Measurement and Possibilities

In our interpretation, based on the trinity of time, the possibilities and the
related complex probability amplitudes are defined completely by the experi-
mental setup. The experimental setup defines the base states and possibilities
uniquely, as can be seen for example in all polarization experiments. These
are notions of the future, where nothing happens. Interactions are part of
the present only. It turns out that in this model all measurement paradoxes
vanish. No last ”looker“ or ”many worlds“ or subjective interpretations are
required.

We discuss the measurement problem for the following experiment, which
consists of 5 optical ”machines“ connected in series, say S,A,B,C, and D. The
source S produces photons that are polarized at an angle |α〉. Hence, this is
a one-possibility apparatus. The next three machines A,B,C are birefringent
plates, the first one A produces two mutually exclusive beams, the horizontal
one |0〉 and the vertical one |π/2〉. The machines B and C recombine each
incoming beam. The last machine consists of two detectors yielding two pos-
sibilities |dx〉 and |dy〉. Thus, the elementary possibilities of our experiment
consist of all sequences |αabcd〉, yielding the possibility space

P = {|αabcd〉 : |α〉 ∈ S, |a〉 ∈ A, |b〉 ∈ B, |c〉 ∈ C, |d〉 ∈ D} . (136)

The field FP is defined as the set of all subsets of the possibility space. The
outcomes of this experiment are two disjoint possibilities, namely that exactly
one of the detectors clicks. All other possibilities are internal. Hence, the
outcomes are defined by the non-elementary possibilities

|αABCdx〉 = {αabcdx : |a〉 ∈ A, |b〉 ∈ B, |c〉 ∈ C, } , (137)

|αABCdy〉 = {αabcdy : |a〉 ∈ A, |b〉 ∈ B, |c〉 ∈ C, } . (138)

In the following we write shortly |dx〉 and |dy〉 for both outcomes.
We can simplify this experiment, since the recombining pair BC acts as

an identity. Hence, it is sufficient to consider the three optical elements SAD,
the possibility space

P = {|αad〉 : |α〉 ∈ S, |a〉 ∈ A, |d〉 ∈ D} , (139)

and, since the possibilities of apparatus A are internal, the outcomes are

|dx〉 = |αAdx〉 = {αadx : |a〉 ∈ A} , (140)

|dy〉 = |αAdy〉 = {αady : |a〉 ∈ A} . (141)

The probability amplitude for the outcome |αAdy〉, where α = 0, is accord-
ing to the multiply-and-add rule

〈dy|0〉 = 〈dy|0〉〈0|0〉+ 〈dy|π2 〉〈
π
2
|0〉

= 1 · 1 + 0 · 0

= 1.

(142)
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Here we have used the fact that horizontal and vertical polarization are repre-
sented by orthonormal base states.

The probability amplitude for the outcome |αAdy〉, where α = π
2
, is

〈dy|π2 〉 = 〈dy|π2 〉〈
π
2
|π
2
〉+ 〈dy|π2 〉〈

π
2
|0〉

= 0 · 1 + 0 · 0

= 0.

(143)

Analogously, we get the probability amplitudes 〈dx|0〉 = 0 and 〈dx|π2 〉 = 1
for the outcomes |αAdx〉, where α = 0 and α = π

2
, respectively.

Finally, for α = π
4
, we get the probability amplitudes

〈dy|π4 〉 = 〈dy|0〉〈0|π4 〉+ 〈dy|π2 〉〈
π
2
|π
4
〉

= 1 · 1√
2

+ 0 · 1√
2

= 1√
2
,

(144)

and

〈dx|π4 〉 = 〈dx|0〉〈0|π4 〉+ 〈dx|π2 〉〈
π
2
|π
4
〉

= 0 · 1√
2

+ 1 · 1√
2

= 1√
2
.

(145)

It is elaborate but instructive to go into detail through all calculations without
our simplification.

The possibility amplitudes are assigned to the possibilities between ma-
chines, only. For example, the amplitude 〈π

2
|π
4
〉 is a complex number describing

a future execution of the experiment in which a photon passes the first polarizer
in base state |π

4
〉 and then the next polarizer in base state |π

2
〉. Nothing hap-

pens in the future. Probability amplitudes depend only on the experimental
setup, but not on interactions in the present.

Thus, the argument that linearity necessarily entangles the photon with
the polarizing apparatus as displayed in formula (134), that is,

|ξfinal〉 =
1√
2

(|0〉|dx〉+ |π/2〉|dy〉). (146)

does not occur in our theory, since photons are absent. All results are based on
the properties of the machines. In our mathematical model, we have instead
the equation

|π/4〉 =
1√
2

(|0〉+ |π/2〉), (147)

which says that the possibility |π/4〉 of a plate can be expressed as the super-
position of the possibilties |0〉 and |π/2〉. There is no entanglement.
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5.5 Causality

One of the fundamental principles in physics, consistent with our daily experi-
ence, is that of causality: Events always happen in a fixed order, that is, they
cannot happen in different orders simultaneously. In recent literature80, it is
stated that causality should be banned, in particular because of the rules of
quantum mechanics differing much from classical mechanics. These rules seem
to imply that causality is violated.

An example is the quantum switch where two operations A and B are
connected. Then we obtain two mutually exclusive possibilities: Either ”B
follows A“ or ”A follows B“. Then it is argued that in quantum mechanics
both possibilities can be superposed, leading to an indefinite causal order such
that both cases occur simultaneously. In other words, in the same manner as a
material object can be at different places at the same time, both causal cases
exist at the same time, thus destroying causality.

Experimentally, the quantum switch can be realized as an optical setup
with a control qubit |ψ〉c defined in terms of the photon’s polarization. The
operations A and B, viewed as ”black box operations“, are optical machines
applied to a target qubit |φ〉t defined in terms of the transverse spatial mode.
The control bit determines the order in which both operations are applied
to the target qubit. When the control bit is |0〉c, then operation B follows A.
When the control bit is |1〉c, then operation A follows B. But when the control
qubit is in the superposition

|ξ〉 =
1√
2
|0〉c +

1√
2
|1〉c, (148)

then the output state of the system is in the superposition

|Ψ〉 =
1√
2
BA|φ〉t ⊗ |0〉c +

1√
2
AB|φ〉t ⊗ |1〉c, (149)

because of the bilinearity of the tensor product. Seemingly, quantum theory
tells us that the daily experienced causality is violated.

Not surprisingly in our approach causality is not violated. Why? In the
experimental realization of the quantum switch there is a source producing
randomized photons. They pass a first calcite crystal with a variable polar-
ization axis. The second calcite has a polarization axis along the z-axis with
the two base states |0〉c and |1〉c. Finally, the two machines describing both
cases ”B follows A“ and ”A follows B“ are implemented. According to the
requirements we change the polarization axis of the first calcite such that only
photons with the desired polarization |0〉c, |1〉c, or their superposition pass the
second calcite.

This realization satisfies the mathematical description of the quantum
switch. All probabilities can be calculated with our recipe. Since nothing
happens in the future, causality cannot be violated. Starting the experiment
with one photon, in the present exactly one route is selected with the cal-
culated probability. Hence, causality is also not violated in the present, and

80see for example Goswami et al. [2018]
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trivially not in the past. The reason is our interpretation of time as the trinity
future, present, and past, and of superpositions.
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6 Conclusions

Our daily sense experiences - future, present, and past together with causality
- were shattered by physicists on the altar ” FASHION, FAITH and FANTASY
”. In QUITE and in this Supplement it is shown that our daily experiences
and observations are consistent within

• a modified theory of relativity, based on a position-velocity space with
another time conception, thus based not on spacetime;

• a causal quantum single-world theory avoiding well-known paradoxes and
describing future events in a world of machines where nothing happens;

• a unified probability theory that carefully distinguishes between possi-
bilities, internal possibilities and outcomes, applicable to classical exper-
iments up to quantum electrodynamics.

A major goal of these notes was to develop physics from a completely different
perspective and imagination than usual, perhaps justifying the word ”free
climbing“. Surprisingly, we obtained the common mathematical formalism,
but with unusual interpretations.

Finally, we mention that no-go theorems give only scant hints, if any. One
example is Hardy’s paradox where logic proves that a specific experiment is not
realizable, although it is. Another one is the recent paper written by Frauchiger
and Renner: ”Single-world interpretations of quantum theory cannot be self-
consistent“.
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7 Appendix C: Keep in Mind

Keep in mind: Calculate the probability for the outcomes in
Laplace experiments by using the multiply-and-add rule, that is,
the probabilities for disjoint events are added, and the probabilities
for independent events are multiplied. This rule is universal, since
it applies also to classical probability as formulated by Kolmogorov,
and to quantum probability.

Keep in mind: When solving probabilistic problems it is neces-
sary to know precisely the sample space. Then many erroneous
conclusions can be avoided, as the letters to Marilyn vos Savant
demonstrate.

Keep in mind: When solving probabilistic problems, a precisely
defined sample space may be not sufficient. The ”principle of in-
difference“ may be violated. For obtaining numerical probabilities,
the process or program how the outcomes of the sample space are
constructed may be necessary.

Keep in mind: In general, under nonlinear transformations the
type of distributions changes, and the principle of indifference does
not apply.

Keep in mind: Bertrand’s paradoxes have shown that the sample
space is not sufficient for calculating probabilities. Further informa-
tion about the experiment is necessary. This information depends
on the geometry of the experimental set up. Moreover, we assume a
time trinity that distinguishes between future possibilities, present
random access of outcomes in terms of momentary decisions, and
the facticity of the past in terms of facts. Facts are elements of the
set of outcomes, the latter are contained in the set of all possibili-
ties. Time trinity allows, in a very simple way, to describe precisely
experiments. A probability is defined as a map from the set of all
outcomes into the set of real numbers between zero and one, and is
related to the present. A probability amplitude is defined as a map
from the set of all possibilities, including internal elementary possi-
bilities, into the set of complex numbers with magnitudes between
zero and one, and is related to the future. Squaring the magni-
tude of probability amplitudes for outcomes gives the probabilities,
according to Born’s rule.
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Keep in mind: The recipe for calculating probabilities:
Given an experimental setup:

1. Define the possibility space P, and the internal possibilities.

2. Define the sample space Ω of outcomes.

3. Calculate the probability amplitudes for the outcomes by us-
ing the multiply-and-add rule, that is, the probability ampli-
tudes for disjoint possibilities are added (superposition), and
the probability amplitudes for independent possibilities are
multiplied.

4. Calculate the probabilities for the outcomes using Born’s rule.

5. Calculate with Kolmogorov’s rules the probabilities for the
classical non-elementary events.

The possibility space P and the field of subsets FP are defined sim-
ilarly as in classical probability theory the sample space Ω and the
related field of subsets of the sample space. Moreover, in quantum
theory the multiply-and-add rule holds true for probability ampli-
tudes as well. The essential difference is (i) that amplitudes are
complex numbers, (ii) that possibilities and outcomes are differ-
ent quantities, and (iii) that internal possibilities, responsible for
interference, are essential. Quantum theory can be viewed as a cal-
culus with complex numbers that delivers numerical probabilities
for outcomes based on experimental setups. This calculus is not re-
stricted to microscopic systems. In contrast, it is mainly based on
macroscopic machines. Quantum theory and classical probability
theory are not different probability theories, but complement one
another. We speak of classical experiments, if internal possibilities
are absent. This recipe completes our formulation of proba-
bility theory and the fundamentals of quantum mechanics.
Feynman’s path integral, one of the mathematical equivalent formu-
lations of quantum mechanics, is an immediate consequence of this
recipe. Experiments, classical or quantum ones, can be explained
by using this recipe.

Keep in mind: The superposition principle in the interpretation
of the trinity of time is the unspectacular property of expressing
possibilities of one machine in terms of the possibilities of other
machines. Consequently, a quantum state is not a property of
one or more particles, but instead represents the properties
of an experimental setup.
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Keep in mind: The slit experiment in 2012 with the large ph-
thalocyanine molecules shows: (i) a molecule is not a wave, (ii)
supports clearly our probabilistic approach, (iii) the pictures of the
molecules with the video camera show that a material object is
not at different places at the same time, and (iv) it leaves many
quantum interpretations at least doubtful.

Keep in mind: When using the concept ”trinity of time“ with
distinguishing between possibilities, internal possibilities and out-
comes, then last looker or other strange properties are not required.

Keep in mind: Quantum mechanics turns out to be a generalized
probability theory of Laplace experiments using complex numbers,
the largest field of reasonable numbers according to Hurwitz. It
shows the unbelievable simplicity of quantum theory, not strange,
and easy to teach already in school.

Keep in mind: A photon is neither a classical particle, nor a wave
like a sound or a water wave, nor a localized wave-packet, that is,
a local disturbance in any medium. But the photon can interact
with experimental set ups, which may consist of various optical
elements. These machines obey the probability theory as described
above. This theory is based on complex probability amplitudes
and the distinction between possibilities, internal possibilities and
outcomes.
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C.F. Weizsäcker. Aufbau der Physik, Carl Hanser Verlag, Munich, 1988.
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