ICNAAM header will be provided by the publisher

Verified Linear Programming — a Comparison

Christian Kelil*

Institute for Reliable Computing, Hamburg University of Technology,
Schwarzenbergstrafe 95, 21073 Hamburg, Germany

Key words Linear Programming, Comparison, Rigorous Error Bounds, Lurupa.
2000 Mathematics Subject Classification 65G50, 65K05, 65Y20, 90C05

Linear programming is arguably the most basic form of optimization. Numerous algorithms have
been developed and implementations exist in presumably every programming language. The appli-
cations range from linear optimization problems to branch-and-bound algorithms for mixed integer
problems and global optimization problems.

To eliminate the influence of rounding errors and obtain rigorous results, verification methods
have to be introduced. We will analyze different techniques for verified linear programming and
take a look at some numerical results.

Copyright line will be provided by the publisher

1 Introduction

Linear Programming is not only the arguably first and most basic kind of optimization students get
introduced to. Its relevance today exceeds this by far.

Although some preliminary works exist, for example Fourier [8], de la Vallée Poussin [5], and Kan-
torovich [13], the success story of linear programming really started in 1947 with the discovery of the
Simplex method by Dantzig [3]. Together with the development of the computer, the Simplex method
allowed to mechanically solve optimization problems that required more than 100 man-days using hand-
operated desk calculators. Its computational power was illustrated by Dantzig [4] using a simple problem
of assigning 70 men to 70 jobs. While exploring all possible solutions “would require a solar system full
of nano-second electronic computers running from the time of the big bang until the time the universe
grows cold”, applying standard simplex or interior point software “it takes only a moment to find the
optimum solution using a personal computer”. In the same paper he stated, “the tremendous power of
the simplex method is a constant surprise to me”.

The importance of linear programming is exemplified by Lovasz [22]: “If one would take statistics
about which mathematical problem is using up most of the computer time in the world, then (not
including database handling problems like sorting and searching) the answer would probably be linear
programming”. That same year Eugene Lawler of Berkeley summarized: “It [linear programming] is
used to allocate resources, plan production, schedule workers, plan investment portfolios and formulate
marketing (and military) strategies. The versatility and economic impact of linear programming in
today’s industrial world is truly awesome.”

Rounding errors, inevitably introduced by floating point arithmetic, can well deteriorate the results
of numerical computations. This is especially true for ill-conditioned problems. The practical relevance
for linear programming, is emphasized by Ordoéniez and Freund [26]. They analyzed the problems in the
Netlib collection [24] of real-life linear programs and observed 71% to be ill-conditioned.

2 Available Algorithms

Several methods are capable of producing rigorous results for linear programs. According to the tech-
niques used, they can be classified into four categories. Algorithms for constraint satisfaction problems,

*

e-mail: c.keil@tu-harburg.de

Copyright line will be provided by the publisher



2 C. Keil: Verified Linear Programming — a Comparison

algorithms using rational arithmetic, global optimization algorithms, and algorithms specifically devised
for linear programming in the presence of rounding errors and uncertainties in the input data.

Algorithms for constraint satisfaction problems (CSP) offer no means to optimize. Thus rigorous
versions can only be used in a limited way for verified linear programming. Assume f* to be an
approximation to the optimal value of a minimization problem. Now build a CSP consisting of the
constraints of the linear program plus a constraint on the objective function, f(z) < f* —e. If a
rigorous algorithm verifies this CSP to be infeasible, f* — ¢ is a lower bound on the true optimal
value of the linear program. Analogously upper bounds can be derived from feasible CSPs having an
additional constraint of the form f(z) > f*+e¢. Two implementations of rigorous constraint satisfaction
algorithms are ICOS [21] and RealPaver [10]. TICOS is based on constraint programming and interval
analysis techniques. RealPaver uses a branch-and-prune algorithm, the pruning step merges constraint
satisfaction techniques with the interval Newton method.

The second category of methods is exploiting the fact that the optimal solution and value of a linear
program are rational numbers. Thus rigorous results can be obtained using rational arithmetic, but
not for interval problems. This has been done for example by Gértner [9] and Dhiflaoui et al [6]. The
only available implementation seems to be perPlex by Koch [19], which only verifies the optimality of
an approximate solution. Offering neither means to obtain this approximate solution in the first place,
nor to proceed from there if the solution proves suboptimal, it was also excluded from the comparison.

Global optimization algorithms handle problems where the objective and the constraints are defined
by smooth algebraic expressions. Hence they can solve linear programs rigorously. Implementations are
Numerica [29], GlobSol [14], and COSY [7] (on inquiry it was not possible to obtain a copy of COSY).
Numerica combines traditional interval methods (e.g., Hansen—Sengupta’s operator) with constraint
satisfaction techniques. GlobSol combines an interval branch-and-bound procedure with additional
techniques, such as automatic differentiation, constraint propagation, interval Newton methods, and
additional, specialized techniques. COSY uses a branch-and-bound scheme featuring a Taylor model
arithmetic for the bounding step.

Finally are the algorithms specifically designed for verified linear programming in the presence of
rounding errors and uncertainties in the input data. These ideas go back to Krawczyk [20], who computed
rigorous enclosures of the optimal solution of a linear program. They were used and refined by Beeck
[1] and Rump [28], and extended to degenerate problems by Jansson [11]. Requiring the solution
of interval linear systems, all these methods share a computational work being cubic in the number of
variables. More recently Jansson [12] and Neumaier and Shcherbina [25] independently devised methods
to rigorously bound the optimal value with a quadratic complexity if finite bounds on all variables are
known.

Lurupa [16] belongs to this fourth category. Implementing the algorithms developed by Jansson
[12], it tries to enclose feasible, near-optimal solutions for the primal and for the dual problem. The
iterative algorithm starts by solving the original problem with a standard linear programming solver.
Based on the approximate solution, interval arithmetic is now applied to enclose a feasible point. If
this succeeds, the rigorous bound on the optimal value follows with the range of the objective function
over this enclosure. Otherwise the algorithm starts over, perturbing the linear program to force the
approximate solution further into the interior of the feasible region. In the presence of uncertainty in
the input data, only approximate solutions to midpoint problems are necessary, and still a standard
linear programming solver is sufficient. The algorithm just postprocesses approximate solutions. It can
thus be combined with any standard linear programming solver to compute rigorous results.

Lurupa has proven capable of computing rigorous error bounds for the optimal value of linear pro-
gramming problems with several thousands of variables and constraints (see [17]). Roughly spoken,
finite lower and upper bounds could be computed iff the respectively primal and dual problems were
not ill-posed. For various problems of the Netlib lp library, lower and upper bounds were obtained,
certifying the existence of optimal solutions.

Consisting of modules for the different functional parts, Lurupa is fully implemented in ANSI C++
and easily extendable. The aim is to provide a fast implementation of the algorithms, available as a
stand-alone and a library version to be integrated into larger frameworks. For the interval computations
it uses PROFIL/BIAS [18]. Solver modules are currently available for Ip _solve [2] in different versions.

Copyright line will be provided by the publisher



ICNAAM header will be provided by the publisher 3

Additional solver modules have to implement a common interface, their main function is transforming
data between the representations used in Lurupa and in the solver.

3 Numerical results

To compare the performance of GlobSol, Numerica, and Lurupa, test problems were generated with
the method of Rosen and Suzuki [27]. The objective function and the constraints were chosen to
be linear with random, integral coefficients. The optimal solution was chosen random, integral, and
nondegenerated between the simple lower and upper bound of —10 and 10 on each variable. Thus the
optimal solution as well as its objective value are known exactly. A second test set consists of some
small problems from the Misc section of Meszaros’s collection [23], kleemin3 — kleemin8 and farm.
The dimensions of the kleemin problems are indicated by the trailing digit, kleemin3 has 3 variables
and 3 inequalities, kleemin4 has 4 variables and 4 inequalities and so on. A slightly larger problem is
farm with 5 inequalities, 2 equations, and 12 variables. As these problems have infinite simple upper
bounds, which Numerica and GlobSol do not handle well, an artificial finite upper bound enclosing the
whole feasible region was set on the variables.

Most of the settings in GlobSol’s configuration file were left at their defaults as suggested by Kearfott
[15]. The upper bound on the number of boxes MAXITR was increased if GlobSol aborted due to this
limit and the maximum cpu time MAX_CPU_SECONDS was set to 7200. Peeling was enabled for all bounds.
For the problems GlobSol could not solve, the databox was enlarged and peeling disabled. It might be
possible to obtain better results by adjusting the stopping tolerances to the specific problem instances
but this is not suitable for a benchmarking situation. It also reflects the experience of a user without a
deeper insight into the algorithm and its parameters.

Applied to the first test set GlobSol successfully computed enclosures of the optimal solution and
value if the number of variables was less than 10. The relative accuracy of the computed bounds was
between 10712 and 10~! for the largest problems GlobSol solved. Increasing the number of variables to
10 resulted in GlobSol not terminating within two hours, increasing to 15 resulted in GlobSol running
out of memory. For the second test set, GlobSol rigorously solved the kleemin problems in under 5
seconds, but did not terminate for farm.

For the Rosen and Suzuki test problems, Numerica successfully solved a problem with 5 inequality
constraints and 5 variables with a relative accuracy of 107'2. Adding constraints or increasing the
number of variables resulted in Numerica not terminating. Looking at the Meszaros problems, Numerica
successfully enclosed the optimal values of kleemin3 to kleemin6, but failed due to insufficient memory
for the larger ones.

Lurupa enclosed the optimal values and near-optimal feasible points for all problems in less than
10ms using lp _solve version 5.5. The relative accuracy of the computed bounds was at least 10~%. Only
for kleemin8 the accuracy was 10~% due to the quality of the approximate solution.

4 Conclusion

Applying current general optimization software with rigorous result verification to linear programs works
up to a dimension of 10 variables. Larger problems require algorithms that exploit the special structure
of the problems. Lurupa implements such algorithms and solves medium scale linear programs in a
reasonable time (see [17]).

Copyright line will be provided by the publisher



C. Keil: Verified Linear Programming — a Comparison

[1]
(2]
13]

o
g
o
4
o

10

[11]
[12]

[13]

14
15

[16]

[17]
[18]
[19]
[20]
[21]
[22]

23
24
25

[26]
[27]

28]

[29]

References

H. Beeck. Linear Programming with Inexact Data. Technical Report 7830, Abteilung Mathematik, TU
Miinchen, 1978.

M. Berkelaar, P. Notebaert, and K. Eikland. lp solve. World Wide Web. http://groups.yahoo.com/
group/lp_solve.

G.B. Dantzig. Maximization of a linear function of variables subject to linear inequalities. In T.C. Koop-
mans, editor, Activity Analysis of Production and Allocation, number 13 in Cowles Commission Monographs,
pages 339-347, 440 Fourth Ave., New York City, 1951. John Wiley & Sons, Inc.

G.B. Dantzig. History of Mathematical Programming: A Collection of Personal Reminiscences, chapter
Linear Programming, pages 19-31. Elsevier Science Publishers, 1991.

C. de la Vallée Poussin. Sur la méthode de approximation minimum. Annales de la Société Scientifique,
35:1-16, 1911.

M. Dhiflaoui, S. Funke, C. Kwappik, K. Mehlhorn, M. Seel, E. Schémer, R. Schulte, and D. Weber. Certi-
fying and repairing solutions to large LPs how good are LP-solvers? In SODA, pages 255—256, 2003.

M. Berz et al. COSY Infinity. World Wide Web. http://www.bt.pa.msu.edu/index_files/cosy.htm.
J.B.J. Fourier. Solution d’une question particuliére du calcul des inégalités. Nouveau Bulletin des sciences
par la Société philomathique de Paris, pages 99-100, 1826.

B. Gértner. Exact arithmetic at low cost — a case study in linear programming. Computational Geometry,
13(2):121-139, June 1999.

L. Granvilliers and F. Benhamou. Algorithm 852: RealPaver: An Interval Solver using Constraint
Satisfaction Techniques. ACM Transactions on Mathematical Software, 32(1):138-156, 2006. http:
//doi.acm.org/10.1145/1132973.1132980.

C. Jansson. A Self-Validating Method for Solving Linear Programming Problems with Interval Input Data.
Computing, Suppl. 6:33-45, 1988.

C. Jansson. Rigorous Lower and Upper Bounds in Linear Programming. SIAM J. Optim., 14(3):914-935,
2004.

L.V. Kantorovich. Mathematical methods in the organization and planning of production (in Russian).
Publication House of the Leningrad State University, 1939. English Translation: Management Science,
Volume 6 (1960), pp. 363-422.

R.B. Kearfott. Globsol. World Wide Web. http://interval.louisiana.edu.

R.B. Kearfott. Globsol: History, composition, and advice on use. In C. Bliek, C. Jermann, and A. Neu-
maier, editors, Global Optimization and Constraint Satisfaction, volume 2861 of Lecture Notes in Computer
Science, pages 17-31. Springer Berlin / Heidelberg, 2003.

C. Keil. Lurupa — Rigorous Error Bounds in Linear Programming. In B. Buchberger, S. Oishi, M. Plum,
and S.M. Rump, editors, Algebraic and Numerical Algorithms and Computer-assisted Proofs, number 05391
in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2006. http://drops.dagstuhl.de/opus/volltexte/2006/445.

C. Keil and C. Jansson. Computational Experience with Rigorous Error Bounds for the Netlib Linear
Programming Library. Reliable Computing, 12(4):303-321, 2006.

O. Kniippel. PROFIL/BIAS and extensions, Version 2.0. Technical report, Inst. f. Informatik III, Technische
Universitdt Hamburg-Harburg, 1998.

T. Koch. The final netlib-lp results. Technical Report 03-05, Konrad-Zuse-Zentrum fiir Informationstechnik
Berlin, Takustrafe 7, D-14195 Berlin-Dahlem, Germany, 2003.

R. Krawczyk. Fehlerabschidtzung bei linearer Optimierung. In K. Nickel, editor, Interval Mathematics,
volume 29 of Lecture Notes in Computer Science, pages 215-222. Springer Verlag, Berlin, 1975.

Y. Lebbah. ICOS (Interval COnstraints Solver). World Wide Web. http://www.essi.fr/~1lebbah/icos/
index.html.

L. Lovasz. A New Linear Programming Algorithm — Better or Worse Than the Simplex Method? The
Mathematical Intelligencer, 2:141-146, 1980.

Csaba Mészaros. Linear programming test problems. http://www.sztaki.hu/ meszaros/bpmpd.

Netlib. Netlib linear programming library. http://www.netlib.org/1lp.

A. Neumaier and O. Shcherbina. Safe bounds in linear and mixed-integer programming. Mathematical
Programming, Ser. A, 99:283-296, 2004.

F. Ordoifiez and R.M. Freund. Computational experience and the explanatory value of condition measures
for linear optimization. STAM J. Optimization, 14(2):307-333, 2003.

J.B. Rosen and S. Suzuki. Construction of Nonlinear Programming Test Problems. Communication of
ACM, 8:113, 1965.

S.M. Rump. Solving Algebraic Problems with High Accuracy. Habilitationsschrift. In U.W. Kulisch and
W.L. Miranker, editors, A New Approach to Scientific Computation, pages 51-120. Academic Press, New
York, 1983.

P. Van Hentenryck, P. Michel, and Y. Deville. Numerica: A Modelling Language for Global Optimization.
MIT Press Cambridge, 1997.

Copyright line will be provided by the publisher



