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Abstract. Linear programming is arguably one of the most basic forms of optimization. Its
theory and algorithms can not only be applied to linear optimization problems but also to relaxations
of nonlinear problems and branch-and-bound methods for mixed-integer and global optimization
problems.

Recent research shows that against intuition bad condition numbers frequently occur in linear
programming. To take this into account reliability is required. Here we investigate rigorous results
obtained by veri�cation methods. We will examine di�erent current techniques and software tools
for veri�ed linear programming and compare numerical results for existing implementations.
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1. Introduction. Linear programming remains one of the most important forms
of optimization in applications. As exempli�ed by Lovasz [28]: �If one would take
statistics about which mathematical problem is using up most of the computer time in
the world, then (not including database handling problems like sorting and searching)
the answer would probably be linear programming�. That same year Eugene Lawler
of Berkeley summarized: �It [linear programming] is used to allocate resources, plan
production, schedule workers, plan investment portfolios and formulate marketing
(and military) strategies. The versatility and economic impact of linear program-
ming in today's industrial world is truly awesome.� Looking at the documentation
of collections of linear programming problems like the Netlib lp library [31] reveals
such diverse applications as oil re�nery problems, �ap settings on aircraft, industrial
production and allocation, and image restoration.

Rounding errors inevitably introduced by �oating point arithmetic can well de-
teriorate the result of numerical computations. This is especially true for problems
being ill-posed, which 71% of the linear programs in the Netlib collection are, as
observed by Ordóñez and Freund [35].

The goal of this paper is to compare di�erent optimization packages similar to
the recent comparison of several state-of-the-art complete global optimization solvers
by Neumaier, Shcherbina, Huyer, and Vinkó [34]. In our comparison, however, we are
looking for rigorous results taking all rounding errors into account. We will examine
di�erent approaches and software packages and apply them to several random and
real-world problems.

In the next section we will agree on the used notation. In Section 3 the techniques
and software packages in question will be described. Section 4 discusses the justness
of comparing such diverse methods. The ensuing Sections 5 and 6 detail the test
environment and the numerical results, respectively. Finally some conclusions are
given in Section 7.

2. Notation. In the following we will treat the (primal) linear program (LP) of
minimizing a linear objective function over a set of feasible points de�ned by linear
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constraints,
f∗ := min cT x

s.t. Ax ≤ a

Bx = b

x ≤ x ≤ x.

Relations between vectors are to be understood componentwise. We will denote the
number of variables, equality, and inequality constraints by n, p, and m, respectively.
Simple bounds, xi and xj , may be in�nite.

This LP's dual has the form
g∗ := max aT y + bT z + uT x + vT x

s.t. AT y + BT z + u + v = c

y ≤ 0, u ≥ 0, v ≤ 0.

Using the convention 0 · ±∞ evaluates to 0, a �nite dual objective value follows if
and only if the components of u and v corresponding to in�nite simple bounds are
themselves 0. The dual has the important property that its objective value is always
less than the primal one.

We will denote optimal primal and dual variables by x∗ and y∗, z∗, u∗, and v∗.
An approximation to the optimal value will be denoted by f̃ , lower and upper bounds
on the optimal value by fM and fO, respectively.

3. Available software. The available software capable of producing rigorous
results for LPs can be categorized into four groups according to the algorithms they
use. Algorithms for veri�ed constraint programming, algorithms using a rational
arithmetic, veri�ed global optimization algorithms using interval arithmetics, and
algorithms speci�cally designed to rigorously solve LPs in the presence of rounding
errors and uncertainties in the input data.

3.1. Veri�ed constraint programming. Algorithms for constraint program-
ming search for points satisfying a given set of constraints. Rigorous versions return
a list of interval vectors (boxes) that may contain feasible points and a list of boxes
that are veri�ed to contain satisfying points. These lists are exhaustive, if both are
empty, the problem is claimed to have no feasible solution.

Constraint programming algorithms do not support the concept of an objective
function. Nevertheless rigorous bounds for the optimal value of an LP can be derived
in the following way. Assume we have an approximation f̃ and choose a small ∆ > 0.
Now we apply a veri�ed constraint programming algorithm to the original set of
constraints, adding a constraint on the objective function of the form cT x ≤ (1−∆)·f̃ .
If the algorithm recognizes this set of constraints to be infeasible, we know (1−∆) · f̃
to be a rigorous lower bound on the true optimal value. A rigorous upper bound
could be computed using a similar approach for the dual problem with the additional
overhead of explicitly forming the dual in the �rst place. Obtaining an upper bound
from a box veri�ed to contain feasible points is considerably more involved from an
algorithmic point of view. In the linear programming case the feasible points form
a continuum, which is di�cult to handle. Research into this area has only recently
begun (see Neumaier [32], and Vu et al. [42, 43]).

An implementation of a veri�ed constraint programming algorithm is RealPaver
[11]. It uses a branch-and-prune algorithm, the pruning step merges constraint satis-
faction techniques with the interval Newton method.
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3.2. Algorithms using a rational arithmetic. Algorithms of this group ex-
ploit the fact, that the solution of an LP with �oating point (rational) coe�cients
is itself rational. This has been done by Gaertner [9] for problems where either the
number of variables or constraints does not go well beyond 30. Dhi�aoui et al. [6]
combined the rational approach with an approximate standard LP solver. They build
on the premise that the approximate optimal basis computed by a standard LP solver
is close to the true optimal one, counting simplex steps. Starting from an approxi-
mate basis, they perform rational simplex steps until they arrive at the true optimum.
Koch [25] provides an implementation just checking the optimality of a basis together
with results on all Netlib problems. He remarks in cases where the basis proves to be
suboptimal, increasing the precision of the approximate computations may help the
LP solver to �nd the true optimal basis. This observation in turn has recently been
used by Applegate et al. [2], who iteratively increase the precision of the approximate
computations until the computed basis proves to be optimal.

A fully rational simplex method is exlp [22] by Kiyomi. The implementation
by Koch, perPlex [24], checks the optimality of a given basis but does not o�er any
means to compute it in the �rst place or go on from there if it proves to be suboptimal.
Applegate et al. published their ideas in the solver QSopt_ex [1].

3.3. Veri�ed global optimization. Veri�ed global optimization solvers handle
problems with objective function and constraints de�ned by smooth algebraic expres-
sions. Thus they can solve LPs rigorously. Their output consists of candidate and
veri�ed to be enclosures of feasible points and an enclosure of the optimal value or
the veri�ed claim that no feasible point exists.

Implementations are COSY [5], GlobSol [17], ICOS [27], and Numerica [40].
COSY uses a branch-and-bound scheme featuring a Taylor model arithmetic for the
bounding step. Unfortunately on inquiry it was not possible to obtain a copy of
COSY. The current policy of the project seems to deny researchers from the inter-
val community access to the code. GlobSol combines an interval branch-and-bound
procedure with additional techniques, such as automatic di�erentiation, constraint
propagation, interval Newton methods, and additional, specialized techniques. Orig-
inally starting as a constraint programming algorithm, ICOS supports optimization
since the current release (0.1 from May 2008). It is based on constraint programming,
interval analysis, and global optimization techniques. In addition it uses safe linear
relaxations together with the �nite case of the rigorous bounds by Jansson [16] and
Neumaier and Shcherbina [33] (see below). We will see later how this contributes to
the results of ICOS.

3.4. Veri�ed linear programming with uncertainties. Finally there are
the algorithms speci�cally designed for veri�ed linear programming in the presence of
rounding errors and uncertainties in the input data. Considering rounding errors in
linear programming goes back to Krawczyk [26]. His aim was to compute a rigorous
enclosure of the optimal solution by verifying the optimality of a basic index set.
From this, rigorous bounds on the optimal value can be derived easily. He also
considered errors in the input data, allowing the algorithm to be applied to problems
with interval data. His ideas were used and re�ned by Beeck [3] and Rump [39].
Jansson [15] introduced means to also handle degenerate solutions starting from a
basic index set and applying a graph search method to a graph of the adjacent basic
index sets. Requiring the solution of interval linear systems, all these methods share a
computational work being cubic in min{m + p, n}. Several years later, independently
and at the same time Neumaier and Shcherbina [33] and Jansson [16] devised methods
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to rigorously bound the optimal value with a quadratic complexity. This is achieved
by deriving the rigorous bounds from certain duality properties. The output here
consists of rigorous enclosures of the optimal value and feasible but suboptimal points.
Neumaier and Shcherbina did this for the case where �nite simple bounds on all
variables are known, Jansson also considered the case of unbounded and free variables.

In returning enclosures of feasible but suboptimal points, the character of the
solutions returned by these algorithms di�ers considerably from the previous ones'.
While not getting the optimal solution, the user obtains near optimal, feasible points
in the well-posed case. In the ill-conditioned case wide or no bounds are returned.
This indicates numerical instabilities and may point to inconsistencies in the model.
Whether one kind of solution is superior to the other depends on the actual applica-
tion.

Lurupa [20] belongs to this fourth category. Implementing the algorithms devel-
oped by Jansson [16], Lurupa tries to enclose feasible, near-optimal solutions for the
primal and the dual problem. The iterative algorithm starts by solving the origi-
nal problem with a standard LP solver. Based on the approximate solution, interval
arithmetic is now applied to enclose a feasible point. If this succeeds, the rigorous
bound on the optimal value follows with the range of the objective function over
this enclosure. Otherwise the algorithm starts over, perturbing the LP to force the
approximate solution further into the relative interior of the feasible region. In the
presence of uncertainty in the input data, only approximate solutions to midpoint
problems are necessary, and still a standard LP solver su�ces. Lurupa implements
veri�ed certi�cates of infeasibility and unboundedness. Furthermore it is the only
package in this comparison that computes veri�ed condition numbers as de�ned by
Renegar [36]. To do this, the algorithm is applied to Ordóñez and Freund's linear pro-
gramming characterization of the distances to primal and dual infeasibility [35]. This
is especially interesting when solving real-world applications as it allows to evaluate
the underlying models.

Lurupa has proven capable of computing rigorous error bounds for the optimal
value of LPs with several thousands of variables and constraints (see [21]). Roughly
speaking, �nite lower and upper bounds could be computed if and only if the respec-
tively primal and dual problems were not ill-posed. For various problems of the Netlib
LP library, lower and upper bounds were obtained, certifying the existence of optimal
solutions.

Consisting of modules for the di�erent functional parts, Lurupa is fully imple-
mented in ISO C++ and easily extendible. The aim is to provide a fast implementa-
tion of the algorithms, available as a stand-alone and a library version to be integrated
into larger frameworks. For the interval computations PROFIL/BIAS [23] is used.
Solver modules are currently available for lp_solve [4] in di�erent versions. Addi-
tional solver modules have to implement a common interface, their main function is
transforming data between the representations used in Lurupa and in the solver.

It is interesting to note that few of these algorithms are specially devised for
convex programming problems. This despite Nemirovski [30] and Vandenberghe and
Boyd [41] observing that a large number of applications can be modelled as convex
problems. Rockafellar [37] remarks: �In fact the great watershed in optimization isn't
between linearity and nonlinearity, but convexity and nonconvexity�. Only Lurupa,
VSDP [14]�a MATLAB package written by Jansson generalizing the approach to
semide�nite programming�, and the exact rational algorithms fall into this category.
The rational algorithms are of course only applicable to problems that can be solved
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in the rationals.

4. Apples and oranges?. Comparing these software packages is not an easy
task. They are written for di�erent purposes and deliver di�erent kinds of output.
There are certainly scenarios in which some of these packages �t and others do not.
In the following comparison we want to apply all solvers to the same set of problems
and see which problems the packages can solve. Therefore we have to de�ne what
solving in this comparison means.

We will say that a package solves a problem if it returns the aforementioned
rigorous results. Enclosures have to be of reasonable width. We will not accept
answers like [−∞,∞] for all problems as solutions. The requirements on the width,
however, depend on the application and the user. Even wide �nite bounds verify at
least feasibility, which approximate algorithms do not. Lurupa returns �ve in�nite
upper bounds for real-world problems in our test set. These are exactly the �ve
problems of our test set for which Ordóñez and Freund [35] computed a distance to
primal infeasibility of 0. This means an arbitrarily small perturbation of the problem
data may render these problems infeasible. Thus the in�nite upper bound exactly
re�ects the ill-posedness of the problem and is regarded as a solution.

While the results returned by the di�erent solvers di�er in character and demand,
they o�er a similar bene�t to the user: the assurance of rigorosity. Whether this is
achieved by providing the exact solution, an enclosure of it, or an enclosure of near
optimal, feasible points is often secondary for real-world applications. And it's the
rigorous bounds on the objective value that are mandatory for fully rigorous branch-
and-bound algorithms.

The next question that arises is whether it is fair to compare general purpose
algorithms with algorithms speci�cally targeted at linear programming. First all these
packages are able to solve LPs so we will have a look at how they perform. Second we
precisely want to see if it is necessary to make use of special structure in the problem,
and we will use linear programming as a class of problems with special structure.
And third solving LPs is rather easy compared with nonlinear problems. If a general
purpose algorithm cannot solve an LP of certain dimensions, it seems unlikely it will
be able to solve nonlinear problems of that size. Thus linear programming is a good
benchmark also for nonlinear optimization packages.

5. Test environment. We will use three test sets to compare the software pack-
ages. The �rst one consists of random problems generated with Algorithm 1, which
is similar to the one suggested by Rosen and Suzuki [38]. All random choices are
uniformly distributed and integral.

Using this procedure the solution and optimal value are integral and known ex-
actly, and the LP is non-degenerate. Dual degeneracy would lead to a continuum of
primal optimal solutions, posing an additional challenge for the constraint satisfaction
and the complete global optimization codes as already noted. Degeneracy, however, is
not a rare phenomenon, but rather common in linear programming and mathematical
programming in general. Often this is a result of inherent model properties as investi-
gated by Greenberg [12]. Also the problems generated with this procedure are dense.
Thus they do not indicate the size of sparse problems a package can solve. Especially
the rational solvers have inherent problems with the growing number of nonzero co-
e�cients in large dense problems. Nevertheless there are applications that naturally
result in dense optimization problems. Several sparse and degenerate problems can
be found in the other two test sets.
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Algorithm 1 Random problems after Rosen and Suzuki
Given: m, p, n with p ≤ n ≤ m + p

1. Choose the components of the optimal solution
• x∗ between −9 and 9,
• z∗, nonzero, between −10 and 10, and
• n−p components of y∗, between −10 and −1, the remaining components

of y∗ become 0.
2. Set simple lower and upper bounds of −10 and 10 on all variables. Choose

constraint matrices A and B for the inequalities and equations, respectively,
with coe�cients between 0 and 10. Build the matrix of active constraints
(i.e., y∗i 6= 0)

(
Aactive

B

)
,

and add 1 to the diagonal elements, ensuring its regularity.
3. Compute the right hand sides of the constraints

a = Ax∗ b = Bx∗,

and increment ai belonging to inactive constraints (i.e., the corresponding
value in y∗ is 0) by 1.

4. Compute the coe�cients of the objective function

c = AT y∗ + BT z∗

We generate problems with 5 to 1500 variables, with the same number of in-
equalities and the number of equations being half of that. For each triplet of num-
ber of inequalities, equations, and variables (m = n, p = 0.5n, n), three prob-
lems are generated to rule out the in�uence of problem properties that are present
by coincidence. The problem instances used in the following can be found under
http://www.ti3.tu-harburg.de/~keil.

The second test set contains the real-world problems with less than 1500 variables
from the Netlib collection [31] and theMisc section of Meszaros collection [29] 1. Since
most of these problems have some in�nite simple bounds, a large �nite simple bound
on the variables was set for ICOS and GlobSol, which do not handle in�nite bounds.
If possible, this bound was chosen to not change the feasible region. If not, it was
chosen an order of magnitude larger than the approximate optimal solution's largest
component.

Finally we will run the solvers on the infeasible problems in Meszaros infeas
section with less than 1500 variables2.

The following versions of the software packages will come to use:

1Netlib's standgub is removed from this set, as it uses a special feature of the MPS format that
some solvers do not support. Further information can be found in the readme �le contained in the
Netlib lp collection. From Meszaros Misc collection, model1 is removed as it does not contain an
objective function, which circumvents the RealPaver approach to compute a rigorous bound. Also
from Meszaros Misc, zed contains a second objective function, which is ignored in the following.

2gas11 from this section is unbounded and thus removed, because only exlp and Lurupa have
means to verify this.
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• ICOS 0.1
• RealPaver 0.4
• exlp 0.6.0
• perPlex 1.01 in combination with lp_solve 5.5.0.6 to compute the approxi-

mate optimal basis
• QSopt_ex 2.5.0
• GlobSol released on November 22, 2003
• Numerica 1.0
• Lurupa 1.1 with lp_solve 5.5.0.6 solver module 1.1

All packages apart from ICOS and Numerica, which are not available in source,
are compiled with a standard gcc 4.1.2 [8]. Where applicable a con�guration with
compiler optimization is chosen. The computations are performed on an Intel XEON
with 2.2 GHz and 3 GByte of RAM available to the process under SUSE Linux
10.0. The timeout threshold di�ers from problem to problem, a solver run is aborted
if it takes more than 100 times longer than the fastest solver on this problem. A
run includes everything from reading the LP to reporting the solution. It does not
include the time to compute the initial approximate f̃ necessary for RealPaver, but
an approximate solver is in median orders faster than RealPaver and the time can
therefore be neglected.

The numerical results of Numerica will not be displayed here because it was sold
dongled to the hardware, and thus we cannot test it on the same platform. But taking
the di�erences between the platforms into account and setting appropriate timeouts,
Numerica is only able to solve problems with 5 variables and 5 inequalities. Adding
variables or constraints causes Numerica to timeout. Of the real-world problems
Numerica solves kleemin3 to kleemin6, on all other ones it runs out of memory (≈
700 MByte in this environment).

The programs will be run with their default settings for strategy and stopping
tolerances. As lp_solve is no integral part of perPlex, we may try some di�erent
settings like scaling options to not punish perPlex for suboptimal bases computed
by lp_solve. For GlobSol, there are some additional limits that can be set for the
computations [18]. The upper bounds on resource parameters, like MAXITR or NROWMAX,
will be increased if GlobSol aborts due to these limits. Peeling will be enabled for
all bounds. For the problems GlobSol cannot solve, the databox will be enlarged
and peeling disabled. It might be possible to obtain better results by adjusting the
stopping tolerances and strategy to the speci�c problem instances but this seems not
suitable for a benchmarking situation. This also re�ects the experience of a user
without a deeper insight into the algorithm and its parameters.

To generate the input for RealPaver, we will use the known optimal value for
the random problems and the rationally computed one for the real-world problems.
We will put the perturbation ∆ at 10−6, which seems like a reasonable guarantee
for practical problems. The bounds computed by GlobSol, ICOS, and Lurupa in
median provide at least this guarantee. If the optimal value is 0, we will use an
absolute perturbation instead of a relative one (the test set's nonzero optimal value
with smallest absolute value is of order 10−1).

Finally a comparison of rigorous optimization algorithms would not be complete
without checking the validity of the claims made by the solvers. To check the feasibility
of solutions, we will use a simple and therefore easy to check program that takes a
solution, computes the exact values of the constraints, and checks if they are satis�ed.
All this is done using the GNU Multiple Precision Arithmetic Library (GMP) [10].
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Solved out of
Solver 27 random 102 feasible 27 infeasible Total Errors

real-world real-world
ICOS 9 (33%) 2 ( 2%) 17 (63%) 28 (18%) 18
RealPaver 0 (0%) 8 ( 8%) 14 (52%) 22 (14%) 0
exlp 9 (33%) 90 (88%) 26 (96%) 125 (80%) 15
perPlex 18 (67%) 94 (92%) − 112 (87%) 0
QSopt_ex 18 (67%) 102 (100%) 27 (100%) 147 (94%) 0
GlobSol 0 (0%) 3 (3%) 2 (7%) 5 ( 3%) 7
Lurupa 27 (100%) 99 (97%) 23 (85%) 149 (96%) 0

Table 6.1
Number of problems solved per package

To identify suboptimal solutions and wrong claims of infeasibility, we compare the
results from the di�erent solvers and check for inconsistencies.

6. Numerical experience.
6.1. Summary. The main result of this comparison can be seen in the summary

in Table 6.1. There we �nd solver by solver the count and percentage of problems
solved from each test set, the total count and percentage of problems solved, and the
total number of errors produced (i.e., how often a solver computes a wrong result).
The `−' in the row of perPlex is explained by the fact perPlex was designed just to
verify the optimality of an approximate optimal basis, it does not implement any logic
to verify infeasibility. Hence the total percentage of perPlex is with respect to the
feasible problems. We clearly see

• RealPaver is not suitable for the feasible problems. It is naturally better at
identifying the infeasible ones.

• The rational algorithms, exlp, perPlex, and QSopt_ex, solve almost all of
the feasible problems. They time out for the larger random problems. Only
QSopt_ex veri�es the infeasibility of all infeasible test problems.

• GlobSol solves only 5 problems in total. It is unsuitable for these problems.
ICOS shows marginally better results for the feasible problems. Its origin
in constraint programming clearly shows in the higher number of problems
veri�ed to be infeasible. Lurupa solves all but three feasible problems. It
identi�es the infeasibility of a high percentage of the infeasible problems.

As already mentioned, ICOS uses of safe linear relaxations together with rigorous
bounds. Nevertheless the relaxations are only used to reduce the bounds on the
individual variables of the problem. ICOS examines the whole search region and does
not exploit the linear structure of the problem itself. This explains why the results
are worse than that of Lurupa despite employing an akin algorithm.

6.2. Details. We start with a closer examination of the random problems. As
already mentioned, the size of the problem is the number of variables and inequality
constraints, the number of equality constraints is half of this (two equations for size
5). For each size there are three distinct problems. The running times of the solvers
for the di�erent problems are displayed in the double logarithmic plot in Figure 6.1.
Each runtime is denoted by a corresponding dot, so there are three dots per solver
and size of problem. As we can see, there is almost no variation in runtime for any
solver and size, the corresponding dots almost lie on top of each other. The fastest
solver, Lurupa, shows the smallest increase in runtime. Therefore it seems unlikely
that a solver will meet the runtime limit for a problem of a certain size after failing
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Fig. 6.1. Running times for random problems

to do so for all three problems of a smaller size. Hence we will not carry out the
computations for these larger problems.

Let us now have a detailed look at the individual solvers. RealPaver and GlobSol
already fail to solve the smallest problems within a time factor of 100 to the fastest
solver. Kearfott has a development version of GlobSol implementing linear relaxations
[19]. This presumably allows GlobSol to solve these problems but is not yet available.

The other solvers start with comparable runtimes. Showing the largest increase,
exlp and ICOS solve problems with 5�20 variables. perPlex and QSopt_ex solve
problems with up to 200 variables before failing to meet the timeout threshold.

Lurupa proves to be the fastest solver for this test set. For size 50 it is already
an order of magnitude faster than all others, and this factor increases to almost two
orders of magnitude for size 200. Lurupa is the only package solving problems of size
greater than 500.

Figure 6.2 is a performance pro�le of the random problem runtimes as introduced
by Dolan and Moré [7]. For this purpose each runtime ts,p for solver s on problem p
is transformed into a runtime ratio to the fastest solver for this problem

rs,p =
ts,p

mins{ts,p} .

The performance pro�le is the cumulative distribution function of these ratios for each
solver

ρs(τ) =
|{p | rs,p ≤ τ}|

|{p}|
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Fig. 6.2. Performance pro�le on random problems

that is the proportion of problems which can be solved with a runtime ratio rs,p less
than τ . Two points of special interest in the pro�le are ρs(1) and limτ→∞ ρs(τ).
These denote respectively the proportion of problems that solver s solves fastest and
the proportion of problems solved at all. The more the pro�le moves to the upper left
of the axes, the higher percentage of problems are solved with small ratios rs,p.

The performance pro�le supports the previous observations. We can clearly make
out three groups, RealPaver and GlobSol, then ICOS, exlp, perPlex, and QSopt_ex,
and �nally Lurupa. The plot emphasizes the power of Lurupa's algorithm for this test
set. For 90% of the problems it is the fastest, the remaining 10% are solved within a
factor of two to the fastest solver. Allowing di�erent τ values between 1 and 10 each
of exlp, perPlex, and QSopt_ex can have the second highest ρs value. For higher
time ratios their ranking stays the same.

Now we take a look at the results for the feasible real-world problems. Figures
6.3 and 6.4 show their running times and variable counts. As the size of a problem is
a weak indicator of its di�culty here, the problems are sorted by increasing runtime
for Lurupa instead of by size as in Figure 6.1.

ICOS, RealPaver, and GlobSol solve only few of these problems. For most prob-
lems they time out or fail.

exlp, perPlex, QSopt_ex, and Lurupa show similar increases in runtime with
growing di�erences with increasing problem size. perPlex and QSopt_ex tend to be
the fastest solvers, Lurupa and exlp follow.

This test set reveals some errors and limitations in the solvers. We will examine
these in the next section.

The performance pro�le on this set of problems in Figure 6.5 reveals the two
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groups, on the one hand perPlex, QSopt_ex, exlp, and Lurupa and on the other
hand RealPaver, ICOS, and GlobSol. With runtime ratios less than 6, perPlex solves
the highest percentage of problems. Allowing larger ratios QSopt_ex takes the lead
and solves all problems within a factor of 11. Approaching τ values of 100, Lurupa
beats perPlex and solves more problems in total. RealPaver, ICOS, and GlobSol are
unsuitable for these problems, solving less than 10% in total.

Finally we look at the infeasible problems. Their runtimes are found in Figure
6.6. Again sorted by Lurupa's runtime we see a somewhat di�erent picture from the
feasible problems. As already mentioned, perPlex cannot verify the infeasibility of a
problem and is thus missing from these plots.

GlobSol solves only two of these problems and needs almost two orders of mag-
nitude longer than the fastest solver. ICOS and RealPaver verify the infeasibility of
several, for most problems the factor in runtime is less than one order of magnitude
to the fastest solver.

exlp, QSopt_ex, and Lurupa show a similar behaviour to the feasible case. They
have comparable runtime increases with growing variance. The ranking tends to stay
QSopt_ex, Lurupa, exlp. Only QSopt_ex veri�es the infeasibility of all test problems.

In Figure 6.7 we �nd the performance pro�le on this �nal set of problems. We
clearly observe the better performance for ICOS and RealPaver. The ranking of
QSopt_ex, Lurupa, exlp holds when allowing runtime ratios up to a factor of 10.
Going to higher ratios, exlp ultimately veri�es the infeasibility of more problems than
Lurupa and their pro�les cross.

6.3. Errors and limitations. The real-world test sets reveal some errors and
limitations in the solvers. Of the feasible real-world problems, ICOS claims 12 to be
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infeasible. In addition six solver runs of ICOS on infeasible problems abort due to
software errors.

Comparing the optimal values and checking the solutions for feasibility reveals
that exlp returns feasible but suboptimal solutions on seven problems, which can be
�xed by disabling preprocessing. On one problem the solution with preprocessing
enabled is suboptimal and infeasible, the one without preprocessing is feasible and
agrees with the other solver's optimum. On another six problems infeasible solutions
are returned with and without preprocessing. A single problem results in exlp wrongly
complaining about a malformed problem �le.

Testing perPlex on this set of problems reveals a discrepancy in interpreting an
approximate basis. lp_solve and other tested LP solvers (soplex 1.3.0 [44], QSopt_ex,
and CPLEX 9.0.0 [13]) return bases with free variables being non-basic. Judging from
their output, they treat these variables as being 0. perPlex, however, handles all non-
basic variables as being at their lower bound and thus complains about such bases
putting variables at minus in�nity. This problem appears for 16 bases returned by
lp_solve. For seven of these LPs, CPLEX returns a basis that perPlex accepts and
veri�es to be optimal, for one problem QSopt_ex does. The corresponding runtimes
are included in the displayed results. For the remaining eight problems no tested LP
solver returns a basis that perPlex accepts.

41 problems cannot be submitted to GlobSol due to limitations on the length of
a line in the input format. Seven of these feasible problems GlobSol claims to not
contain feasible points. The wrong claims were investigated and in part already solved
by Kearfott.

7. Conclusions. Even for these rather small LPs, the solvers that do not exploit
the structure, ICOS, RealPaver, and GlobSol, cannot keep up with the ones that do,
namely Lurupa and the rational ones, exlp, perPlex, and QSopt_ex. Making use of
the special structure of an LP is a necessity when aiming for fast and rigorous results.

Lurupa's way of combining approximate results with interval arithmetic produces
an enclosure and not the exact solution. While clearly outperforming the rational
algorithms for the dense random problems, it solves the more di�cult, real-world
problems within a factor of two orders of magnitude to the fastest rational imple-
mentation, perPlex or QSopt_ex. Lurupa's algorithm on the other hand can indicate
model inconsistencies and numerical problems by delivering wide bounds and veri�ed
condition numbers. It allows to compute enclosures if the input data are not exactly
known but subject to uncertainty. In contrast to the rational algorithms, Lurupa's
algorithm can be generalized to convex optimization as has been done in VSDP, and
it is not limited to problems that can be solved in the rationals.
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